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Abstract of the Dissertation 
 

Study of Biologically Relevant Phenomena Using Small Peptide Models 

by 

Daniel Robinson Roe 

Doctor of Philosophy 

in 

Chemistry 

Stony Brook University 

2007 

Understanding protein structure and dynamics is a central and important problem 
in structural biology.  Small model peptides are useful for studying this problem as they 
reduce the complexity involved in studying the folding of larger proteins while providing 
important insights into the formation of protein secondary structure. The small size of 
model peptides makes them particularly amenable to study by molecular dynamics (MD) 
simulations, which can provide atomic-level detail of peptide dynamics. When this data is 
used in conjunction with that from experiment it can be used to explain certain 
experimental results, or make predictions that can then be tested by experiment.  
Agreement with experimental results is an important benchmark for the validation of 
simulation results. 

One major problem in comparing MD simulations with experiment is that of 
convergence – the timescales available to MD simulations are typically orders of 
magnitude shorter than experimental timescales. Enhanced sampling techniques such as 
Replica Exchange Molecular Dynamics (REMD) can be used to improve convergence of 
simulations. Further improvements in sampling can be achieved through the use of 
implicit solvent models, which increase sampling by reducing solvent friction and 
improving the sampling of solvent configurations. However, it is extremely important to 
gauge the accuracy of implicit solvent models due to the ir approximate nature.  

The work presented in this thesis is concerned with the study of various aspects of 
the protein folding problem via MD simulation methods, as well as the validation of such 
methods against experiment. The folding and unfolding kinetics of a model ß-hairpin are 
studied in detail via MD simulations, and compared to thermodynamic data obtained 
from REMD simulations. Folding is found to be kinetically partitioned into a fast and a 
slow phase, with the fast phase corresponding to a direct transition from the unfolded 
state to the folded state, and the slow phase corresponding to a transition from misfolded 
to unfolded structures.  

The cooperativity of individual hairpin formation in a model 3-stranded ß-sheet 
was also studied via REMD simulations, and it was found that the actual cooperativity 
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was significantly larger than the previously estimated lower limit. Mutations were then 
made that affected the stability of the component hairpins of this ß-sheet, and a Ser to Val 
mutation was found that significantly stabilized the overall sheet from elimination of a 
non-native hydrogen bond that led to destabilization of the native structure. 

Finally, the accuracy of several generalized Born (GB) implicit solvent models 
was studied via REMD simulations of a small polyalanine peptide. The GB solvent 
models were found to give incorrect secondary structure populations compared to 
simulations with explicit solvent and experimental results. This discrepancy in secondary 
structure was found to be related to incorrect estimation of the solvation free energy gap 
between conformations of the polyalanine peptide by these GB models. However, an 
implicit solvent model based on the Poisson Equation (PE) was found to give better 
results. Attempts to improve the accuracy of the GB models by fitting to PE were not 
successful, indicating there may be limitations to the improvement of current GB models.  



 
 
 
 
 
 
 
 
 
 
 

Dedicated to the memory of my father, Gelston Grady Roe,  
who taught me the importance of both knowing and understanding,  
gave me courage, and showed me the true meaning of perseverance. 
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Chapter 1  
Introduction 
 

1.1 Structural Biology and the Study of Proteins 
Biology, simply defined, is the study of life. Although this is the direct meaning of 

the word, this belies the underlying complexity that such a study entails. It can be a 
simple thing to look at another organism such as an animal, plant, or an insect, and say 
that it is alive – but what are the underlying mechanisms and processes that sustain life? 
A simple analogy for an organism is an automobile. It is a simple thing to look at an 
automobile and say if it’s running or not, but knowing what makes it run requires opening 
the hood and examining the various components that make the vehicle run: the engine, 
brakes, transmission, and so on. Similarly, an understanding of what makes an organism 
‘run’ requires examining its components as well: the various organs and tissues, and the 
multitude of cells and biomolecules that they are composed of. Structural biology is 
concerned with the study of life at this level of detail; examining the numerous 
interactions between these components that compose a living organism in order to better 
understand the overall function of the organism.  

One of these components that are essential to life as we know it is a class of 
biomolecules called proteins. The word protein is derived from the Greek proteios, 
meaning ‘of first importance’, and indeed proteins play a central role in many important 
biological processes. They function as enzymes, as structural components, and as means 
of transporting other molecules. They are also important in cellular signaling 
mechanisms, immune response, cell division, and a large variety of other processes 
essential to life[1].  

Much as the study of the parts of a car engine allows one to comprehend how it 
runs, the study of proteins allow a more complete understanding of how the various 
processes in which they are involved in work in detail. Most proteins have a well-defined 
three-dimensional structure which largely determines the properties of the protein. 
However, unlike the various parts of a car engine, proteins are not static entities; they are 
dynamic molecules, and changes in this structure can and do occur. Proteins can be 
unfolded (denatured) and refolded, and in some cases even folded to an incorrect 
structure (misfolded). Both the structure and folding behavior of a protein can also be 
influenced by the surrounding environment: solvent, presence of ions, pH, and so on. 

Understanding the structure of a protein and how it folds and unfolds can help 
explain the details of how that protein functions, which may then be used to make certain 
predictions about the behavior of that protein (such as, for example, what conditions may 
cause it to cease functioning properly). The work presented in this thesis is concerned 
with understanding the underlying forces which influence protein folding and stability.  
 

1.1.1 Protein Structure and Stability 
Proteins are composed of a linear sequence of molecular units called amino acids. 

The basic structure of an amino acid can be divided into two components. The first 
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component, the backbone, is common to every amino acid. It is composed of an amide 
and a carbonyl group flanking a central carbon, called the a-carbon. In a protein, amino 
acids are typically linked to each other through their amide and/or carbonyl groups. The 
second component, the sidechain, is what uniquely identifies an amino acid. The 
sidechain is connected to the a-carbon and determines the properties of the amino acid. 
There are 20 standard amino acids that compose the majority of all proteins.  

Proteins contain three basic levels of structure: primary, secondary, and tertiary. 
The primary structure of a protein is simply its amino acid sequence. Secondary structure 
refers to common structural motifs that certain sequences of amino acids in a protein can 
adopt. Examples of this are the a-helix, the ß-hairpin, the ß-sheet, and reverse-turns. A 
typical protein is composed of numerous combinations of regions of secondary structure. 
Tertiary structure refers to how the various units of secondary structure relate to each 
other and form the overall fold of the protein. Examples of primary, secondary, and 
tertiary structure are given in Figure 1-1. 

There are a variety of factors that influence the stability of proteins. The types of 
secondary structure that a given amino acid sequence can adopt are influenced by steric 
constraints imposed by the individual side-chains. Once formed, secondary structure is 
largely stabilized by hydrogen bonds that occur between the amide and carbonyl groups 
of the amino-acid backbone. Tertiary structure can be stabilized by ionic or hydrophobic 
interactions between side-chains. In fact, the hydrophobic effect (characterized by the 
burying of non-polar side-chains when in a polar solvent, i.e. water) is proposed to be one 
of the main forces that stabilize proteins[2]. 
 

 
Figure 1-1. Primary, secondary, and tertiary structure in proteins. An amino acid sequence is shown 
as an example of primary structure, