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Abstract of the Dissertation

Heterogeneity: From Structural Refinement to Protein Folding

by

Guanglei Cui

Doctor of Philosophy

in

Chemistry

Stony Brook University

2003

Structure determines everything.

Biomolecules, such as proteins and nucleic acids, are heteropolymers, the re-

peating units of which are chosen from a finite set of simple organic molecules

that share certain physiochemical properties. Biomolecules are unique molecules

because their structure is hierarchical and also because low level structure (their se-

quences) identifies high level structure, their accessible three dimensional confor-

mations. This is often referred to as conformational heterogeneity. However, this is

not all that makes biomolecules special. Kinetic processes of a polymeric molecular

system can often be heterogeneous as well (kinetic heterogeneity), which again can

depend on the sequence. The comprehension of the details of these heterogeneities

is critical to understanding functions and mechanisms of biological processes.

In this dissertation, both conformational and kinetic heterogeneities were ad-

dressed computationally. First, the local conformational heterogeneity of a mod-

ified DNA duplex was investigated with molecular dynamics and the locally en-

hanced sampling technique. Calculations were compared to those of a regular
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DNA duplex with similar sequence. The combined results indicated that the con-

formational abnormality of an adenine base was introduced by the nearby mod-

ified “base pair”. This conformational abnormality has been long recognized as

a major drawback to conventional structure determination approaches, such as

NMR spectroscopy and X-ray crystallography. Computer modeling was proven

to be a valuable tool in this study and provided a logical explanation that was

missing in the NMR studies.

Next, the kinetic heterogeneity of folding for a model peptide was thoroughly

examined with an ensemble of folding simulations. Three different timescales of

folding were found, covering a wide range from tens of picoseconds to tens of

nanoseconds. This complicated folding scenario was then justified by subsequent

thermodynamic studies with the replica exchange method, from which the free

energy landscape of folding was generated. The welding of kinetic and thermody-

namic findings solidifies our understanding from simple lattice simulations that

protein folding is in general a very heterogeneous process, which may degrade

into a simple biphasic behavior under certain circumstances.

At last, the inhibition of the E. Coli enoyl-reductase – FabI by triclosan and its

analogs were quantitatively calculated using free energy calculation techniques, as

our first step towards new inhibitor design for the M. Tuberculosis enoyl-reductase

– InhA. Molecular dynamic studies of the FabI:NAD+:ligand complex revealed

that the tetrameric interaction and ligand binding may be closely related. Based

on this, a truncated model system was created for the free energy calculations,

which reasonably represented the original tetramer system. However, a decent

agreement with the experimental relative binding affinities was still difficult to

achieve even after taking into account the protonation state of the bound ligand.

The uncertainty of the binding needs further investigation.
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Chapter 1

Introduction

1.1 Structural Biology Overview

Structural biology, which provides structural information of biomolecular systems

so as to better understand or explain what is observed in molecular biology, has

marched a long journey over the past hundred years, from watching cells in the

earliest days of microscopy in the late 17th century to the first atomic-detailed

picture of ribosome, consisting of 57 different molecules (3 rRNAs and 54 proteins),

and become one of the most important facets of current biological research. A

detailed overview of the history of the whole field can be found in Reference [1].

In principle, three-dimensional structures of bio-molecular systems can be

studied by theoretical calculations if the underlying physics of how atoms inter-

act is understood adequately. Such an attempt was first made by McCammon

and Karplus in the late 1970’s, which was based on a classical description (Molec-

ular Mechanics) of atomic interactions [2, 3, 4], and so was opened a door to a

brand-new field – computational structural biology. After this groundbreaking

work, molecular modeling has been constantly developed over the past 30 years by

many (for recent reviews, see [5, 6, 7]) and become one of the essential approaches
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in structure studies, next to X-ray/neutron crystallography, electron microscopy

(EM) and nuclear magnetic resonance (NMR).

One of the early mis-concepts in structure biology is that proteins have rel-

atively rigid structures. But it was quickly discovered that proteins as well as

other bio-macromolecules exhibit, more or less, conformational flexibilities that

are crucial to their biological functions. The importance of their internal motions

or conformation complexity has been illustrated both computationally and exper-

imentally in many studies. One recent example attempted to address the antibody

multi-specificity issue by both X-ray crystallography and pre-steady-state kinetics

and proposed an preexisting equilibrium between different antibody conformers

[8]. Resolving different conformations and evaluating their contributions to the

function are of high-priority, and yet the most challenging.

X-ray crystallography is central in our structure determination process and

makes the largest contribution to all structures solved so far (85% of the 20,868

structures deposited in Protein Data Bank as of May 2003). However, it is a well-

known fact that X-ray crystallography generally only depicts an averaged picture

of molecular system that is in ceaseless motion. Investigating the influence of dif-

ferent conformers using X-ray crystallography needs not only passions and pa-

tience, but also some blessing. On the other hand, NMR spectroscopy has proved

itself in this regard a better choice of tool when there exists mobile regions in the

studied system. Although NMR studies are often limited by the system size, its

great capability of detecting structural changes makes it a very good complement

to X-ray crystallography.

In parallel to the advancements in experimental techniques, significant

progress has been achieved in theoretical calculation of biomolecular systems dur-

ing the past 30 years. Equipped with refined physical models, improved algo-

rithms, and faster computers, “modelers” are now no longer satisfied with being
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able to reproduce results that are handed over, but eagerly take on to the next stage,

making quantitative predictions and building the groundwork for new theories

and experiments. Comparing to the above-mentioned traditional tools in struc-

tural biology, computer simulations, especially molecular dynamics (MD), have

certain advantage in studying conformational complexity because it can, in prin-

ciple, provide the most direct examination of motional phenomena with ultimate

details. Therefore, when experimental approaches are limited as to the informa-

tion that can be obtained, simulation methods can often become helpful to supply

the missing part when the simulation is indicated meaningful.

1.2 Structural Biology In Silico

Computational chemistry has achieved a huge success in applying quantum me-

chanics (QM) to studying small molecule organic reactions and spectroscopy. This

work won the Nobel Prize in Chemistry in 1998 for Walter Kohn and John Pople.

Full quantum mechanical treatment of biological molecular systems that contains

thousands of atoms is possible theoretically, but remains impractical for large sys-

tems due to the acute demanding on computer resources. Even though whole

protein minimization recently became possible with semiempirical approaches [9],

classical molecular mechanics (MM) is by far the only practical way to study con-

formational changes in a large scale with the premise of an accurate and adequate

description of key interactions, or force field.

1.2.1 Force Field

The importance of an accurate description of key interactions is beyond all doubt.

However, only recently did its profoundness become realized. Most of modern

descriptions have the empirical form of a sum of several terms, characterizing

3



bonded (such as bond stretching, bending and rotation) and non-bonded inter-

actions (Coulombic and van der Waals contributions). Each term is a function of

system coordinates with certain adjustable attributes, which are primarily deter-

mined by numerical fitting to equilibrium physical properties. For example, van

der Waals interaction strength and range are obtained by parameter tuning to re-

produce thermodynamic properties of various pure liquids through simulations

and atomic partial charges are calibrated to give reasonable electrostatic poten-

tial for a few selected conformations calculated using quantum mechanics. Sig-

nificant efforts have been made in force field development over the past 20 years

[10, 11, 12], the criticality of which makes it a high-risk and high-return research

direction in the whole field1. At present, MD simulations can be routinely carried

out for proteins and nucleic acids and tend to maintain a reasonable agreement

with experimental structures in the nanosecond range.

As molecular dynamics techniques come of age, applications become more

resource-demanding and more focused on conformational flexibilities, such as in

low-resolution structure refinement, antibody loop conformation prediction, and

protein folding, etc. The hidden side of available force fields and long-used param-

eterization philosophy begins to expose slowly, in part due to the fact that only the

most probable states or conformations are used during parameterization, which

does not guarantee a correct description of other states that might be important for

conformation morphing. One example is the observed over-stabilization of heli-

cal conformations with AMBER and CHARMm force fields. Although its origin

and solution are still not clear, several attempts have been made to rectify this by

more careful backbone torsion parameter fitting[13, 14] or a numerical lookup in

a pre-calculated correction table [15] and how well they perform are being exam-

ined. The other important part of current classical MM force field that needs to

1Papers describing force field development are among the best cited articles in literature
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be improved is possibly the fixed-charge model in electrostatic calculation, which

may be a questionable approximation in some cases. Although polarizable force

field are in active development, the additional computational cost introduced may

mitigate the potential advantage of better calculation, considering that force field

is by no means the only improvement that is very much needed. Due to the em-

pirical nature of MM force field, a force field that is highly transferable and highly

effective may take a long time to come. At present, it may have to be accepted that

problem-fitted force field, which targets a particular problem, is a better trade-off.

1.2.2 Conformational Sampling

The other aspect that cannot be emphasized enough is how to handle the confor-

mational complexity, which is created by the enormous number of degrees of free-

dom of biomolecular systems. This inherent conformational complexity is directly

linked to the multiplicity of maxima (transition states) and minima (well-defined

thermodynamic states) on potential energy surface. Monte Carlo (MC) and molec-

ular dynamics (MD) are the most commonly used approaches to produce low-

energy conformations that are subject to predefined constraints (temperature, pres-

sure, volume, energy, etc.). In general, Monte Carlo approach directly manipulates

internal degrees of freedom and therefore is considered as the most convenient

way to stochastically generate conformations under a set of given constraints; on

the other hand, molecular dynamics approach calculates the time-dependent chain

of conformations that are determined by equations of motion (such as Newtonian).

Because of this, molecular dynamics approach is often preferred, though arguably,

in studying kinetics-related problems, such as protein folding.

In the process of understanding structure-function relationship, the most fre-

quently encountered question is the relative stabilities of different thermodynamic

states, which are separated by energy barriers. Experimentally, this is evaluated by
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measuring the populations of these states characterized by one or two geometric

features (typically referred as “reaction coordinates”) that can be easily detected.

Different thermodynamic states can be identified in Monte Carlo or molecular dy-

namics simulations using the same reaction coordinates, but more directly. How-

ever, obtaining a well converged distribution of states can be very difficult, es-

pecially when the separating barriers are high comparing to thermal-fluctuations.

The typical length of molecular dynamics simulation is usually not adequate to

obtain quantitative results when the transition timescale is much longer, e.g. mi-

croseconds in the folding of small proteins, even though simulation length are

coming closer.

Advanced Sampling Techniques

Various techniques have been invented to enhance the sampling efficiency of

poorly populated thermodynamic states. According to Boltzmann law of distri-

bution, the probability of being in a particular state depends on the temperature

(T ) and the Hamiltonian of the system (H).

P (H, T ) ∼ exp

(

− H

kT

)

In fact, both H and T can be manipulated to favor the sampling of low proba-

bility states. However, Boltzmann distribution may not be preserved and special

weighting correction might be needed to obtain relevant thermodynamics. Several

sampling techniques are described below.

High Temperature Simulations The simplest way to boost the sampling. MD or

MC simulations are performed at elevated temperatures, at which barrier

crossover occurs more frequently because of the increased kinetic energy that

molecules possess. It is a very common practice in studying conformational
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transitions that do not take place easily at room temperature. Meaningful

understanding can be accessible assuming raising temperature does not alter

kinetics in a significant way.

Simulated Annealing A very popular optimization technique that is theoretically

guaranteed to locate the global minimum regardless the complexity of the

phase space. Simulations are carried out for certain duration at elevated tem-

perature, which is then decreased in a pre-programmed way until the target

temperature is reached [16].

Targeted or Steered MD The Hamiltonian of the system is modified with an extra

term, which corresponds to certain kinds of driving force. Target MD (TMD,

[17]) involves the selection of a reference state, a target state and a reaction

coordinate that are used to define the driving force, which often takes the

harmonic form. In Steered MD [18], the driving force is defined using the

sampling history, e.g., the average experienced forces of atoms.

Locally Enhanced Sampling Sampling is focused on parts of the system that are

more interesting, e.g., antibody loops or a particular mobile region. The

Hamiltonian of this “hot” area is modified so that the interaction with the

rest of the system is down-scaled by a factor of N, but the total Hamiltonian

of the system is kept unchanged by duplicating the “hot” area N times. Be-

cause of weakened interactions, transition barrier of each copy is only one

Nth of the original system. The original thermodynamics is ensured unal-

tered when all duplicated areas adopt the same conformation [19]. More

detailed description is given later.

Umbrella Sampling A Hamiltonian-modifying method used to obtain potential

of mean force (PMF). When transitions between two different states can be

identified by a characteristic geometric feature (reaction coordinate), sam-

7



pling along this coordinate can often be enforced by applying a biasing term

to the system Hamiltonian, similar to target MD [20, 21, 22]. In fact, TMD be-

comes umbrella sampling when a series of intermediate targets are inserted

along the transition pathway. The samplings collected at each intermediate

step are combined with reweighting to give appropriate Boltzmann distribu-

tion.

Generalized Ensemble Approaches A large class of methods recently introduced

to biological system studies, including multicanonical algorithm (MUCA,

also referred as entropic sampling, and adaptive umbrella sampling), sim-

ulated tempering (ST), 1/k-sampling, Tsallis sampling, replica-exchange

method (REM) and its variant REM/MUCA (review, see [23]). In general,

non-Boltzmann sampling is performed so that each state is visited with

equal probability regardless its potential energy. Weighted histogram anal-

ysis method (WHAM, [24]) is often used to reconstruct a proper canonical

ensemble average. The replica exchange method is to be further discussed in

Chapter 3.

Improved sampling can also be achieved from using reduced physical models with

less detailed potentials. What has become very popular in recent years is to replace

explicit solvent model with continuum solvent model, avoiding the calculation of

the evolvement of water molecules and approximating electrostatic screening ef-

fect of solvent with theoretical treatments, such as distance-dependent dielectric

models (DDD), Poisson-Boltzmann model (PB), and Generalized-Born model (GB),

etc. These models can often estimate reasonably well the electrostatic contribution

to the solvation energy, and non-electrostatic part is usually approximated by a

surface-area (SA) term. Continuum solvent model, especially GB, has gained quite

some popularity (a recent review, see [25]) over the past few years largely due to

its reasonable reproduction of solvation free energy [26] and fast calculation speed
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with respect to more expensive PB and explicit solvent model. However, GB tends

to perform poorly in the cases of large systems with buried charges. Simulations

of proteins using GB model appear not as stable as explicit solvent simulations of

comparable length, but using explicit solvent simulations as a stability benchmark

for GB simulations may not be a rigorous approach since explicit solvent simu-

lations are known to suffer from inadequate sampling. In addition, questions on

force field accuracy start to surface when longer simulations can be afforded with

GB solvent model. Nevertheless, GB and other continuum solvent models are not

bad choice when applied cautiously. In fact, they have been widely used in many

conformational energy analysis methods and peptide folding studies, providing a

fast and approximate way to estimate solvation free energy.

1.3 Outlines of Research Projects

This dissertation summarizes the results of three independent studies that mainly

focused on the heterogeneities of biological molecular systems. The confor-

mational complexities investigated here include local structure refinement of a

double-strand DNA molecule, thermodynamics and kinetics of folding of several

small peptides, and the calibration of a working model system for an enzyme-

inhibitor binding complex. Several computational methods, e.g. molecular dy-

namics with GB and explicit solvent models, locally enhanced sampling, replica-

exchange method, and thermodynamic integration, were prudently exercised to

meet the posed challenges during the studies, their effectiveness carefully com-

pared. A short summary of each study is given below.
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1.3.1 Local Structure Refinement of a Double-Strand DNA

The conformational ambiguity of one base in a modified double-strand DNA was

examined in MD simulations. NMR experiments conducted on this DNA with an

incorporated synthetic base (pyrene), bearing a similar volume of a regular base

pair, failed to resolve the conformation of a neighboring adenine. Both anti and

syn conformers resulted from NOE-based structure calculations. In MD simula-

tions carried out with both GB and explicit solvent models, several different NMR

structures were used to avoid a biased conclusion. Both anti and syn conform-

ers seemed to be stable in regular molecular dynamics, regardless of the solvent

models used. However, direct evaluating the relative thermodynamic stability of

the two conformers was impeded because the syn/anti interconversion, a seem-

ingly easy local rearrangement that involves one base pair flipping, was barely

observed in regular MD simulations. Particularly interesting is the observation of

large structural changes that led to different conformers from the same initial struc-

ture, depending on the solvent model used. The reversible syn/anti interconversion

was only available from the locally enhanced sampling simulations, allowing the

assessment of thermodynamics and a plausible explanation to be given.

1.3.2 Peptide Folding Studies

The thermodynamics and kinetics of folding were studied for several short pep-

tides with stable and identifiable native states. Peptides are often used as model

systems for studying protein folding, which is somewhat controversial among pro-

tein folding community. Peptide is certainly much simpler and cannot adopt very

sophisticated topologies unlike protein. Therefore, the influence of topology on

folding cannot be captured by peptide systems. But peptide and protein follow the

same underlying physics, the interplay between thermodynamics and kinetics can
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still be valuable in general to validate our concepts and understandings. One sys-

tem studied here, a nonapeptide fragment from influenza hemagglutinin Ha1, is a

very good example in this regard. A unified study of thermodynamics and kinetics

was achieved with all atomic simulations in GB solvent model. The folding takes

place in three very different timescales (100ps, 1ns and 100ns), which indicates that

at least three different folding mechanisms may exist. This was further confirmed

by the free energy landscape of folding constructed from replica-exchange simula-

tions and principal component analysis (PCA). Additionally, folding process was

found different even within the same timescale, depending on the conformation

of certain particular residues, which is consistent with kinetic partitioning theory

proposed by Thirumalai et. al. and a number of experimental findings. Full-length

analysis and discussion on some unsolved issues in studying protein folding can

be found in Chapter 2.

1.3.3 Understanding Enzyme-Inhibitor Binding

Quantitative calculation of relative receptor-ligand binding affinity is another big

challenge to computational structure biology and attracts huge interests from phar-

maceutical industry. In this project, attempts have been made to obtain quantita-

tive agreement with relative experimental binding affinities of FabI (the enoyl-acyl

reductase of E. coli) and triclosan analogs through thermodynamic integration (TI),

one of the standard free energy calculation methods available, aiming at validat-

ing the model system and paving the way for the inhibitor design of InhA (the

enoyl-acyl reductase of Mycobacterium tuberculosis, highly homologous to FabI).

Preliminary calculation results indicate that the tetrameric form of FabI might be

important for the ligand-binding. Free energy calculations carried out also showed

that the binding affinity may depend on the protonation state of the ligands, which

suggest pH-dependency assay of binding to conducted.
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Chapter 2

Conformational Heterogeneity

Observed in Simulations of a

Pyrene-Substituted DNA

2.1 Introduction

2.1.1 Biological Background

Pyrene DNA is a non-conventional DNA motif, which contains a bulky “base”,

deoxypyrene nucleotide, paired with an abasic site (Figure 2.1). The pyrene is

roughly equivalent in size to a traditional base pair. Observations that it is selec-

tively assembled into a duplex DNA opposite abasic sites demonstrate that the

Watson-Crick hydrogen bond pattern may not be required to entail the fidelity of

DNA replication [27] and suggest a strategy for characterization of abasic lesions

in damaged DNA. The structure of this unconventional DNA duplex has been

studied using NMR methods [28].

This particular system attracted our interest not only due to the importance of

the system in contributing to the understanding of nucleic acid structure, but also
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Figure 2.1: A pyrene - tetrahydrofuran “base pair”, shown with a solvent-
accessible surface. This pair is nearly as large as a standard base pair.
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Figure 2.2: A member of the family of NMR-derived structures, with the NOE
restraints shown as yellow lines. Adenine 8 (green), 5’ to the pyrene (paired with
abasic furan, both in yellow), has no NOEs involving the base.

because of a lack of potentially important structural information. The structural

ensemble derived from the NMR data failed to reach agreement on the conforma-

tion of adenine 8 (ADE8), located at the 5’-end of the pyrene “base”, due to the

lack of NOE information involving that base (Figure 2.2). In fact, a wide variety

of conformations for ADE8 are present in the family of structures, including both

anti and syn ADE8 conformations, with ADE8 often observed in the major or mi-

nor groove without hydrogen bonding to the partner THY19. However, observed

chemical shift data suggests that the THY19 imino proton is involved in hydrogen

bonding interactions. Thus, while the NMR data provides a detailed view of the

conformation of the pyrene, the influence of this motif on the local structure and

dynamics of the DNA remains unclear.

To contribute to the understanding of the influence of pyrene on DNA struc-
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ture, and also to investigate the possibility of using GB solvent model in biomolec-

ular structure refinement, a series of molecular dynamics simulations were carried

out for the pyrene-DNA system.

2.1.2 Nucleic Acid Simulations

Molecular dynamics simulations of nucleic acids used to be considered very diffi-

cult comparing to those of proteins, largely due to the highly charged backbone

phosphate that requires accurate treatment for electrostatic interactions. When

not available, the DNA double helical structure can be easily distorted. Charge

scaling or base pair restraints used to be typical practice of nucleic acid simula-

tions. The situation did not change [29] until Ewald summation method [30] was

introduced, which is a technique for evaluating electrostatic potential of a lattice

of point charges, subject to periodic boundary conditions. With fast Ewald sum-

mation methods [31] and explicit solvent model, unrestrained simulations have

successfully modeled structural changes, such as the conversion between A-DNA

and B-DNA [29, 32, 33, 34, 35], the description of sequence-dependent DNA struc-

tural properties [36, 37], the influence of abasic sites on the twisting and bending

of DNA [38, 39, 40], and individual base-pair “breathing” events [41, 42]. Recently

Generalized-Born solvent model has also been applied in nucleic acid simulations

and appeared to be a promising alternative approach [43].

2.1.3 Generalized-Born Solvent Model

Generalized-Born solvent model calculates the electrostatic contribution to the free

energy of solvation Gpol. The model comprises a system of particles with radii ai

and charges qi. The energy of a point charge in its reaction field is one half of the
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product of the charge and the reaction potential,

Gion =
1

2
qφreaction = − q2

8πa

(

1

ε0

− 1

ε

)

where ε0and ε are the permittivity of the ion and the medium around it. This equa-

tion is known as the Born equation. For a system with N arbitrary point charges,

this free energy of solvation can be approximately expressed as

Gpol = − 1

8π

(

1

ε0

− 1

ε

) N
∑

i,j=1

qiqj
fGB

where

fGB =
√

r2
ij + a2

ije
−D, D = r2

ij/ (2aij)
2 , aij =

√
aiaj

proposed by Still and coworkers [44]. This functional form has been used with con-

siderable success to efficiently evaluate solvation free energies of small molecules.

Its application to biological systems only came in recent years because of the

computational cost of using explicit solvent condition, especially with large sys-

tems. For example, roughly 3000 water molecules were used in the simulation

of 13-base pair DNA duplex, which is to be described below. It usually takes a

few days to simulate one nanosecond (ns) of molecular motion with multiple fast

CPUs, which is rather “useless” considering that most interesting conformational

transitions occur in the range of sub-microseconds to milliseconds. Using implicit

solvent model like GB reduces simulation cost significantly (3 to 5 times) and in-

creases sampling efficiency in several different ways: it removes the computational

expense of calculating the motion of explicit solvent molecules, directly provides a

solvation free energy without the need for averaging over solvent configurations,

and the lack of solvent friction can accelerate escape from local energy minima dur-

ing dynamics simulations. This makes it attractive for the study of conformational
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changes and structural refinement when electrostatic interactions are dominant,

such as in the case of nucleic acids. Although limited success with proteins has

been reported [45], the utility of GB solvation has been demonstrated on nucleic

acid systems [46, 47, 48, 25, 49].

2.1.4 Locally Enhanced Sampling

Locally Enhanced Sampling (LES) is a mean-field approach based on time-

dependent Hartree approximation, which allows the regions of interest to be sam-

pled more extensively than the region of less interest [19]. In Hartree approxima-

tion, the system is divided into J subsystems. Assuming their motions are inde-

pendent of each other, the probability density of the original system is replaced by

the product of probability densities of subsystems,

P (X) =
J

∏

j=1

pj(Xj)

In LES, subsystems of high interests, for example, an antibody loop, can be sam-

pled with multiple copies that do not interact within the copied subsystems. Non-

copied subsystems interact with the subsystems in an average way. The effective

energy of the system is defined as

U = Unon−LES +
1

J

J
∑

j=1

Uj

To keep system energy unchanged, the interaction of copied subsystems with the

rest need to be scaled accordingly. As a result of this, transition barriers are low-

ered for any individual copies and low probability states become more accessible.

Moreover, the global energy minimum of the LES system is identical to that of the
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original system1. This enhanced sampling has been demonstrated in a few recent

publications [50, 51, 52].

2.2 System and Calculation Setup

The system studied (PDB code 1FZL) consists of 13 base pairs (5’-D(Cp-Ap-

Cp-Ap-Ap-Ap-Cp-Ap-(PYP)p-Gp-Cp-Ap-C)-3’ and 5’-D(Gp-Tp-Gp-Cp-(FUR)p-

Tp-Gp-Tp-Tp-Tp-Gp-Tp-G)-3’), with 4 and 8 base pairs on each side of the pyrene.

In the remainder of this chapter we refer to these as the short and long ends, re-

spectively, and refer to the system as “pyrene DNA”. Root mean square deviations

(RMSD) were calculated based on all heavy atoms of the 9 central base pairs, since

the terminal 2 base pairs on each end showed significant fluctuation among the

family of NMR-based structures and during simulations. Groove widths were cal-

culated as the distance between the closest phosphorus pairs across the groove.

Another sequence was simulated as a non-pyrene control with 10 base pairs: (5’-

D(Cp-Cp-Ap-Ap-Cp-Gp-Tp-Tp-Gp-G)-3’ and 5’-D(Cp-Cp-Ap-Ap-Cp-Gp-Tp-Tp-

Gp-G)-3’). This will be referred to as “standard DNA”, since it is composed entirely

of the 4 standard bases (A, T, G, and C). Simulations for this control sequence have

been reported using the same force field as employed in the present study. All

molecular dynamics simulations presented in this study were performed using

the sander module in AMBER version 6 [53].

2.2.1 Initial Structures

The family of structures resulting from refinement with NMR-derived restraints

shows significant diversity in the conformation of ADE8 (Figure 2.3). Four repre-

sentative structures of the family were selected, corresponding to all four possible
1Therefore, every copy of the LES system will have the global minimum conformation when it

is located.
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conformations and subject to MD calculations described in the following sections:

antiHB ADE8, in anti conformation, forms canonical Watson-Crick hydrogen

bonds with THY19 with pyrene stacked on the 3’ side.

antiMinor ADE8, in anti conformation, resides in the minor groove with no hy-

drogen bonds formed.

syn1 ADE8, in syn conformation, resides in the minor groove with no hydrogen

bonds formed.

syn2 ADE, in syn conformation, forms Hoogsteen hydrogen bonds with THY19,

pyrene stacking from the 3’ side.

2.2.2 Force Field Parameters

Partial charges for the pyrene and tetrahydrofuran analog nucleotides were ob-

tained using the restrained electrostatic potential fitting method (RESP, [54, 55]), in

a manner similar to that employed for the standard DNA residues in the ff94 force

field [11, 55]. Each nucleotide was excised from the NMR duplex structure and

optimized in Gaussian98 [56] (HF/6-31G*). The electrostatic potential was then

calculated and used in a two-stage RESP fit. The partial charges of all atoms, ex-

cept the bases, C1’ and H1’ on the sugar ring, were held fixed at their values in the

ff94 force field. Multiple conformations were not used in the charge derivation for

both nucleotides, considering the limited flexibility and highly conjugated struc-

ture of pyrene, and the simplicity of tetrahydrofuran. Assignment of atom types

and missing bond angle and torsion angle parameters were made by analogy to

existing atom types in the ff94 parameter set. The resulting partial charges, atom

types and additional parameters are listed in Table 2.1.
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Figure 2.3: Closeup of the region near the pyrene in several structures from the
refined NMR family that were used in the simulations: a) antiHB, b) antiMinor, c)
syn1, d) syn2.
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Atom Name Atom Type Partial Charge Atom Name Atom Type Partial Charge

Pyrene C11 CA 0.0731

P P 1.1659 C12 CA -0.0019

O1P O2 -0.7761 C13 CA 0.0036

O2P O2 -0.7761 C14 CA 0.0364

O5’ OS -0.4954 C15 CA 0.0523

C5’ CT -0.0069 C16 CA 0.1176

H5’1 H1 0.0754 C2’ CT -0.0854

H5’2 H1 0.0754 H2’1 HC 0.0718

C4’ CT 0.1629 H2’2 HC 0.0718

H4’ H1 0.1176 C3’ CT 0.0713

O4’ OS -0.3691 H3’ H1 0.0985

C1’ CT -0.2056 O3’ OS -0.5232

H1’ H1 0.2043 Tetrahydrofuran

C1 CA -0.1420 P P 1.1659

H1 HA 0.1712 O1P O2 -0.7761

C2 CA -0.1694 O2P O2 -0.7761

H2 HA 0.1367 O5’ OS -0.4954

C3 CA -0.1467 C5’ CT -0.0069

H3 HA 0.1425 H5’1 H1 0.0754

C4 CA -0.2208 H5’2 H1 0.0754

H4 HA 0.1564 C4’ CT 0.1629

C5 CA -0.1241 H4’ H1 0.1176

H5 HA 0.1401 O4’ OS -0.3691

C6 CA -0.2348 C1’ CT -0.2619

H6 HA 0.1610 H1’ H1 0.1917

C7 CA -0.1396 H1” H1 0.1917

H7 HA 0.1456 C2’ CT -0.0854

C8 CA -0.2185 H2’1 HC 0.0718

H8 HA 0.1455 H2’2 HC 0.0718

C9 CA -0.2239 C3’ CT 0.0713

H9 HA 0.1867 H3’ H1 0.0985

C10 CA 0.0759 O3’ OS -0.5232

Table 2.1: Force Field parameters for pyrene and tetrahydrofuran moieties
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2.2.3 Simulation Protocol

Each MD simulation consisted of two stages, equilibration and production, nei-

ther of which used the experimentally determined NOE distance restraints. All

MD simulations in the equilibration stage used one femtosecond time step size to

ensure better stability, which could be harmed otherwise by steric clashes in poor

quality structures. The time step size was doubled in the production stage. In the

production stage, structure snapshots were saved every 10 picoseconds for subse-

quent analysis.

2.2.3.1 Explicit Solvent Simulations

The particle mesh Ewald (PME) method [31] was used in all explicit solvent simu-

lations to evaluate electrostatic interactions. The default parameter values in AM-

BER were used in PME calculations (8Å cutoff for the real-space nonbonded inter-

actions, and a reciprocal space grid spacing of approximately 1Å). The NMR struc-

tures were solvated in a roughly 55×70×50Å3 box of TIP3P [57] water molecules

with a clearance of at least 9Å between the DNA atoms and each side of the box.

The number of water molecules required to solvate each of the systems varied,

with total system sizes of 12,000-14,000 atoms. Sodium ions were added to neu-

tralize the system. All bonds with hydrogen atoms involved were constrained

with SHAKE. Rigid body motion of the system as a whole (not just the solute) was

removed [58]. First, 60 picoseconds of dynamics was carried out at 300K and 1 atm

pressure, in which only water molecules and counterions were allowed to move.

The whole system was then minimized for 5000 cycles with incrementally reduced

positional restraints. Four 10 picosecond restrained MD simulations allowed both

solvent and solute to reach local equilibrium by carefully releasing the positional

restraints imposed to zero.
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2.2.3.2 GB Simulations

An implementation of GB solvent model [59, 60] has been incorporated into AM-

BER version 6, and testing of this model has been carried out for DNA systems

[49]. All of the GB simulations described in this dissertation use a similar approach

as that study, employing a modified set of Bondi radii [61] (only hydrogen atoms

are modified) for all bases, screening parameters taken from the Tinker program

[62] and 0.13Å offset for the effective Born radii. Explicit counterions were not

used; an ionic strength of 0.2M was employed in the continuum solvent calcula-

tions. SHAKE was used in all dynamics calculations to fix the length of covalent

bonds in which hydrogen atoms were involved. Non-bonded interactions were

fully evaluated every time step with no cutoff distance used.

In the equilibration stage, the starting structures were first minimized for 1000

cycles, with atoms restrained to the starting positions with a harmonic force con-

stant 5.0 kcal/(mol·Å2). Incrementally reduced force constants were used in

four subsequent 1000-cycle minimizations, which gradually brought the system

to the closest energy minimum. The temperature of the resulting system was

raised to 300K over 60 picoseconds while the minimized structure was position-

ally restrained. The restraints were released incrementally in a subsequent 750-

picosecond molecular dynamics (MD) with a 1fs time step. This is longer than

the equilibration procedure we typically use with explicit solvent, but simulations

with GB appeared to be more sensitive since large oscillating changes in the struc-

ture were observed if less careful equilibration was carried out (data not shown).

In the production stage, temperature coupling was not employed and the simula-

tions were carried out in the microcanonical ensemble.
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2.2.4 Explicit Solvent Simulations with Locally Enhanced Sam-

pling

We replaced the ADE8-THY19 base pair (excluding P, O1P, O2P, O3’, O5’, C5’, H5’1,

and H5’2) with 10 copies by using the addles module in AMBER6. The template

structure was taken from equilibration dynamics. All copies belonged to the same

region and were given the identical initial conformation as the template structure

but altered initial velocity information to permit divergence. The AMBER code

was modified to permit coupling of LES and non-LES regions to separate thermal

baths so that their temperatures could be controlled independently.

2.2.5 MM-PB Calculation

MM-PB/SA (Molecular Mechanics-Poisson-Boltzmann with Surface Area) [63, 64]

is a relatively new method to estimate free energy differences by adding the con-

tribution from intra-solute interactions, solvation energy and hydrophobic effect.

It was used in this study to compute the free energy difference of two alternate

conformations of the system. For each conformation, 100 equally spaced snap-

shots were collected from a one-nanosecond explicit solvent simulation. The MM

energy was calculated as the average of the sum of all bonded and non-bonded

interactions using ff94 force field parameters. The electrostatic contribution to the

solvation free energy of each conformation was calculated by solving the Poisson-

Boltzmann equation using the Delphi program [65]. The cubic grid was con-

structed so that each side was twice as long as the longest dimension of the struc-

ture. A grid spacing of 0.25Å was used. The cavitation, van der Waals and hy-

drophobic contributions to the solvation free energy can be estimated using solvent

accessible surface area, but this contribution is typically small compared to polar-

ization and screening effects for highly charged systems such as nucleic acids. We
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Figure 2.4: The graphs show results of simulations starting from the Watson-Crick
structure: a) antiHB with GB, b) antiHB with explicit solvent. Average RMSD
values are ~3Å (compared to the initial structure) in both cases, and the average
structures from the two solvent models differ by 1.7 Å.

found that the surface areas for average anti and syn conformations differed by

less than 0.1Å2 (out of 5200 Å2); therefore this contribution was not included in

subsequent MM-PB/SA calculations.

2.3 Results and Discussion

2.3.1 GB and Explicit Solvent Simulations

The structure with conventional Watson-Crick base pairing for ADE8 (Figure 2.3a,

hereafter denoted “antiHB”) was selected and examined with unrestrained GB and

explicit solvent simulations. Despite the expected slightly larger positional fluctu-

ations and RMSD, the 2-nanosecond GB simulation generally reproduced the re-

sults of the explicit solvent simulation of the same length. The RMSD values in

each case average ∼3 Å from the initial structure (Figure 2.4). Helicoidal parame-

ters in the two solvent models are similar (Figure 2.5), with increased fluctuation

in pucker of furan17. The average structures differ by 1.7Å with a slight widening

of the major groove in GB (Figure 2.6). As one might expect for a continuum sol-

vent model without frictional terms, the fluctuations in RMSD and helicoidal pa-
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Figure 2.5: Helicoidal parameter comparison of antiHB GB (black) and explicit
solvent (red) calculations. Similar results are obtained for the two solvent models.
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Figure 2.6: Average structure comparison of antiHB GB (grey) and explicit solvent
simulation (green), with an RMSD of 1.7 Å. A slight widening of the major groove
is observed with GB.
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rameters are significantly larger with GB. These observations are consistent with

the results reported previously for GB simulation of a standard DNA sequence

[49]. The modified intrinsic radii for hydrogen atoms of different types appeared

to work well with this modified DNA even though they were previously tested us-

ing only standard nucleic acid sequences. With both solvent models, the A:T pair

was stable in the initial Watson-Crick conformation during the entire simulation.

Even if alternate conformations should be sampled, the timescale for breaking this

interaction was inaccessible in these simulations.

This process was repeated for a member of the NMR family in which no A:T

pair was present. A structure with ADE8 in the minor groove of the DNA (Fig-

ure 2.3b, hereafter denoted “antiMinor”) was selected. This structure was chosen

because it has the lowest RMSD (1.5Å) among all structures in the family as com-

pared to the Watson-Crick (antiHB) structure described above. The small deviation

suggested that the transition to a base-paired structure might be confined to a local

region of conformational space and therefore may be accessible during molecular

dynamics.

Similar to the antiHB simulations, the general behavior was comparable dur-

ing 4 nanosecond GB and 16.8 nanosecond explicit solvent simulations. While the

antiHB model was stable regardless of solvent model, the antiMinor model is like-

wise unstable in both solvent models. The deviations from the NMR structure

during both simulations (Figure 2.7) clearly show that the unpaired minor-groove

ADE8 in the NMR structure is non-optimal. The DNA underwent significant con-

formational changes in both cases, with a maximum RMSD compared with the

initial structure of 7.8Å in GB and 6.4Å in explicit solvent, with both simulations

converging to RMSD values near 3Å from each other. This implies that our initial

assumption in choosing antiMinor (structures with very localized differences in

structure may have a simple transition pathway) was not necessarily valid. The

28



0 1000 2000 3000 4000
0

2

4

6

8

0 5000 10000 15000 20000
0

2

4

6

8

Time (ps)

R
M

SD
 (A

)

a b

Figure 2.7: The graphs show results of simulations starting with anti ADE8 in the
minor groove (antiMinor) with: a) GB solvation and b) explicit solvent. Similar
results are obtained: a large increase in RMSD values, followed by convergence to
lower values. The timescale of the GB transition is much shorter.

RMSD of average structures (after the transition) to average structures starting

from antiHB are only 0.4 Å (GB) and 1.4 Å (explicit solvent).

Several important differences were noted when the results from GB and explicit

solvent simulation were compared in detail. The most obvious was that when the

durations of the transitions were compared, changes with GB occurred nearly an

order of magnitude more rapidly than in explicit solvent (1ns vs. 10 ns, Figure 2.7).

This is not surprising due to the lack of solvent-based friction in the GB model and

has been reported in the past for nucleic acid simulations [66, 49]. In this case

such comparison would not be very meaningful if the stable structures after the

transitions were dissimilar. In this case, the resulting average structures over the

last 1-nanosecond were very similar (Figure 2.8), and differed by only 1.2Å.

The more rapid convergence to a base-paired structure in GB simulations is

certainly impressive. However, a closer look at the final structures revealed that

ADE8 was in the anti conformation forming a Watson-Crick-type base pair with

GB, but in explicit solvent the syn conformation was located, forming a Hoogsteen-

type base pair. This difference is subtle but important, because either hydrogen

bond pattern could result in the imino proton chemical shift observed in the NMR
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Figure 2.8: Average structure comparison of antiMinor GB (grey) and explicit sol-
vent simulations (green), after the formation of the A:T base pair. The RMSD be-
tween the two structures is 1.2 Å.
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Figure 2.9: Transition snapshots (read from left/top to right/bottom) from antiMi-
nor GB simulations, spaced equally 80ps apart. Large distortions extending several
base pairs beyond the ADE8 region are evident during formation of the A:T base
pair, but the final structure is similar to the initial structure with the exception of
the A:T base pair geometry.

experiment (but neither alone explains the lack of NOE data for ADE8).

Distinctive structural features from the transition process in GB are displayed

via 8 snapshots (Figure 2.9) and the time dependence of base pair hydrogen bonds

(Figure 2.10). The two initial hydrogen bonds present when ADE8 occupied

the minor groove, ADE8:N7-GUA20:N2 and ADE8:N6-THY21:O4’, were broken

quickly during equilibration. ADE8 then moved to be coplanar with THY19, and

formed reverse-Hoogsteen type hydrogen bonds to THY19 (ADE8:N6-THY19:O2

and ADE8:N7-THY19:N3).

As the simulation continued, the widths of the minor and major grooves

changed continuously and simultaneously in multiple places, with the major

groove widened by ∼8 Å and the minor groove narrowed by ∼4 Å, except at
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Figure 2.10: Hydrogen bond breaking and reforming events illustrated by the
acceptor-hydrogen distances and acceptor-hydrogen-donor angles in the antiMi-
nor GB simulation. Six of 7 base pairs in the long end are lost, and then re-
established after formation of the A:T base pair.
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Figure 2.11: Groove width changes in antiMinor GB simulation.

C11-T19 and A8-T22, where ADE8 entered the double helix (Figure 2.11). Severe

stretching and unwinding was accompanied by the complete loss of 13 out of 17

Watson-Crick hydrogen bonds, involving 6 of the 7 base pairs in the longer end of

the DNA (Figure 2.10). Perhaps surprisingly, the short end remained intact, even

though the whole structure deviated from the NMR model by as much as 8Å.

Next, the reverse-Hoogsteen hydrogen bonds between ADE8 and THY19 that

had formed earlier were broken, and the bases shifted in-plane to a Watson-Crick

configuration. Shortly after this local structure was formed, all of the base pairs

previously lost were dramatically re-established, and the RMSD value compared to

the average structure obtained from the antiHB control simulation was reduced to

only 0.4Å. During the final 3 nanoseconds of this simulation, the overall structure

remained stable.

It is remarkable that such a striking series of conformational changes could be
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observed in unrestrained molecular dynamics simulation of DNA with full atomic

detail. As far as we know, it is the first time that such a transition has been re-

ported. What is unusual in this case is not the relatively minor difference between

initial and final states, but rather the very large changes seen during the transition

pathway. The system moved from the initial NMR model to a region quite distant

in phase space, and then returned to the neighborhood of the initial structure with

a change in base pair geometry. In this sense the process is more comparable to an

unfolding/refolding event than simple base pair formation. It is very exciting to

see that simulations are starting to be able to model, in atomic detail, transient but

key events that involve significant structural changes.

The transition to base-paired conformation was also observed in the explicit

solvent simulation, but in this case it occurred over an almost 10-nanosecond pe-

riod. Snapshots from the simulated transition are shown in Figures 2.12 and 2.13.

The rearrangement started with syn ADE8 forming reverse Watson-Crick hydro-

gen bonds using ADE8:N6-THY19:O2 and ADE8:N1-T19:N3. The major groove

was again widened (by ∼10 Å, a greater extent than the GB simulations), but in

contrast to the GB results the minor groove was also widened (Figure 2.14). At

∼3ns, THY19 was flipped out into the solvent in the major groove. This motion

opened sufficient space to permit a shift in the position of ADE8, allowing forma-

tion of Hoogsteen hydrogen bonds with the returning THY19. In the GB simula-

tions, the space for a similar ADE8 shift had been provided by loss of the proximal

C7:G20 base pair rather than motion in THY19. Here the base pair also re-formed

at ∼10ns and remained stable for the remaining 6.8 nanoseconds of the simulation.

The other portions of the DNA did not show the instability observed during the GB

transition; this could be a result of the spatial restrictions imposed by the explicit

solvent cavity, deficiencies in the GB model or associated parameters, or possibly

due to the different final structures. The RMSD of all pairs of average structures
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Figure 2.12: Transition snapshots (750ps apart) from antiMinor simulations in ex-
plicit solvent. Distortions are evident during the A:T transition, but are less dra-
matic than observed in the GB simulation.
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Figure 2.13: Snapshots showing the relative positions of ADE8 and THY19 during
the A:T rearrangement in explicit solvent. Only the backbone and bases for this
pair are shown.
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Figure 2.14: Groove width changes in antiMinor simulation in explicit solvent. In
contrast to GB simulations, no narrowing of the minor groove is seen during the
transition.
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antiHB (GB) antiHB(explicit) antiMinor (GB) antiMinor(explicit)

antiHB (GB) 1.7 0.4 1.3

antiHB (explicit) 1.6 1.4

antiMinor (GB) 1.2

antiMinor (explicit)

Table 2.2: RMSD (in Å) of all pairs of average structures from the antiHB and an-
tiMinor simulations in GB and explicit solvent. The average structures are similar
in all cases.

from the 4 simulations are given in Table 2.2; all are similar, with deviations of only

∼0.5 to 1.5 Å.

Our attention was immediately drawn to the inconsistent occurrence of the anti

and syn ADE8 in the GB and explicit solvent simulations, respectively, because

bases in syn conformation are not usually observed in standard base pairs and anti

is generally considered to be thermodynamically more stable than syn. In this case

it is possible that the observed syn conformation was simply kinetically trapped

and does not reflect a conformation that is significantly populated in the equilib-

rium ensemble. To investigate this possibility, 100 structures for each conformation

were collected from explicit solvent simulations, stripped of solvent and counte-

rions and used in MM-PB free energy evaluation. MM-GB energies were also cal-

culated for comparison, and even though the absolute energy values differ from

those of MM-PB by almost 300 kcal/mol, the correlation is good with a correlation

coefficient of 0.956 and slope of 0.980. This provides additional reassurance that

the results of the GB model are satisfactory in this case.

The energy distributions, shown in Figure 2.15, indicate no significant prefer-

ence for either anti or syn, regardless of whether GB or PB was employed. This

suggests that both anti and syn conformations should be similarly populated at

equilibrium in this specific environment. Among the individual components of

MM-PB energies for this particular system, electrostatic and solvation terms are
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Figure 2.15: MM-PB (dashed lines on left) and MM-GB (solid lines on right) energy
calculations for anti (black) and syn (red) conformations. The PB and GB energies
are shifted, but both show no significant difference in energies for the anti and syn
conformations.

the largest in magnitude, but favored different conformations. The effects nearly

cancel; this is a common trend in such calculations and likely reflects the enhanced

solvation of structures with unfavorable intramolecular electrostatics (such as par-

allel dipole alignment).

We speculated that the presence of the neighboring pyrene contributes to the

unusually high stability of syn ADE8, and investigated this interaction in greater

detail. The interactions of ADE8 with the rest of the system (Table 2.3) were cal-

culated for 4 average structures: anti and syn adenine in an A:T base pair, neigh-

boring either the pyrene-abasic pair or surrounded by standard bases. The anti

conformation is seen to be significantly more stable than syn in non-pyrene DNA

(2.3 kcal/mol), consistent with typical experimental observations. However, the

anti/syn energy difference is much smaller in the pyrene DNA (0.8 kcal/mol). The

syn conformation in the pyrene DNA is stabilized by local interactions, predomi-

nantly from van der Waals contacts with the bulky pyrene residue.

To further explore this issue, GB simulations were initiated using 2 NMR struc-

tures with syn ADE8 (Figures 2.3c and 2.3d), with the expectation that a more fa-

vored anti conformation in GB would lead to a syn/anti transition. However, the
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VDW (kcal/mol) bonding (kcal/mol) electrostatic (kcal/mol) tot. (kcal/mol)

pyrene anti ADE8 -51.4 43.1 17.5 -25.9

pyrene syn ADE8 -52.2 43.1 -15.9 -25.1

std anti ADE -54.3 42.7 -16.6 -28.2

std syn ADE -51.6 41.0 -15.3 -25.9

Table 2.3: Group contributions to the local interaction of AT base pair. Electrostat-
ics favor anti in both pyrene and standard DNA, but the van der Waals interactions
with pyrene preferentially stabilize the syn conformation, nearly canceling the elec-
trostatic effects in the pyrene system.

syn conformation was preserved in both simulations despite the relatively long

lengths of 75.8 and 37.4 nanoseconds long respectively. GB simulations at 325K

were also performed for both anti and syn conformations in order to determine

if the higher temperature would facilitate syn/anti interconversion during the

timescale accessible by these simulations. However, the process was not observed

until after the DNA structure became unstable; the anti conformation unfolded af-

ter ∼11ns and the syn after ∼7ns. This suggests that the anti/syn transition may

have barriers comparable to the stability of the double helix, and thus increased

temperature was abandoned as an approach to simulate this interconversion.

2.3.2 LES Simulations

The calculations described above lead us to a possible interpretation that both anti

and syn conformers may exist in the solution and the flexibility in this portion of

the structure was responsible for the difficulty in obtaining NMR-based restraints

for ADE8. However, this interpretation may be invalid if our statistics are un-

converged. Although both structures could be formed in simulations, and energy

analysis suggests that they may have similar population, direct simulation of an

anti/syn transition was not observed. The energy barrier to such transitions in a

tightly packed duplex is likely to result in a timescale beyond that currently acces-
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sible by standard simulation techniques.

LES (Locally Enhanced Sampling, [19]) has been demonstrated in several appli-

cations to improve sampling when multiple energy minima are present [67, 68, 52].

Particularly relevant to this study was the observation by Simmerling and Kollman

that LES simulations of an RNA tetraloop spontaneously converted from incorrect

to correct structure [69] despite the inability of otherwise identical non-LES simu-

lations to do so [70]. LES was employed here not to aid in locating a single optimal

structure, but rather to explore the possibility of directly simulating interconver-

sion between anti and syn ADE8. Ten copies of ADE8 and THY19 were placed in

the pyrene DNA duplex in explicit solvent using one snapshot from the equilibra-

tion where the base pair had not yet formed.

Differences in the behavior of the LES system could be the result of the pyrene,

or an artifact of LES. Two control simulations were therefore used: in the first,

an A:T base pair, ADE4:THY17, was duplicated in the non-pyrene DNA 10 base

pair system in an identical manner as was done for the pyrene-containing 13 base

pair sequence. This provides a test for the use of LES by comparing to our non-

LES results for these same sequences. It is also possible that the change in anti/syn

equilibrium is due to sequence-specific effects rather than the pyrene; an additional

control was therefore carried out for the 13 base pair system in which ADE8 and

THY19 were again replaced with 10 LES copies, but additionally the pyrene:furan

pair was replaced with a non-LES A:T pair. Differences in these two simulations

should be due to the pyrene substitution.

In the 4.8-nanosecond control for the 10 base pair system, all copies remained

in the anti conformation during the entire simulation and syn was never sampled.

Very similar results were obtained during 4.5ns simulation of the 13 base pair sys-

tem without pyrene: syn conformations represented <1% of the total. The glyco-

sidic torsion angle (χ) of each copy sampled during dynamics of the non-pyrene
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Figure 2.16: Time dependence (upper) and histogram of the adenine glycosidic
torsion in LES simulation of non-pyrene DNA. LES copies are colored differently.
Only anti is significantly sampled.

13 base pair system, as well as distribution histograms, are shown in Figure 2.16.

LES results for the pyrene-containing system differed dramatically from the

control simulations. All 10 LES copies in the pyrene DNA spontaneously formed

A:T base pairs, consistent with the non-LES simulations described above. How-

ever, as we anticipated, more than one LES copy was able to sample the syn con-

formation in the 14-nanosecond pyrene DNA simulation (Figure 2.17). A snapshot

showing simultaneous LES population of anti and syn is shown in Figure 2.18. The

base pair hydrogen bond patterns for each χ rotamer are consistent with those

located at the end of the transition period in anti/syn non-LES simulations (in con-

trast to the less stable patterns observed shortly after base pair formation in the
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Figure 2.17: Adenine glycosidic torsion distribution, similar to Figure 2.16 but
taken from a 14ns LES simulation of pyrene DNA. In contrast to the results of LES
with standard DNA, the LES copies (different colors) of ADE8 neighboring pyrene
sample significant syn population. Syn and anti are clearly separate minima.
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Figure 2.18: MD snapshot showing heavy atoms in the LES A:T pair neighboring
pyrene. Copies are colored by conformation: anti with Watson-Crick hydrogen
bonds (green) and syn with Hoogsteen pattern (magenta).

single copy MD). A single THY19 conformation is compatible with both ADE8

possibilities, consistent with the observation of NOE data for THY19. Each con-

formation was often stable for multiple nanoseconds before the next transition oc-

curred. The total syn population was roughly 30% of the total structures sampled

by all the copies, providing an estimated free energy difference of 0.5 kcal/mol fa-

voring the anti conformation. This is consistent with the 0.8 kcal/mol determined

by the energy analysis described above; in combination with the control simula-

tion for the non-pyrene 13 base pair system with LES, this strongly suggests that

the shift in anti/syn equilibrium is due to the presence of the pyrene.

With increased LES temperature (250K), the distribution of angles was broader

and transitions became more rapid (data not shown), but the conclusions obtained

from the lower temperature remained valid. Exclusively anti conformation was

still present in all copies for standard DNA at this temperature. Since LES is an

approximate method, the transition frequency and anti/syn ratio are also approx-
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imate yet the influence of the pyrene is clearly perceivable. This provides further

evidence that a distribution of anti and syn may indeed be present in this region,

and provides a potential explanation for the difficulties encountered in the NMR

structure determination.

2.4 Conclusion

Lack of specific detail for portions of the structure is not a unique feature of this

system. Structure determination for biomolecular systems is usually accomplished

through X-ray diffraction or NMR spectroscopy. Both methods regenerate the

structure from the measureables of the experiments, typically through the use of

computational approaches that generate structures consistent with this data. How-

ever, many factors can influence the accuracy of the final structure. In particular,

conformational heterogeneity in the sample studied can dramatically reduce the

quality of the final structure. Such disorder typically results in averaged or incom-

plete data, which complicates the reconstruction process and can result in partially

solved or low-resolution structures, which can be of little value.

Structure determination using NMR techniques relies heavily on the accurate

determination of relative geometry information, such as interatomic distances and

dihedral angles. When such information is abundant, reliable structure models

can be built using restrained energy minimization or molecular dynamics tech-

niques, and sophisticated treatment of solvation and electrostatics may not be nec-

essary. However, difficulties in data assignment or interpretation, or motion on

the timescale of the data collection can result in a lack of data for these regions

and models of reduced quality. In such cases, simulations with more accurate

treatment of inter and intra-molecular interactions may provide insight into the

missing details.
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More advanced biomolecular simulation approaches can be complementary to

experimental data, providing an atomic-detail picture of molecular behavior in a

manner that need not be time or ensemble averaged. For flexible molecules in the

condensed phase, such as biomolecules in aqueous solution, molecular mechanics

potential functions have made calculations tractable. One of the goals of com-

putational structural biology is to reduce the amount of experimentally obtained

data needed for successful refinement and state-of-the-art biomolecular simulation

methods can give reliable insight into the atomic structures of complex systems.

In the present case, the conventional restraint-based model construction proce-

dure failed to define the conformation of the adenine base proximal to the moiety

of particular interest (pyrene). All simulations that have been done strengthen the

hypothesized presence of the A:T base pair, and additionally provide a possible

explanation for missing experimental data due to increased conformational het-

erogeneity in this region.

The experience gained with this pyrene DNA suggests that investigation of

sequence-dependent structure flexibility can be a very challenging task; transi-

tions as simple as base flipping occur on a timescale that is currently inaccessible

by standard molecular dynamics simulations. Transient base-pair opening events

have been previously observed in simulations; in one case, a standard base pair

at the end of the DNA strand opened, and in another an adenine-difluorotoluene

interaction in the DNA interior was temporarily lost. The simulations in explicit

solvent demonstrate not only loss and reformation of a standard A:T base pair,

but transition between hydrogen bond patterns during the process. A continuum

treatment of solvation appears to be very promising in this regard, with the poten-

tial to dramatically reduce the computational effort required to simulate a given

time period, and also provide more rapid equilibration due to the lack of solvent

friction. While the structural conclusions drawn from continuum and explicit sol-

46



vent are quite similar in this case, the agreement may not be expected to generally

hold. One must therefore be cautious in relying solely on continuum solvation

until more experience are gained with the relative merits of the many variants of

these solvent models.

Simulations with the GB model show transient coupled loss of 6 consecutive

base pairs, resulting in a dramatic unfolding-refolding event for the majority of

the DNA double helix. However, direct simulation of anti/syn transitions was not

possible even with the help of a continuum solvent model, and this process was

not observed in any of our standard MD simulations despite evidence of thermo-

dynamic accessibility.

The use of approximations (such as LES) that reduce the energetic barriers to

such transitions and permit direct observation may be a critical component of

complex structural studies. In the present study, the LES approximation with ex-

plicit solvation provided multiple observations of the base pair formation and re-

opening events, as well as anti/syn transitions and ensemble populations that are

consistent with energy analysis of single copy simulation data. LES also gave re-

sults that were independent of starting model, unlike single copy simulations that

can be poorly converged.

The effects of incorporation of unusual “bases”, such as pyrene, into DNA sys-

tems continues to provide new insight into the determinants of nucleic acid struc-

ture and flexibility, and warrants further investigation. The introduction of the

bulky pyrene residue not only preserves the fidelity of DNA replication, support-

ing the hypothesis that van der Waals interactions can be as important as specific

hydrogen bonding in DNA replication, but as revealed in this study can also influ-

ence the behavior of nearby residues. In this case the pyrene appears to stabilize a

syn conformation in the adenine 5’ to the pyrene, providing a potential explanation

for difficulty in determining a single structure for this region with a restraint-based
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refinement procedure. Similar effects on local structure and flexibility may have

other biological implications in the recognition and repair of DNA lesions. Minor

conformers have been observed experimentally for polycyclic aromatic hydrocar-

bon (PAH) substituted nucleic acid systems, such as benzo[a]pyrene diol epoxide

(BPDE) DNA adducts, and these may be responsible for tumorigenic activity [71].

Characterization of these ensembles at the atomic level may be critical to under-

stand both the effects of the damage and recognition by cellular repair machinery.

One hopes that approaches such as those that are presented here will extend the

range of conformational variability that is accessible in computer simulation, and

provide valuable models that complement experimental data for these systems.

48



Chapter 3

Protein Folding Studies with Replica

Exchange Method

“There is a difference between experimentalists and theoreticians:

experimentalists observe the minima and maxima in free energy pro-

files - the experimental entities of intermediates and transition states -

whereas theoreticians wish to calculate the entire energy surface of a

reaction. Experimentalists talk about pathways, theoreticians about en-

ergy landscapes. Experiment and theory touch base around the ground

and transition states that provide the milestones in the energy land-

scapes for the theoreticians to benchmark their calculations. The two

views are to be reconciled.” [72]

3.1 Protein Folding

3.1.1 Overview

Protein molecules can form, in a matter of microseconds to seconds, unique and

well-defined three dimentional structures, which have certain tolerance to external
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disturbance, such as pH, temperature and denaturants, and conduct their biologi-

cal functions within their life span. It has been a well-acknowledged fact that the

most stable conformation of a protein, known as the “native structure”, is largely

determined by its amino acid sequence and amino acid sequence alone [73] and

this native structure corresponds to the lowest free energy state in thermodynam-

ics1. However, the origin of protein stability and the mechanism of protein folding

have not been clearly understood, although progress is being made from both ex-

perimental and theoretical point of view [74, 75, 76, 77].

The volume of the literature on protein folding is huge and constantly grow-

ing. This is not just the reflection of the intense interests of the science community,

but also represents the urgent needs of fast protein structure discovery in the era

of post-genomics. While hundreds of thousands of protein sequences having been

discovered from genome sequencing efforts2, the traditional structure determina-

tion process itself has not changed much to meet the demands. The ultimate goal

of protein folding studies is to be able to predict the thermodynamics and kinet-

ics of a protein given its sequence and environment, providing guides for protein

engineering and protein design.

However, achieving this is never an easy task.

Protein folding is a complicated process, which typically involves thousands

of atoms. It is almost unimaginable for a protein molecule to enumerate all pos-

sible configurations to find the native state (Levinthal’s paradox [78])3. This pro-

cess needs to be strongly biased, through the acquisition of favorable interactions

once the native state is reached, which are mostly dominated by the aggregation of

1Proper environments may need to be considered in some cases, but generally this is true.
2As of year 2002, 22,318,883 DNA sequences have been deposited at GenBank

(http://www.ncbi.nlm.nih.gov/Genbank/GenbankOverview.html)
3If only protein backbone dihedral angles (φ and ψ) are considered and each dihedral angle can

only have three different values, it will take a 100-amino-acid protein molecule 10
29 years (longer

than the present age of the universe) to search through all 10
49 configurations with an average

rotation frequency.
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“hydrophobic” residues. Because of this driving force, the entropy cost in losing

structural diversity can be compensated and the overall process is spontaneous.

To address protein folding, ideas had been drawn from our comprehension of

the kinetics of chemical reactions, in which covalent bonds are made or broken

during the transition from reactant to product. Protein folding was then described

as another kind of reaction, folded state being the “product” and unfolded states

being the “reactants”. Certain routes connecting the product and reactants exist

and define how the folding occurs. Many experimental techniques were devised

to seek this existence as well as transition states and possible intermediate states.

Three mechanisms emerged to explain what these routes should be like [72].

Famework Model proposed that native local secondary structures could be

formed, independent of the tertiary structure. These local elements would

diffuse until they collided, associated, and coalesced to give the tertiary struc-

ture.

Nucleation Model hypothesized that folding process was initiated by the forma-

tion of a nucleus composed of certain native secondary structure from some

neighboring residues of sequence. Once the nucleus was formed, folding

would be continued in a stepwise manner.

Hydrophobic Collapse Model suggested that a protein would collapse rapidly

due to the aggregation of its hydrophobic side chains and then rearrange

the rest of the molecule to form the native state.

However, protein folding differs greatly from chemical reactions of small

molecules [79, 80], which only involves a few strong bonds. During protein fold-

ing, hundreds of “weak” bonds might be formed or broken simultaneously. There-

fore, only a few reaction progress indicators (“reaction coordinates”) are needed
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to describe the advance of chemical reactions. But this might not be a valid ap-

proach when studying a progress that proceeds in a high dimension space and can

be potentially very heterogeneous. Unfortunately, high-dimensional data (>3) are

difficult to visualize, rather folding process is commonly projected to one or two

dimensions, investigated in a reduced or integrated phase space. In fact, looking

for the best progress indicators is a significant part of folding studies. Any pro-

posed folding mechanisms need to be cross-confirmed by different experiments.

Experimentally, conducting protein folding studies usually involves protein

preparation, structure determination if necessary, thermodynamic measurements

by thermal unfolding (measured by calorimetry and spectroscopy) or solvent de-

naturation using urea or guanidinium chloride (GdmCl), and kinetics model cre-

ation by relaxation experiments. The formation of secondary and tertiary struc-

tures can be monitored by various spectroscopic methods, such as circular dichro-

ism (CD), NMR, fluorimetry, etc. To initiate folding events, the native state of

protein needs to be perturbed either thermally or by denaturants and then the

folding condition is quickly restored by quenching or diluting. Various tech-

niques have been applied to follow the dynamic process of folding, covering dif-

ferent timescales [81]. Stopped-flow methods are ideal for conventional rapid mix-

ing experiments, but are limited to millisecond timescale or greater. Specialized

continuous-flow apparatus sometimes can reach for tens of microseconds, but usu-

ally relaxation methods or flash photolysis are more suitable for studying fast fold-

ing events. Especially, laser-induced temperature-jump experiments can be used

to observe early folding events that take place in the range of nanoseconds to mi-

croseconds. NMR line-width broadening analysis is also a promising method in

the range of 10 to 100 microseconds [72].

With all the technical advancements, experimental folding studies are able to

provide us with a macroscopic picture of protein folding, however, the microscopic
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rationalization can be very different from case to case and becomes rather elusive.

For the general principles of folding to be found, experiments and the following

analysis should be conducted at microscopic level. The recent advent of single

molecule spectroscopy [82], in which only one protein molecule is observed at a

time, is one step toward this direction. Unlike experimental studies, computer

simulation of protein folding is not limited by the issues of time or ensemble aver-

aging. Perturbation of the native state is far more easier to do in computers than

in beakers. Computer-simulated folding can even start with any desired confor-

mation. The folding trajectory can be saved and replayed repeatedly for different

analysis or “probing” with the ultimate structural details. With increased com-

puter speed and better algorithms, there is much to expect as folding experiments

and computer simulations are combined.

3.1.2 Computational Studies of Protein Folding

Computer simulations of protein folding mostly fall into two categories. The first

category utilizes statistical tools developed in the studies of disordered systems,

polymers, and phase transitions of finite systems, proposes general folding mech-

anism, and performs computer simulations using minimalist models, e.g. lattice

models [83]. In the simplest lattice model, amino acid residues are represented

by a single atom or “bead”. The resulting chain of beads adopts a self-avoiding

walk on a cubic lattice. Only very few kinds of basic interactions are defined. The

major outcome of this category is that protein folding can be understood using

statistical energy landscape theory [84, 85]. In the energy landscape theory, it em-

phasizes that folding is a very heterogeneous process and well-defined discrete

pathways are not likely to occur early in the folding process. The folding land-

scape has a funnel shape with some roughness, which guides protein molecules

through many different conformations toward the native state. The advantage of
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using minimalist models is that all conformations of a given sequence can be enu-

merated exhaustively and similar structure motifs (α-helix and β-sheet) found in

real proteins exist as well. Many ideas have been obtained from these simulations,

such as minimally frustrated protein model and kinetic partitioning of folding.

The second category is between the minimalist models and the real world, sim-

ulating protein folding with full atomic descriptions and sophisticated force field

[86]. Although this appears to be the most realistic approach, the computational

costs are increased dramatically and the accuracy of force fields are subject to more

strict examination. Because of this, direct folding of large proteins is rarely per-

formed. On the other hand, the reverse process, unfolding or denaturation, has

been systematically studied through force-induced unfolding, high temperature

and denaturant-added molecular dynamics simulations [74, 87]. Assuming de-

tailed balance principle applicable, folding process may be understood as well

from unfolding studies. Twenty-four unfolding simulations of chymotrypsin in-

hibitor 2 (CI2, 64-residue) allowed the identification of transition state, which was

in “excellent” agreement with experiments [88]. However, the validity of applied

the detailed balance principle under “extreme” non-equilibrium conditions is often

questioned and conclusions drawn from this approach might be biased because of

the funnel-shaped landscape in the vicinity of the native state where discrete path-

ways are likely to exist. To avoid drawing an incomplete picture of folding, multi-

ple folding simulations should be conducted from random conformations. This is

obviously very difficult to do at full-atomic level for large proteins with more than

50 residues.

Many short peptides (natural or engineered, less than 40 residues) with stable

tertiary conformations appear especially appealing to both experimental and the-

oretical studies. They are often used as model system for the folding of large pro-

teins. A recent example is “tryptophan cage” [89], a 20-residue engineered peptide
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from exendin-4 (EX4) of Gila monster saliva, which is not only thermodynamically

stable but also kinetically a fast folder (4µs, [90]). An ab initio structure prediction

from its sequence, using continuum solvent molecular dynamics, successfully ren-

dered the correct native conformation [13]. Computational folding studies of other

model peptides like “tryptophan cage” can also help to bridge the gap between ex-

periments and theoretical work.

Thermodynamics of folding is equally important and is required to explain the

folding kinetics. Obtaining reliable thermodynamics data from simulations of all-

atom model is often impeded by the transition timescales and the sampling effi-

ciency of regular MD simulations. This has been demonstrated in the previously

discussed pyrene DNA studies, in which regular MD simulations were unable to

give estimates of the relative stability of two distinct conformations [91]. The sam-

pling difficulty in protein folding simulations is still greater than that can be com-

fortably handled even if only the degrees of freedom of solute are considered ex-

plicitly. One common practice is to use elevated temperature to boost the transition

probability, which would be rather low otherwise. Recently, computational folding

studies using multiple loosely coupled MD simulations is becoming increasingly

popular. Umbrella or biased sampling technique, in which intermediate steps are

minimally coupled, has been applied by Brooks and colleagues to generate the

effective energy landscape of folding along two predefined progress indicators,

the radius of gyration and the percent of native contacts [86]. Both folding and

non-equilibrium unfolding approaches were studied for fragment B of Staphylo-

coccal protein A, segment B1 of Streptococcal protein G, cold shock protein A, and

src-SH3 domain. The results were benchmarked against the folding energy sur-

face generated from umbrella sampling techniques. It was clearly demonstrated in

their calculations, from theoretic point of view, that the non-equilibrium unfolding

approach appear to be quite unsuitable for the study of protein folding, especially
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when protein cannot be simply described by a two-state model.

Another approach that is attracting more attention recently is replica exchange

method (REM, [92]), which was developed as an extension of simulated temper-

ing or parallel tempering. Although in principle analogous to the biased-sampling

methods, practically it is much easier to conduct. Several peptide folding studies

with REM have been reported [93, 94, 95, 96, 97, 98, 99, 100]. This chapter describes

in detail the first implementation of REM in AMBER molecular modeling package

at the level of message-passing interface (MPI), and the thermodynamic investiga-

tions of several small peptides.

3.2 Replica Exchange Method

3.2.1 Theory

In REM [92], a generalized ensemble is constructed, consisting of N non-

interacting replicas of the studied system xi, i = 1, 2, · · · , N . Each system i is stud-

ied at a different temperature Ti. The state of this generalized ensemble is denoted

as X = {x1, x2, · · · , xN} , xi = {pi, qi}. Because replicas are independent of each

other, the weight factor for the state X is then simply the product of Boltzmann

factor for each replica:

WREM(X) = exp

{

−
N

∑

i=1

βiH (pi, qi)

}

where βi is the inverse temperature, pi is the momentum vector, and qi is the coor-

dinate vector. A random process takes place within the generalized ensemble, in

which two replicas exchange their temperatures. Hence, the state of the general-
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ized ensemble changes from X to X ′:

X =
{

· · · , xi,Ti
, · · · , xj,Tj

, · · ·
}

→ X ′ =
{

· · · , xi,Tj
, · · · , xj,Ti

, · · ·
}

where T is the temperature. In molecular dynamics, this can be done naturally by

scaling the momentum vector p:











pi,Tj
=

√

Tj

Ti
pi,Ti

pj,Ti
=

√

Ti

Tj
pj,Tj

The detailed balance condition needs to be fulfilled to achieve an equilibrium con-

dition:

WREM(X)w(X → X ′) = WREM(X ′)w(X ′ → X)

where w(X → X ′) is the transition probability from X to X ′. After substituting

WREM and Hamiltonian H , the exchange probability are obtained:

w(X → X ′)

w(X ′ → X)
= exp(−∆)

where

∆ = (βi − βj)(Ej,Tj
− Ei,Ti

)

and E is the potential energy of a replica. This can be satisfied by applying the

usual Metropolis criterion:

w(X 
 X ′) =











1, for∆ ≤ 0,

exp(−∆), for∆ > 0,

In general, an REM simulation with N replicas repeats the following two steps:

1. Each replica is simulated under canonical ensemble condition at fixed tem-
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perature simultaneously and independently for certain MD steps.

2. Periodically a pair of replicas with neighboring temperatures are chosen for

exchange. The exchange is accepted or rejected based on the probability cal-

culated from the equation above.

Any thermodynamic quantities at any replica temperatures can then be calculated

by direct arithmetic averaging over generated replica configurations. For interme-

diate temperatures that are not simulated, multiple-histogram reweighting tech-

niques is needed instead.

3.2.2 Implementation in AMBER

REM can be implemented in different ways. The simplest solution is to combine

scripting and molecular dynamics modules, which requires the least modification

to available MD code. When exchange attempts are due, exchange probabilities

are calculated by scripts usually written in interpreting languages (e.g. Perl) and

MD modules are restarted with reassigned velocities according to the exchanging

temperatures. Another solution is to take advantage of inherent multiple commu-

nication domain mechanism in the message-passing interface (MPI), the parallel

programming interface standards. Although modest modification to the original

MD code is necessary, the resulted code is completely binary, which may outper-

form the script solution on certain computer architectures, permits new types of

communication, and appears more appealing, both aesthetically and practically4.

In this implementation (AMBER 6), the second approach was adopted and will be

ported to the coming new release – AMBER 8.

4This is true, especially when the code is run at national supercomputing centers where job
priority is mostly decided by the number of requested CPUs.
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Multi-Loader Code

The key to the implementation is the capability of running multiple MD simu-

lations simultaneously within a single process. This was done by utilizing the

multi-communication mechanism in MPI, which allows the creation of multiple

independent communication domains. Each domain runs a separate MD simula-

tion with its own input and output file namespaces. Domain creation was done by

calling the following standard MPI subroutines:

MPI_COMM_SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)

Sander, the MD module of AMBER, was properly modified and transformed into

a subroutine that is called in each communication domain. The master process

of each domain is responsible for file I/O. The interprocess communication in the

original sander module is hence contained within each sander domain. This code,

named multiloader, forms the framework for the later REM addition. Although

multiloader is a only a simple large-scale parallel “device”, it proves itself a very

useful tool to set up hundreds of similar simulations.

REM Extension

Built on top of multiloader, REM came as a natural extension. An additional

communication domain (REM domain) is created, in which exchange probability

is calculated, and includes the master processes from all sander domains. The or-

ganization of communication domains is demonstrated in the scheme below (Fig-

ure 3.1). When exchange is attempted, replicas are paired by their temperatures

and exchange probabilities as well as velocity scaling factors are calculated by one

replica from collected system energy and temperatures, which is then sent to the

other. Therefore, it was decided that replicas with odd indices initiate the exchange

process and form replica pairs alternatively with two neighbors.
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sander domain

REM domain

Slave Process

Master Process

Figure 3.1: Domains and processes in the REM implementation

3.2.3 Usage

This REM implementation does not require extra types of input files other than

those of standard sander module. However, a separate set of input files does need

to be created for each replica except prmtop. All input files of the same type (e.g.,

mdin or inpcrd) have a common root name, which is used in sander command line.

After the command line is processed, a suffix of a 3-digit number will be automati-

cally added to the root name of each input file based on the replica number starting

with 000. For example, sander command line argument -i rem.in for an 8-replica

REM job will require eight mdin files with the names of rem.in.000, rem.in.001, · · ·,

rem.in.007. The only difference between these mdin files is typically the target tem-

perature (TEMP0) of replicas and nothing else. All output files (mdout, restrt, md-

info, and mdcrd) are generated for each replica following the same naming rule and

ascendingly sorted by their temperatures5. Modifications to command line argu-

ment list and each type of input and output files are summarized hereafter.

5So mdcrd.000 will have all the snapshots of the lowest replica temperature.
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command line Two new flags, -numexchg <integer> and -saveexchg <integer>, are

added, specifying the number of exchanges and how often output files are

updated in terms of number of exchanges respectively. One new option for

output file appending other than overwriting (-O), -A, is available, affecting

mdcrd and mdinfo.

mdin is not changed in any noticeable way6. However, small differences do exist.

ntave can be used to control if exchange probability is calculated from av-

eraged or instantaneous energy and temperature. A new namelist variable

freqrem is defined for the ease of coding and it is not supposed to be set by

users.

inpcrd/restrt The target temperature of each replica is added to inpcrd/restrt files

on the second line after NATOM and TIME with format E15.7. This will

overwrite the value read from mdin. The reason is to facilitate resubmitting

jobs automatically at certain supercomputing centers where a wallclock time

policy is imposed and job restarting is frequent.

mdout/mdinfo mdout will not contain system energetics for a whole REM simula-

tion, which instead can be found in mdinfo.

mdcrd The only change to mdcrd is that the title line is not written if the file is

appended.

rem.log is new and has the information about job setup and every exchange at-

tempt. It is created or appended if it already exists. The filename is hardwired

in the code. An entry is placed for each replica and records current scaling

factor (negative if attempt is rejected), current temperature, current energy,

current target temperatures of this and next MD runs. Exchange success ratio

can be calculated from these entries.
6It means that regular sander mdin needs no modification before used in an REM simulation.
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3.3 Thermodynamics and Kinetics Studies of a Non-

apeptide

3.3.1 Background

Short peptides and protein segments are generally considered unstructured in

aqueous solution [101], exhibiting large conformation entropy by sampling the

allowed region of the Ramachandran plot. In opposite to this understanding,

early UV-CD studies on poly-L-Lysine by Tiffany and Krimm [102] suggested that

the “random-coil” state of peptides and proteins might prefer certain local order,

which is described as an extended left-handed 31 helix. Attention was brought

back to this disagreement by a series of more recent studies on tripeptides by

Schweitzer-Stenner [103, 104], which supports the view of Tiffany and Krimm that

the “coiled” states of peptides and proteins may be more structured than what

people thought. If this is true, the structure preference of protein segment would

certainly have more or less impact on the process of folding.

The conformational preference in aqueous solution of a 9-residue peptide (YD-

VPDYASL) from influenza hemagglutinin Ha1 (residue 100-108) [105] was studied

using GB solvent model. This peptide was originally used as a model antigen for

the study of antibody-antigen recognition mechanism [106]. A preliminary CD

spectroscopic study did not show any measurable secondary structures at room

temperature7. A particular conformation was visited frequently in several MD

simulations, which was mostly helical at the C-terminus with a turn near the N-

terminal region that facilitates the stacking of aromatic rings from two tyrosine

side chains (Figure 3.2). In this study, the thermodynamic stability of this con-

formation was estimated to be -0.6 kcal/mol at room temperature, suggesting a

very weak conformational preference. This peptide was used as a model system

7T. Canseco, D. Raleigh, C. Simmerling, unpublished data.
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Figure 3.2: The preferred structure of the 9-residue influenza hemagglutinin frag-
ment
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to study protein folding.

To study the formation of this preferred structure, which is then denoted as

the “native” or “folded” state of this nonapeptide, 188 folding simulations at room

temperature (298K) were conducted from arbitrarily selected structures sampled

at 800K. With more than 96.2% of them reached the folded state, the distribution of

first passage time of folding was calculated and the kinetics of folding was plotted

as the fraction of unfolded simulations against folding time. Surprisingly, it was

found that at least three exponentials were required to fit the data. Their timescales

vary by three orders of magnitude (80ps, 1.1ns and 55ns). To be able to explain

the complex folding process of this nonapeptide, a thermodynamic analysis of the

folding landscape through REM was performed. A total of eight replicas were

used to obtain equilibrium distributions at temperatures over a range of 200K to

400K. The folding free energy landscape was constructed using the two largest

principal components as the reaction coordinates8. Four main basins of attraction

on the landscape were found, a perfect demonstration of the “kinetic partitioning”

mechanism (KPM) proposed by Thirumalai [107], which provides a unified depic-

tion of the folding of heteropolypeptide that is topologically frustrated because of

the uniform distribution of hydrophobic residues. The topological frustration cre-

ates a rugged free energy landscape consisting the native basin of attraction and

many other minima. The denatured ensemble then partitions into fast folders and

slow folders that are stuck in the local minima before reaching the native state.

In order to reconcile the thermodynamic and kinetic views of folding for this se-

quence, structures sampled during the folding kinetics simulations were projected

onto the replica-exchange landscape. From this analysis the native state assumed

8Principal components are calculated from principal component analysis (PCA), which is a
mathematical procedure that transforms a number of (possibly) correlated variables into a (smaller)
number of uncorrelated variables (principal components). Principal components are usually sorted
by their magnitude, which reflects the amount of variation in the data. The first component ac-
counts for as much of the variation as possible, and each succeeding component accounts for as
much of the remaining variation as possible.
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in previous MD simulations was located and is the global minimum of the free

energy landscape. Moreover, each timescale of folding was excellently explained

by the landscape and their characteristics were found. One of the most interesting

findings is that the slowest kinetic timescale is in fact composed of two different

processes of a similar folding rate, corresponding to two distinct non-native basins.

More importantly, the intermediate timescale, the majority of all, does not corre-

spond to any single non-native basin and overall there is no single transition state

of folding. Rather, a funnel-shaped landscape view of folding is more appropriate

and many possible ways of folding are sampled, which is consistent with a wealth

of experimental data for protein folding. The full-length analysis and discussion

are given after the method section.

3.3.2 Importance of This Work

Why would one care for the simulated folding of a nonapeptide that does not even

possess an experimentally detectable structure?

Protein folding is a multi-dimensional transition of a system dominated by

non-specific interactions. Protein sequences are well-optimized to adopt a gen-

eral funnel-shaped energy landscape that speeds up the process of searching the

global energy minimum. However, numerous local energy minimum may ex-

ist, created by the incorrect order of forming native contacts or the possibility of

forming non-native contacts. Therefore, the folding routes of individual protein

molecules may differ, exhibiting the inherent microscopic heterogeneity. Study-

ing this heterogeneity and its sequence dependence is the key to understanding

experimental observations and designing new protein sequences. Unfortunately,

tracking the folding process of individual protein molecules cannot be achieved

easily with available experimental techniques.

Simulated or in silico folding is a more convenient approach in this regard. By
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combining well-studied kinetic results and reliable thermodynamics, this work

rendered a complete picture of the kinetic process. A sound justification for this

process was derived from the free energy landscape of folding. Thereby, this work

convincingly demonstrated the underlying heterogeneity of protein folding. Even

though little experimental work has been done on this particular system, similar

folding scenarios have been found elsewhere [108, 109, 110]. The importance of this

work is not obtaining the direct correlation with any experimental observations,

but serving as a scaffold, just like lattice model, upon which deeper understanding

may be built. Using the state-of-the-art simulation techniques (ensemble folding

simulations and the replica exchange method), this work also demonstrated how

crucial good statistics are for computational folding studies. The ultimate goal of

computational protein folding is to simulate the folding of larger proteins to simi-

lar satisfaction. However, it is far more difficult and challenging.

3.3.3 Methods

All simulations were carried out using the parm94 force field [11] with GB con-

tinuum solvent model as implemented in AMBER 6 [53]. Translation and rotation

of the center of mass were removed periodically during the simulations. A time

step of 2fs was used in all folding simulations, but 1fs was found more appropri-

ate for REM simulations due to the higher temperatures. Unless otherwise noted,

all reported root mean square deviations (RMSDs) were measured using backbone

atoms of all residues with the “native” conformation as reference.

3.3.3.1 Folding Simulations

The initial structures of 188 folding simulations were chosen randomly from an

MD simulation at 800K. The RMSDs of all 188 initial conformations range from

2.3Å to 6.7Å, which covers most of the denatured states as shown in the discussion

66



section. All folding simulations were carried out at 298K and were stopped after it

folded to the native conformation, indicated by RMSD less than 0.8Å9. Structures

were saved every 10ps. Of 188 folding simulations, 96.2% were folded success-

fully within 100ns. The 188 folding simulations were treated as an ensemble of

individual folding events. The unfolded faction of this ensemble was then calcu-

lated and used to describe the folding kinetics, which corresponds to the forward

folding rate. As would be carried out for experimental data, the time evolution of

this fraction of unfolded was fitted to single or multiple exponential equations to

determine the folding scenario of this nonapeptide. No constraint on the sum of

weights of the exponentials was used.

3.3.3.2 REM Simulations

Eight trial MD simulations were first carried out for 750ps to determine the tem-

perature dependency of average potential energy, which is shown is Figure3.3.

To achieve a one-dimensional random walk in temperature space, i.e. a uniform

exchange ratio (0.15 used here), replica temperatures need to have exponential dis-

tribution (Figure 3.4), which can be calculated from the temperature dependency

of average potential energy. The replica temperatures used in this study is 200K,

220K, 243K, 268K, 295K, 325K, 358K, and 394K. Exchange were attempted every

500 MD steps, only the last snapshot saved for later analysis. Each replica was

coupled to its temperature bath with a constant of 0.1ps.

A total of 100,000 structures were collected from each replica, which were split

into two sets of 50,000 each. Principal component analysis (PCA) was performed

on the covariance matrix of backbone coordinates obtained from the second set

of structures. All structures were best-fit to the native structure using the peptide

backbone (C, CA, N, and O). The two largest principal components (magnitude-

9This cutoff value was chosed based on the RMSD histogram analysis of early MD simulations.
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Figure 3.3: Temperature-dependency of average potential energy
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Figure 3.4: Replica temperature distribution
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wise) together contribute 61% of the total fluctuation. The sampling along these

two components was calculated as the dot product of Cartesian coordinate vector

and principle component vector and histogramed using 100 bins in each dimen-

sion. Free energy of each bin was calculated relative to the most populated bin.

The free energy landscape calculated from the first set of 50,000 structures showed

no obvious difference, suggesting sufficient sampling. Landscapes at higher tem-

peratures were constructed similarly. In general, they bear close resemblance to

that of 295K. The landscape was colored by the relative free energy values, rang-

ing from blue to red. The color mapping was indicated by a color bar on the right.

System properties, such as root mean square deviation, torsion angles, were calcu-

lated and then mapped onto the landscape.

3.3.4 Results and Discussion

Folding Kinetics

The sequence of this nonapeptide is neither evolutionarily optimized, nor engi-

neered to stabilize a particular conformation. In spite of the fact that there was

no detectable secondary structure in a preliminary CD study, a marginally stable

conformation was observed from MD simulations in continuum solvent, which

was assumed as the “native” state as mentioned earlier10. To one’s surprise, the

“folding” process of this nonapeptide is unexpectedly complicated. The frac-

tion of unfolded simulations out of 188 folding simulations is plotted as a func-

tion of time (Figure 3.5). At least three exponentials (fraction of unfolded% =
3

∑

i=1

wi exp(−t/τi)) were required to accurately fit the curve, with time constants

ranging over nearly three orders of magnitude (88ps, 1.1ns and 55ns). The fitting

is summarized in Table 3.1.

Interpretation of experimental observation of non-single exponential folding
10This was later explained by the thermodynamic studies.
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Figure 3.5: Exponential fitting of the fraction of unfolded: simulation data (open
circle), fitted curve (red) and three individual components: fast timescale (green),
intermediate timescale (dark cyan), and slow timescale (navy).

Weight (%) Time Constant τ (ps)

Fast Timescale 13 79±7

Intermediate Timescale 66 1100±17

Slow Timescale 21 55000±1700

Table 3.1: Weights and time constants of the exponential fitting (the correlation
coefficient is 0.9991)
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kinetics can be challenging due to the ensemble nature of folding. In the present

case, however, the simulations provides time-resolved data with single molecule

resolution. In principle, one should be able to use this data to validate the use

of three exponentials, and ideally to determine what types of transitions or path-

ways give rise to each of the characteristic times of the folding process. The main

challenge in carrying out such analysis lies in the difficulty of assigning a partic-

ular folding simulation to one of the three timescales. This is particularly true of

the intermediate and slow timescales, in which significant overlap exists between

the transitions of each population represented by these curves. The overlap with

the slow process becomes less significant beyond 10ns, with fast and intermediate

timescales almost completely fading out. Therefore, details of the slow timescale

could be possibly picked out first.

The proximity of each residue to its native conformation was measured using

residue-wise RMSDs. With the exception of Val3 and Ser8, most residues are able

to adopt a native-like local conformation on a short timescale. It is therefore possi-

ble that the non-native conformations of Val3 and Ser8 can be used to characterize

the slow folding process. Further analysis of hydrogen bonds sampled during

these folding simulations showed that the slow folding, non-native local backbone

conformations (negative ψ3 and positive φ8) are correlated with formation of non-

native backbone hydrogen bonds, which must be broken for folding to occur.

To elucidate if ψ3 and φ8 are sufficient to identify the slow timescale, folding

simulations with non-native ψ3 and φ8 were removed. The kinetics of the re-

maining folding simulations was then reanalyzed and fit to two exponentials with

τ1 = 96 ± 6ps and τ2 = 1200 ± 11ps (Figure 3.6). These relaxation times are quite

similar to those obtained for the short and medium timescales from the full en-

semble fitting, and the lack of a slow phase in this fit suggests that the entire 55ns

timescale was the result of the non-native ψ3 and φ8 families. Folding simulations
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Figure 3.6: Two exponential fitting of the fast and intermediate timescales (the
correlation coefficient is 0.9987).
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Figure 3.7: The single exponential fitting of non-native ψ3 (the correlation coeffi-
cient is 0.9878).

with non-native ψ3 and φ8 can be fit individually to a single-exponential with a

time constant of 48000 ± 1600ps (Figure 3.7) and 52000 ± 13000ps (Figure 3.8).

Thermodynamics

The free energy landscapes of folding at 295K, 325K, and 394K are shown in Figure

3.9, 3.10, and 3.11. At room temperature (295K), there are four distinct basins of

attraction, the centers of which are largely located at m1 = (−1.4,−0.4), m2 =

(4,−0.4), m3 = (0.5, 3), and m4 = (1, 2.5). In the center of the landscape is a large

poorly populated area. As the temperature is increased, this area and the barriers

that are between minima become smaller and eventually disappear. The global

minimumm1 at the lower-left of the landscape is stable by 2.5 kcal/mol comparing
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Figure 3.8: The single exponential fitting of non-native φ8 (the correlation coeffi-
cient is 0.9818)
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Figure 3.9: The free energy landscape of folding of the 9-residue peptide at 295K.
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Figure 3.10: The free energy landscape of folding of the 9-residue peptide at 325K.
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Figure 3.11: The free energy landscape of folding of the 9-residue peptide at 394K.
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Figure 3.12: Ensemble RMSD map on the free energy landscape, which is shown
as contour lines.

to the least populated area, but slightly destabilized at 394K as indicated by the

range of the colorbar. The other three minima m2, m3 and m4 are arranged in a

circle next to the native basin and about 1.0 to 1.5 kcal/mol higher in free energy.

All free energy barriers are no higher than 2.5 kcal/mol.

The ensemble RMSD values can be color-mapped to the landscape, which is

shown as contour lines in Figure 3.12. Indeed, the assumed “native” conformation

does occupy the global free energy minimum; RMSD values of structures in m1 are

typically below 1.5Å. If this was used to differentiate between “folded” and “un-

folded”, folded structures approximately accounts for 61% of the total sampling,
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Figure 3.13: Initial folding ensemble coverage on the free energy landscape

which suggests a 0.26 kcal/mol stability of the folded state. This may explain why

this peptide was previously considered unstructured from CD experiments.

188 initial structures of folding simulations and structures sampled during sev-

eral folding simulations were projected onto the landscape. As expected, the ini-

tial folding ensemble quenched from the 800K MD simulation do cover most of

the landscape in a uniform manner (Figure 3.13). Four folding simulations of 26ns

(Figure 3.14), 49ns (Figure 3.15), 87ns (Figure 3.16), and 100ns (Figure 3.17) were

similarly visualized on the landscape as well as a native MD simulation of 29ns

(Figure 3.18), colored by time (blue when t = 0 and red in the end). The

projections and the landscape agreed almost perfectly with each other, the most

frequently sampled areas conforming with free energy minima identified by REM

simulations. What appears more interesting is that both folding simulation No. 37
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Figure 3.14: The landscape projection of folding simulations No. 35
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Figure 3.15: The landscape projection of folding simulation No. 37
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Figure 3.16: The landscape projection of folding simulation No. 60
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Figure 3.17: The landscape projection of folding simulation No. 80
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Figure 3.18: The landscape projection of a native MD simulation
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Figure 3.19: ψ3 map colored by the torsion values indicated by the color bar. Non-
native ψ3 corresponds to m2.

and No. 80 were similar in their kinetic path, trapped by m2, but the folding of

No. 80 was not achieved within the limit of these folding simulations – 100ns. The

projection of all folding simulations suggests that most of the folding events occur

by crossing the undersampled long narrow “ridge” next to m1 (e.g. Figure 3.15)

instead of the more feasible barrier between m1 and m2. The reason of this is not

clear from these landscapes generated from PCA components.

Can one use these landscapes to explain why there are three apparent fold-

ing processes? First, ψ3 and φ8 of REM-sampled structures were mapped to the

landscape (Figure 3.19 and 3.20). It clearly indicates that non-native ψ3 and φ8
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Figure 3.20: φ8 map colored by the torsion values indicated by the color bar. Non-
native φ8 corresponds to m4.
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Figure 3.21: The single exponential fitting of near-native folding kinetics (the cor-
relation coefficient is 0.9558)

distribution correspond to alternate local minima m2 and m4. The slow timescale

reflects their transitions to the global minimum m1, which have been shown in

Figure 3.15 and 3.16.

At this point, two timescales (fast and intermediate) and one obvious non-

native minimum m3 remained unassigned. It is speculated that the fast timescale

arose from the folding of near-native initial conformations (Figure 3.13), which

were already inside of the native basin. This was subsequently inspected by divid-

ing all folding simulations according to their initial RMSDs (the cutoff is 1.5Å) from

the sub-ensemble with no non-native ψ3 and φ8. The two resulting sets were then

fit to a single exponential with time constants of 88 ± 7ps and 1200 ± 7ps (Figure

3.21 and 3.22), which are again matching with those obtained from full-ensemble
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Figure 3.22: The single exponential fitting of intermediate folding kinetics (the cor-
relation coefficient is 0.9984)
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Figure 3.23: ψ4 map colored by the torsion values indicated by the color bar. Non-
native ψ4 corresponds to m3.

analysis. The speculation that near-native folds with the fast timescale is largely

credible, but certainly not perfect. One can see from the discrepancy beyond 200ps

in Figure 3.21 that some intermediate timescale folding can still happen to near-

native foldings.

Examinations of φ and ψ of other residues allow the identification of the

last minimum m3 (Figure 3.23), which is associated with non-native ψ4 (Pro4).

Folding simulations that sampled this basin can be fit with a single exponential

(τ = 1400±33ps), similar to the intermediate timescale found for the full-ensemble

analysis (Figure 3.24). In this case, however, only 37% of the intermediate timescale
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Figure 3.24: The single exponential fitting of non-native ψ4 folding kinetics (the
correlation coefficient is 0.9883)
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can be explained by this minimum. The reminder of the intermediate timescale

foldings do not appear to be associated with any apparent minima on the free

energy landscape. Their projections have little in common, and their folding tran-

sitions mostly occur at a variety of locations on the separating ridge right to the

global minimum m1, suggesting the ensemble-nature of the transition states for

this particular peptide.

To summarize the above analysis, 188 folding simulations were classified into

three categories: fast (near-native), intermediate (including non-native ψ4, and

slow (non-native ψ3 and φ8). The number of folding simulations in each category

is 27 (14.4%), 125 (66.5%), and 36 (19.1%) respectively, which agree well with their

kinetic weights from triple exponential fitting (13.2%, 65.5% and 20.9%).

3.4 Thermodynamics Studies of Other Peptides

The thermodynamics of a few other peptides being studied in the lab were inves-

tigated as well with replica exchange method to complement their folding stud-

ies. What is different from the previous nonapeptide is that these peptides all have

rather stable structural motifs (often referred as “mini-proteins”) and their solution

structures have been determined by NMR techniques. Extensive thermodynamic

studies on these peptides can not only help to understand folding kinetics but also

serve as “reality” benchmark of solvation models and force fields.

3.4.1 Tryptophan Zipper

3.4.1.1 Background

“Tryptophan zippers” (trpzip) are a series of designed 12 to 16-residue pep-

tides, which adopt stable, monomeric β-hairpin conformations, stabilized by cross-

strand tryptophan-tryptophan packing [111]. High-resolution NMR structures
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Figure 3.25: Average trpzip2 (1LE1) NMR structure

of three of members of the family (PDB codes: 1LE0, 1LE1, and 1LE3) showed

that two cross-strand Trp pairs stack in a zipper-like motif on the surface of the

folded peptides (Figure 3.25, 1LE1 shown here). It was claimed that the trpzip

peptides are equally stable as much larger proteins on a residue-based compari-

son (∆Gunf,max = 60 − 120 cal · mol−1 · residue−1). For example, trpzip2 (sequence:

SWTWENGKWTWK), the most stable among other 12-residue trpzips, has a melt-

ing temperature Tm = 345.0 ± 0.1 K and ∆Cp = 281 ± 2 kcal · mol−1 · K−1.

The folding and unfolding of trpzip2 have been extensively studied by Okur

and Roe using all atomic MD simulations with GB continuum solvent model and

a new set of backbone force field parameters [14]. One of the major findings in ki-

netic studies is that unfolding appears to be a single-exponential process while the
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Figure 3.26: Free energy landscape of trpzip2 at 308K

reverse process started with high-temperature ensemble is double-exponential11

[112]. Similar to the nonapeptide folding studies, REM simulations were carried

out for trpzip2 to provide thermodynamic pictures of folding. Replica tempera-

tures are 272, 290, 308, 329, 350, 373, 397, and 423K.

3.4.1.2 Thermodynamics of Folding

The surface representations of the free energy landscapes at 308, 329 and 350K are

shown in Figure 3.26, 3.27, and 3.28. The free energy landscape is composed of

two large most sampled regions at 308K, separated by a wide and barely sampled

11Both folding and unfolding simulations were conducted at 350K, slightly higher than the melt-
ing temperature.
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Figure 3.27: Free energy landscape of trpzip2 at 329K
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Figure 3.28: Free energy landscape of trpzip2 at 350K
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“ridge” region that becomes flat and populated gradually as the temperature is

increased, similar to what has been observed in the nonapeptide case. However,

the difference between the designed peptide and the nonapeptide is very signif-

icant. First, the landscape is more funnel-shaped around room temperature and

the global minimum is much deeper (about 4 kcal/mol) and narrower, on contrary

to the shallow and wide native state of the 9-residue peptide. Due to this strong

bias, trpzip2 folds in a highly cooperative manner. The first principle component

(PC) has an magnitude of 75.7% while the second PC only has an magnitude of

6.0%. In the case of the 9-residue peptide, the magnitudes of the first two PCs are

45.6% and 15.6%. This indicates that the folding of trpzip is mainly dominated by

one kind of motion, unlike the 9-residue peptide where a few exist12. It has been

speculated that millions of years of evolution selected a very small portion of pro-

tein sequence-space, which can form quickly their desired structures required by

their functions without being delayed by local traps. This has been at least partly

demonstrated in the computational folding studies of these two peptides of sim-

ilar length, although quantitative agreements of thermodynamic properties, such

as melting temperature, was not reached. The computed melting curve of trpzip2

is shown in Figure 3.29, with a melting temperature about 40K lower than the ex-

perimental one. This might be explained by the large local minimum on the left

of the “ridge”, which corresponds to a partially left-handed α-helix (Figure 3.30).

Oddly enough, none of the folding and unfolding simulations (over 100) sampled

this conformation at 350K. But an MD simulation started with this left-handed α-

helix stayed and did not fold to the native conformation even after 50ns.

12In fact, the third and fourth PCs of the 9-residue peptide shave magnitudes of 11.2%, 7.5%
while the second and third PCs of trpzip2 are only 4.2% and 3.9% respectively.
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Figure 3.29: The computed melting curve for trpzip2 from REM simulations
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Figure 3.30: A snapshot of “mis-folded” trpzip2 in left-handed α-helix conforma-
tion. The backbone atoms are shown in green sticks and (i, i+4) hydrogen bonds
are shown in cyan lines. Only four Trp side chains are shown.
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3.4.2 Tryptophan Cage and Mutants

3.4.2.1 Background

Recently Neidigh and Andersen [89] reported the successful design of a 20-

residue mini-protein – “Trp-cage”, from a poorly folded 39-residue peptide

exendin-4 (EX4) of Gila monster saliva. According to their understanding of

“self-folded domain”13, Trp-cage is well qualified and “is significantly more

stable than any other miniprotein reported to date”. Trp-cage (sequence:

N1LYIQWLKDGGPSSGRPPPS20) is >95% folded in water at physiological condi-

tions, featured with a short α-helix (residue 2 to 8) followed by a 310-helix (residue

11 to 14), and a polyproline II helix at C-terminus. The overall fold is stabled

by a compact hydrophobic core formed by three proline residues and a glycine

packed against the aromatic side chains of Tyr3 and Trp6 (Figure 3.31). Trp-cage

folds spontaneously and cooperatively with a folding rate of 4µsmeasured by laser

temperature-jump spectroscopy [90], being the fastest observed among other com-

plete proteins.

Simmerling and Roitberg [13] performed an ab initio structure prediction using

molecular dynamics and successfully achieved the NMR structure from only the

sequence information (all heavy-atom RMSD of 1.1Å) before it was deposited in

PDB (code: 1L2Y). As the very first accomplished full-atom structure prediction,

it greatly shortened the gap between experimental and modeling studies. Because

of the protein-like nature of Trp-cage and its appealing size, several independent

computational folding studies have been carried out to understand the underlying

folding mechanism. Alongside of these, Andersen et al. are continuing to push the

envelope, further optimizing the sequence to improve the stability of the fold. In

this section, the thermodynamic studies of Trp-cage and a few of its variants were

13Multiple secondary structure elements; tertiary interactions; well-defined χ1 and χ2 values;
better protected backbone amide proton exchange.
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Figure 3.31: Average Trp-cage NMR structure. The hydrophobic cluster are high-
lighted: Tyr3 in blue, Trp6 in red, Pro12 in yellow, and Pro17-Pro19 in magenta.
The α-helix (residue 2 to 8) is shown as cartoon.
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reported, including:

tc5b(Trp-cage) N1LYIQWLKDGGPSSGRPPPS20

tc4a D1LFIEWLKNGGPSSGRPPPS20

tc10b D1AYAQWLKDGGPSSGRPPPS20

tc10f D1AYAQWLKDGAPSSGRPPPS20

tc10e D1AYAQWLKDGDAPSSGRPPPS20

3.4.2.2 Thermodynamics of Folding

REM simulations were performed for each of the five sequences with the same

setup: 8 replicas at 267, 283, 300, 318, 338, 358, 380 and 403K, starting with ex-

tended conformation built from sequence using GB continuum solvation. Col-

lected structures (over 70,000 per replica for each sequence) were analyzed as in

the nonapeptide studies, in which only the second half were used. RMSD calcula-

tions were made to the backbone of residue 3 to 18 fitting to the NMR structure of

tc5b.

Experimental thermodynamic studies indicated that the relative stability mea-

sured by tryptophan chemical shift upon tertiary fold formation (%-folded at pH

7 and 280K, Tm) of the five sequences studied is tc10b (99.7%, 61C) > tc5b (98.5%,

43C) > tc10e (96%, 38C) > tc4a (46%) > tc10f (< 10%). tc10f is suspected to have a

different fold, indicated by the low percentage of fold. Here, the primary interest

of the following thermodynamic studies is not to reproduce the absolute experi-

mental stabilities, rather, more pertinently, the relative tendency.

To calculate the native population from REM data, RMSD was used as a simple

indicator of the nativeness. To choose a proper cut-off value, both RMSD distribu-

tion at 300K and the free energy landscape colored by RMSD were consulted. As
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Figure 3.32: RMSD map of tc5b REM samples at 300K. The landscape is shown in
contour line. The color bar for RMSDs is shown on the right.

one can see from Figure 3.32and 3.33, the RMSD histogram and its landscape map

are rather consistent, with the low RMSD structures close to the global free energy

minimum, and 2.5Å seems to be a good cut-off value. The calculated melting

curves of the five sequences are shown in Figure 3.34. It is not hard to tell that

the overall agreement with %-folded at pH 7 and 280K does not appear attractive.

However, the simulation does indicate that tc5b and tc10b are among the most

stable sequences. The melting curves of tc5b and tc10b almost coincide with each

other and the calculated melting temperature of tc5b is about 30 degrees higher

comparing to the experiment, but still much lower than a similar study recently

reported by Pitera and Swope [100], in which only 4,000 conformations were col-

lected for each replica. At low temperatures, the calculated fraction of folded was
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Figure 3.33: RMSD histogram (100 bins) of tc5b 300K REM data
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Figure 3.34: Melting curves of five Trp-cage peptides, assuming that all have the
tc5b fold.
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lower than that of the experiment by nearly 20%, which suggests that the simu-

lated transition is less biased than it should. This might be explained by the lack of

entropy contribution from solvent molecules, which is missing in continuum sol-

vation. tc10b was designed to be more stable than tc5b by increasing the stability

of the N-terminal α-helix, but this difference was not captured by the force field

used in this study. In fact, the N-terminal α-helix population of tc10b and tc5b is

80% and 88% respectively, calculated from backbone RMSD of residue 3 to 8.

All other sequences (tc4a, tc10e and tc10f) have significantly lower melting tem-

peratures, qualitatively in agreement with design. Their melting curves do not

possess a sharp drop of fraction of folded. Interestingly, the melting temperature of

tc10f exhibits a peak around 320K and a sudden decline of fraction of folded at low

temperature range. This would not be surprising if the tc5b native conformation is

not dominant on the landscape. Indeed, four other minima coexist with the global

minimum (Figure 3.35), which is not much favored energetically and the RMSD

landscape mapping (Figure 3.36) clearly reveals that low RMSD structures (rela-

tive to tc5b native conformation) do not correspond to the global free energy min-

imum. Instead, one structure that belongs to the global minimum was filtered off

(Figure 3.37), from which the RMSDs were recalculated, and low RMSD structures

nicely filled the global minimum (Figure 3.38). With most of the tc5b secondary

structure elements present, this tc10f “native” conformation features a strong salt-

bridge formed between N-terminal Asp and Arg16, which is largely exposed to

the solvent. This questionable salt-bridge is very likely an artifact of the contin-

uum solvent model used, which may underestimate the screening effect between

charged residues in certain cases. This phenomenon has been repeatedly observed

with the GB implementation in AMBER 6. In fact, it exists in every Trp-cage se-

quence except tc5b, which does not have a N-terminal Asp. This overstabilized

salt-bridge directly affects the tertiary conformation of the peptide, i.e. secondary
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Figure 3.35: The free energy landscape of tc10f at 300K colored by relative free
energies.
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Figure 3.36: The RMSD mapping for tc10f, relative to tc5b native conformation
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Figure 3.37: The global minimum conformation for tc10f, similarly color-coded as
Figure 3.31. The salt-bridge formed between Asp1 and Arg16 are highlighted in
green.
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Figure 3.38: The RMSD mapping of tc10f, relative to its global minimum confor-
mation.
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Figure 3.39: The distance (Trp6@NE1–Asp16@O) distribution of tc5b.

element packing. Tertiary structural information was experimentally measured

by Trp6 chemical shift upon hydrogen-bonding with carbonyl oxygen of Arg16,

and can be equivalently monitored using the distance between the hydrogen bond

donor (NE1) and the acceptor (O). A nearly single distribution of this distance was

obtained for tc5b over a range of 40Å, centered at about 3Å (Figure 3.39). However,

a second peak was found present at about 5Å for all other sequences (see Figure

3.40 for an example)14.

14This distance of the representative structure for tc10f native state mentioned above was mea-
sured as 4.7Å.
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Figure 3.40: An example (tc10f) of the distance (Trp6@NE1–Asp16@O) distribution
shows a much larger peak centered at about 5Å.

112



3.5 Conclusions

The folding of a few peptides that are different in length, fold and thermody-

namic stabilities have been studied with replica exchange approach. Much has

been learned not only in the conceptual understanding of protein folding but also

in the strength and weakness of methodologies that are available for studying pro-

tein folding.

3.5.1 Conceptual Understanding

Protein folding is certainly a highly complicated process that involves coordinated

movements of thousands of atoms, including solvent. If one universal folding

model exists to explain the folding of all protein sequences, it undoubtedly has to

be built on the basis of statistic models, which has established that the folded state

of protein molecules corresponds to the global free energy minimum of a high di-

mensional space. This space, when “compressed” or reduced down to only one or

two dimensions, bears the shape of a funnel, the bottom of which represents the

folded state. Folding process is greatly accelerated due to the shape of the fun-

nel and becomes thermodynamically favorable. Unfolded state is not a single state

but an ensemble of microscopic states with similar energies. Because of this, it may

not be appropriate to interpret folding process as static pathways and more impor-

tantly, the apparent kinetics of folding relies on not only the thermodynamics of

folding but also how folding is initiated. The nonapeptide in the first study poses

an almost ideal model system that could be examined thoroughly with all atomic

details. Owing to its unoptimized sequence, it exhibits at least four different fold-

ing scenarios that could be characterized (the fast, two different slow timescales

and a part of the intermediate timescale). The weight of each timescale is decided

by the 800K MD simulation that generated the initial folding ensemble. The con-

113



tribution from non-native φ8 might completely disappear or become undetectable

if the initial ensemble had been created at a much lower temperature, at which

non-native φ8 is only a negligible portion of the system15. This has been recently

supported experimentally that cold shock protein A exhibits different folding ki-

netics depending on how the laser induced temperature jump experiments were

done [109]. A single exponential kinetics became double exponential when the

temperature was raised 5 degrees higher.

Then why can so many natural proteins be described with a simple two-state

model? The apparent two-state folding model can be simply a result of how the

folding process is observed, in other words, the choice of progress variables. In the

nonapeptide case, if only ψ3 or φ8 had been used, the folding kinetics would have

been an apparent two-state. Computer modeling of protein folding is obviously

more advantageous comparing to experimental studies in this regard.

To have a correct picture of the folding process of a particular protein, it is

important to obtain both unbiased kinetics and thermodynamics with sufficient

statistics. Unlike small molecule reactions, knowing only the thermodynamics

does not imply knowledge of the actual kinetics of protein folding. Instead, many

folding simulations that start from representative locations in the phase space are

needed and required to proceed to complete. The amount of folding simulations

can be systematically identified following the strategy proposed by Brooks [86]. A

significant portion of the folding simulations must reach the folded state. Other-

wise, slow timescales are likely to be overlooked, therefore resulting in a premature

conclusion.
15500 out of 100,000 structures collected at 300K using REM have the non-native φ8 conformation.
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3.5.2 Methodology

Replica exchange method is a much more effective sampling approach that regu-

lar molecular dynamics cannot match. This has been adequately demonstrated in

this chapter. In the nonapeptide study, twice data collected in regular MD simu-

lations did not cover as much as the REM simulations. Some of the folding sim-

ulations were trapped by local minima for 100ns (equivalent to the length of the

REM simulations) and failed to find the folded state (see Figure 3.17 for an exam-

ple). In the trpzip2 study, the left-handed α-helix conformation identified on the

REM landscape was never found in almost 100 folding and unfolding MD simu-

lations. However, the improved sampling efficiency comes with a cost. Running

REM simulations poses huge requirement on computational resources16, which in-

creases along with the problem size17, and yet usually only a few replicas out of N

has a relevant temperature that are most interesting. Therefore it is not very prac-

tical to study the folding of large proteins unless much simpler models are used.

Many early REM applications are typically very short (only a few nanoseconds

per replica), which might not be very careful practice. System properties, such as

fraction of folded (Figure 3.41), calculated from short samplings may not represent

that of an equilibrated system.

The increased sampling efficiency not only advances the understanding of con-

formational heterogeneity, but also starts to reveal flaws in protein force field and

solvent models. Accurate description of conformations other than the native is

crucial to study processes that involve conformational transitions. However, due

to the limitation of sampling efficiency of regular MD simulations, the traditional

force field benchmark approach, the description of non-optimal or transient con-

16Needless to say, it also needs significant amount of graduate student’s time to analyze the data.
17As larger systems are studied, more replicas will be needed to cover a useful temperature range

so that there is enough energy overlap between adjacent pairs that ensures a reasonable exchange
ratio.
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Figure 3.41: The fraction of folded of trpzip2 300K replica, calculated using data
sets of different length (red: 10,000, green: 50,000)
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formations might be inadequate. REM approach can be helpful in evaluating force

field modifications since the convergence of thermodynamics is not a concern and

energy profile can be obtained rather quickly.

The use of principal components as the coordinates for constructing folding

landscape did a great job in resolving different minima. Characterization of them is

not straightforward, but can be easily done by property mapping. Although prin-

cipal components themselves are not progress variables and do not correspond

to physical observables, they have the advantage of being truly independent and

no pre-assumptions of the native state, therefore suitable for structure prediction.

The convergence of major components and the implications of their magnitudes

are worth further investigation.
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Chapter 4

FabI Inhibition Studies with Free

Energy Calculation

4.1 Introduction

NADH-dependent enoyl reductase enzyme catalyzes the reduction of long chain

trans-2-enoyl-ACPs in the type II dissociated fatty acid biosynthesis pathway

(FASII) in bacteria, which produces long chain fatty acid, a key component of bac-

teria cell wall. Interruption of this process can be deadly because the integrity of

cell wall is crucial to the survival of invading bacteria against macrophages inside

the target organism [113, 114, 115]. The FASII pathway has been heavily studied

in several bacteria and substantial evidence now supports the notion that FASII

is an attractive target for antibacterial drug development [116, 117, 118]. NADH-

dependent enoyl reductase (FabI/InhA1) is one of the most common targets.

Tuberculosis, a disease that has been fought against worldwide2 [119, 120, 121],

is caused by Mycobacterium tuberculosis (TB) infection. Attempts to control the

1InhA is the enoyl reductase of Mycobacterium tuberculosis. The homologue of InhA in other
bacteria is often referred to as FabI

2One third of the world population are infected and over two million people die every year.
Tuberculosis is also a major opportunistic pathogen in patients with HIV/AIDS.
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Figure 4.1: Four triclosan analogs that were studied

spread of this disease are severely hampered by the emergence of multi-drug re-

sistant strains of TB [122, 123]. The need of developing high affinity inhibitors

is urgent. Recent studies have revealed that the “nonspecific” biocide triclosan

(TCS) is an high affinity (picomolar) FabI inhibitor and can be used as a potential

lead for InhA inhibitor design, which has been proposed by Tonge etc. Prelimi-

nary structural and inhibition studies showed that triclosan binds weakly to the

complex of InhA and NAD+ (micromolar, [124]) in a very similar manner as ob-

served in the case of FabI. However, a loop (residue 196–205) near the binding site

of FabI becomes ordered upon triclosan binding while this is not observed in the

InhA:triclosan structure [124].

The long term goal of the present modeling study is to predict changes to the

triclosan structure that will improve binding to InhA. In order to validate/refine

the approach the initial effort has been focused on using molecular dynamics and

free energy calculation methods to reproduce the changes in FabI-binding affinity

observed for four of the triclosan analogs (Figure 4.1) [125, 126]. Among them,

a small change in structure results in a large alteration in binding affinity (Table

4.1). Reproducing this sensitivity not only calibrates force field parameters and
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Compound pKa FabI Inhibition (K1)

TCS 7.8±0.1 7±1pM

PP 9.12±0.03 0.50±0.02µM

CPP 8.13±0.02 1.1±0.1pM

FPP 8.12±0.06 3.2±0.4nM

Table 4.1: The pKa and binding affinity of four triclosan analogs

computational techniques that are to be applied, but also serves to provide insight

on the origin of this sensitivity, which is more important to future inhibitor design

work.

Comparing the binding affinities of different ligands computationally involves

the calculation of binding free energy change (∆Gbinding). The direct calculation

of absolute binding free energy change is possible albeit extremely difficult due

to the cost of sampling both the bound and unbound states, therefore is not gen-

erally practical. On the other hand, binding free energy change (∆∆Gbinding,A→B)

between different ligands can be readily calculated provided that structural and

free energy changes between ligands are relatively small. Free energy calculation

techniques (free energy perturbation or thermodynamic integration) have become

mature [127, 128] and can provide accurate estimation of ∆∆Gbinding,A→B that is

comparable to experimental values, but the computational cost is still rather sub-

stantial and rarely used routinely in rational ligand design. In the early stage of this

long term investigation, the good agreement between modeling and experiments

is of first order and free energy calculation is the only reliable approach available

to achieve it. Fast and approximate ligand scoring approaches will only become

suitable after an appropriate model is established. The main goal of this study is

to acquire this model and pave the way for the coming ligand design process.
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Figure 4.2: FabI:NAD+:triclosan complex crystal structure colored by monomer
shown in ribbon diagram

4.2 System and Setup

The crystal structure of FabI:NAD+:triclosan complex has been solved by Stewart

and Kisker with 1.75Å resolution [129]. The complex packs together with three

identical copies and forms a tetramer (Figure 4.2) with large interface shared be-

tween monomers. Molecular dynamics simulations were first performed as the

preparation step for the following free energy calculations. This step is necessary

to adjust the crystal conformation to the simulated aqueous environment and the

changes introduced when triclosan is replaced with other three analogs. All MD

simulations and free energy calculations took into account the solvation effect ex-

plicitly by adding water molecules around the FabI:NAD+:ligand complex. Force

field parameters for all four triclosan ligands, specifically the atomic charges and
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Figure 4.3: FabI:NAD+:Triclosan binding site

two torsion angles involved in the ether linkage between two rings, were carefully

derived following the procedures described below.

4.2.1 Triclosan Analogs

Triclosan and three analogs in Figure 4.1 all share the same skeleton of two benzene

rings connected by ether bond. For later convenience, the phenol ring is denoted

as “A ring” while the phenoxy ring is denoted as “B ring”. In the crystal structure

of the ternary complex (Figure 4.3), the hydroxy group of A ring forms hydro-

gen bonds with Y156 and the NAD+ ribose. A ring, deep inside of the binding

pocket, stacks on top of the nicotinamide fragment of NAD+. The plane of B ring

is roughly perpendicular to that of A ring and is less buried. Substitution of the
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two chlorine groups on B ring affects very little the binding affinity (comparing

the binding constants of TCS and CPP in Table 4.1), however, A ring is extremely

sensitive to even very slight changes, binding affinity losing almost one million

fold when the chlorine is replaced with a hydrogen.

4.2.2 Force Field Parameters

Atomic charges for all four triclosan compounds as well as their deprotonated

forms were calculated following the same procedure as in the pyrene-DNA case

described in Chapter 2. The electrostatic potentials were first calculated with quan-

tum mechanics and then reproduced by two-stage charge fitting. The needed tor-

sion terms for the ether linkage were calculated with the same philosophy. First,

the potential energy surface with respect to the two torsion angles (a 10 by 10 grid)

was scanned with quantum mechanics calculations at HF/6-31G∗ level (15 days

11 hours). The torsions terms were then fitted to reproduce the potential energy

surface relative to a reference conformation chosen arbitrarily. Standard ff94 force

field [11] was used for FabI.

4.3 Molecular Dynamics Simulations of FabI and Tri-

closan Complex

4.3.1 Monomer Calculations

A 6.4ns explicit solvent molecular dynamics was first calculated for the monomer

of the binding ternary complex at room temperature (300K). Following the pro-

tocol described in Section 2.2.3.1, the positional restraints applied on the ternary

complex were gradually released altogether in five 10ps MD simulations to give

the relaxed conformation for the next 6.4ns production run. The backbone root
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Figure 4.4: The backbone and averaged residue RMSD for the
FabI:NAD+:Triclosan monomer complex.

mean square deviation (RMSD) with respect to the crystal conformation and av-

erage residue RMSD were shown in Figure 4.4. The structure started to adopt a

stable conformation at 2Å after roughly 3ns. Significant deviation from the crystal

conformation was observed in three regions that can be identified from the aver-

age residue RMSD. Although most part of the protein backbone prefer the crys-

tal conformation, residue 94–110, residue 146–178, and residue 197–217 exhibits

rather large difference (generally over 2Å). All three regions are located on the in-

terface between monomers and possibly contribute to the ligand binding. (Figure

4.5). The final snapshot of the simulation was compared to the crystal structure,

showing an expanded binding site and an outbreaking triclosan (Figure 4.6). This

large conformational deviation of the binding site is particularly worrisome be-
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Figure 4.5: Three regions (residue 94–110, green; residue 146–178, yellow; residue
197–217, red) on the monomer interface show large deviation from the crystal con-
formation.
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Figure 4.6: The final snapshot of the monomer (purple) simulation is compared to
the crystal structure (gray). The FabI backbone is shown in backbone trace and the
ligand and NAD+ are shown with sticks.
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cause of possible involvement of other monomers in the ligand binding through

binding interface stabilization, which may complicate the free energy calculations.

It is not clear from available experimental data that FabI:NAD+:triclosan exists

monomerically in the solution. More cautiously, in the second MD simulation of

the monomer ternary complex, the positional restraints on triclosan, NAD+, and

FabI were released separately. However, this did not help to remove the binding

site conformational deviation.

4.3.2 Tetramer Calculations

The explicit solvent simulation of the tetrameric ternary complex was only carried

out for 100ps due to the limitation of computational resources. The whole system

consists of almost 68,000 atoms when solvated and required 76 hours to calculate

the 100ps MD trajectory using 10 250 MHz SGI-2000 CPUs. Although the simula-

tion does show lowered RMSD (below 1Å) and residue fluctuations (mostly below

1.5Å) for backbone atoms, the length of the simulation is certainly too short to con-

clude that monomer interactions are necessitated for the binding. Nonetheless, the

MD simulations clearly indicate that the monomer is not an appropriate system in

order to best address the binding free energy difference between triclosan analogs.

4.4 Relative Binding Free Energy Calculations of Tri-

closan analogs

4.4.1 Free Energy Calculation Setup

Performing free energy calculation on the tetramer, the closest representation to

reality, is prohibitively expensive if not impossible. Additionally, the computing

time for the same amount of sampling in the current free energy calculation routine
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is almost twice as much as regular MD simulations. To reduce the cost and make

calculations tractable for a series of compounds that are under study, an interme-

diate model was used that was similar in size to the monomer but included an

additional 115 amino acid residues from neighboring monomers that were within

20Å from triclosan. In this downsized model system, all atoms beyond 15Å from

triclosan were weakly restrained with a force constant, 0.2 or 0.5 kcal/(mol·Å2
)3

to their MD-equilibrated coordinates. This model system was then solvated in a

truncated-octahedral box with an 8Å padding on each side, resulting in a system

of ∼27,000 atoms. All ligand perturbations in solvent were done in a cubic box

with 20Å padding on each side. Counterions were not used in any calculations.

The relative binding free energy calculation of two ligands is typically done

in two perturbations using thermodynamic integration (TI) approach [130], one

in protein (∆GA→B,protein) and the other in solvent (∆GA→B,solvent). The difference

between the two corresponds to the binding free energy difference of the two lig-

ands. In the current study, each perturbation was done with 12 consecutive win-

dows, the λ and weight of each window can be found in AMBER7 manual. Each

perturbation started with λ = 0 toward λ = 1. For each window, a short initial

integration (10ps) generated the starting conformation under NTP condition. The

long production integration was then continued for 100ps under NVT condition,

the average of the free energy derivative being taken every picosecond. Therefore,

100ps production integration is equivalent to 100 measurements and the statistical

error was then calculated accordingly.

30.5 kcal/(mol·Å2

) was used in cases that free energy calculations failed due to the outbreak of
unrestrained solvent molecules.

128



4.4.2 Systematic Errors

The systematic error introduced by using the truncated model system was first

estimated by examining ∆GTCS→CPP,solvent and (dG/dλ)TCS→CPP,solvent, the results

of which was compared against those from the full system calculated with periodic

boundary condition (PBC). For this test, solvent molecules beyond 15Å of TCS

were removed and the outer 5Å layer of this truncated solvated system was gently

restrained. The free energy derivatives with respect to each λ were then plotted in

Figure 4.7. It is clear that the approximate setup increased the uncertainty of the

measurement with a standard deviation of 11 to 12 kcal/mol comparing to 1 to 2

kcal/mol in the more rigorous setup. The weighted sum of free energy derivatives

of all windows, corresponding to the free energy cost of mutating TCS to CPP in

solvent, only differed by 0.4kcal/mol. The standard deviation of this sum for the

truncated setup is about 1.1 to 1.2 kcal/mol, relatively small.

The same test was conducted for ∆Gprotein and (dG/dλ)protein as well. In the

reference calculation, all four ligands in the tetramer were perturbed at the same

time and the average of the overall perturbation free energy was compared with

that of the truncated system. The integration was performed for 50ps at each λ for

the tetramer calculation. Similarly, the uncertainty of the 15Å-truncated setup was

substantially larger than the reference. To reduce the uncertainty, a larger trun-

cation (20Å) with periodic boundary condition was employed in all subsequent

free energy calculations. Although longer production integration (>100ps) is cer-

tainly preferable for better confidence of the results, compromise had to be made

between reliability and computational cost. In fact, this compromise is perhaps not

“terrible” as can been seen from the next section.
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boundary condition is colored black, the truncated system is colored red.
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Figure 4.8: Conducted relative binding free energy calculations: the direction of
the arrow indicates the target of each perturbation. The values accompanying each
arrow correspond to the associated binding free energy change5 (p: production; e:
equilibration).

4.4.3 Results of TI Calculations

All TI calculations that were performed are shown in the diagram as well as the

binding free energy change for each perturbation (Figure 4.8). Overall 12 perturba-

tions were calculated. The left part of the diagram are the perturbations between

neutral ligands with the A ring phenol group protonated. Although each pertur-

bation was only calculated from one direction, the sum over the closed circle (TCS

→ CPP → PP → FPP → TCS) is -0.3 kcal/mol, within the calculation uncertainty

to the true value, which is zero. This speaks well for the validity of the calculation

and technical treatments. However, the calculated relative binding free energies

are rather far away from what experiments had measured (Table 4.2). The cal-

culation suggests that the binding affinity is largely insensitive to the introduced

changes if ligands remain protonated upon binding.

A closer examination of the crystal structure disclosed a buried lysine side

chain (K163) close to the bound ligand (Figure 4.3), which prompts a possibility of

deprotonated bound state for the ligand phenol group. The electrostatic potential
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∆∆Gbinding (kcal/mol) TCS PP CPP FPP

TCS — 6.6 -1.1 3.6

PP — -7.7 -3.0

CPP — 4.7

FPP —

Table 4.2: Binding free energy differences measured in experiments, calculated by
subtracting row from column.

of the ternary complex while K163 is charged was calculated with Delphi and visu-

alized on the molecular surface (Figure 4.9), which reveals a large electro-positive

surface next to the bound triclosan created by K163. Several attempts were made

to calculate the effective pKa of the ligand, K163, and Y156 within the context of the

protein by solving Poisson-Boltzmann equation. However, they were not very suc-

cessful due to the extreme sensitivity of the calculated pKa to the local hydrogen

bond network. pKa calculation was then forfeited and perturbations that involved

the deprotonation state of the ligands were pursued, as shown in the right part of

Figure 4.8.

Before the discussion of the perturbation results, it should be noted that the MD

simulation of the monomer complex with the deprotonated triclosan (dTCS) was

again unstable after a few nanoseconds.

Once the deprotonated state were included in the perturbation, large free en-

ergy difference started to emerge. The perturbations represented by the horizontal

arrows correspond to the difference between deprotonating ligand in protein and

solvent, which is equivalent to relative pKa calculation (∆pKa,protein−solvent). The

pure electrostatic nature of this change makes the calculations difficult to converge

over the period of 100ps, therefore not very trustworthy. The perturbations be-

tween deprotonated ligands are somewhat promising, although the error in the

sum of the closed circle appeared to be bigger (-1.2 kcal/mol). The calculated

binding affinity difference agreed rather well to the experimental ones except three
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Figure 4.9: The molecular surface colored by the calculated electrostatic potential
(negative, red; positive, blue)
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kcal/mol BOND ANGLE 1-4 NB 1-4 EEL VDW EELEC total

TCS→CPP -2.0 0 -0.2 0.0 0.5 0.1 -1.5

PP→CPP 0.3 0 0.0 -0.4 -1.9 0.0 -1.9

PP→FPP 0.0 0.0 0.0 0.1 -0.7 -0.3 -0.9

dTCS→dCPP -0.4 0.0 -0.1 0.1 2.6 1.4 3.6

dPP→dCPP -0.2 0.0 0.0 0.0 -2.3 -0.3 -2.9

dPP→dFPP -1.4 0.0 0.0 0.0 -0.8 -0.3 -2.5

Table 4.3: Individual contributions from bond energy (BOND), bond angle en-
ergy (ANGLE), 1-4 non-bond interactions (1-4 NB), 1-4 electrostatic interactions
(1-4 EEL), van der Waals (VDW), electrostatic interactions (EELEC).

perturbations that dCPP were involved.

This partial discrepancy or agreements raised the question on the reliability of

both theoretical calculations, which were based on the assumption that all ligands

bind similarly as triclosan, and the experiments, particularly the binding affinity

of CPP. The binding affinities in Table 4.1 suggest that B ring is of little significance

to the binding, removing two chlorine groups (TCS vs. CPP) slightly enhances

the binding, but A ring is extremely sensitive to modifications. However, this was

opposite to the calculation results, two B ring chlorine groups contributing 3.6

kcal/mol to the binding, 75% of which is from van der Waals contact lost (Table

4.3). Modifying A ring definitely affects the binding as shown in the perturbations

from dPP to dFPP or dCPP, but not as much as what experiments had measured

in PP→CPP case. The solution to this discrepancy and the final converging ex-

planation of FabI inhibition will be found, but perhaps require longer free energy

calculation and re-examination of experiment measurements.

4.5 Conclusions

As a preliminary investigation of InhA inhibition studies and inhibitor design, the

relative binding affinities of four ligands against FabI were studied by molecular
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dynamics and free energy calculation approaches using a simplified model system,

in which important insights of the binding nature were obtained. MD simulations

of FabI monomer and tetramer provide indirect evidence that the tetramer interac-

tions and ligand binding may be related to the binding. In FabI:NAD+:TCS com-

plex, residue 197–217 becomes ordered upon binding, however, the corresponding

region in InhA tertiary complex is disordered6, giving poor electron density. If this

is proved, it may be the key to the success of inhibitor design, nevertheless, it does

greatly increases the difficulty of the design.

The simplified model system appears to be a reasonable approximation and

can be used in the binding study without too much compromise of the reliabil-

ity. Although the free energy calculations conducted using this model system did

not completely reproduce the relative binding affinities of all four ligands, they

did provide strong indication that the protonation state of the ligand play a very

important role in the ligand/protein interactions. Deprotonated ligands can be

formed with little cost under the condition (pH = 8) that binding assays are con-

ducted. Surprisingly, van der Waals makes the largest contribution to the binding

free energy difference in most of the cases, not electrostatics. Instead, electrostatic

interactions might provide important steering guidance for the access of ligands to

the binding site.

6TCS is only a micromolar inhibitor for InhA.

135



Final Remarks

Heterogeneity in biomolecular systems remains a real challenge to both compu-

tational and experimental biophysicists.To address this heterogeneity needs the

joint efforts from both sides. Computational approaches based on physical mod-

els potentially should be able to predict quantitatively both thermodynamics and

kinetics, however, this power is often weakened by the quality of available models

and statistics, which is limited by computational resources. Therefore, a significant

amount of time in the current computational biophysics research is being spent on

sophisticating physical models and improving sampling efficiency.

In the first study, the conformational heterogeneity of the pyrene-modified

DNA duplex was resolved because of the better statistics obtained from the locally

enhanced sampling technique. However, the kinetic feature of the transition be-

tween anti and syn conformers is still inaccessible to direct simulations with atomic

detail.

In the second study, the kinetic heterogeneity of a model peptide folding pro-

cess was addressed to the best that can be done with the current state-of-the-

art simulation techniques, i.e., ensemble folding simulation, continuum solvent

model, and the replica exchange method. As a fairly realistic example for protein

folding, it described a generic scenario that could occur to any polyaminoacid of

arbitrary sequence.

The successful explanation of the folding mechanism above can be attributed to
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the small size of the peptide and the accessible timescales of the transition. When

the timescale of a process far exceeds the limit of computer simulations, kinetics

modeling becomes infeasible, which is the case of the first study. Models with low

resolution, such as bead model, may prove to be more suitable and successful than

the all-atomic models.

Finally, the relative FabI binding affinities of triclosan analogs were calculated

by the rigorous free energy technique, but with approximations. Once again, quan-

titative match with experimental results is still the ultimate challenge. Not only

good statistics but also accurate physical and chemical models are critical, which

will continue to trouble computational biophysicists for some time.
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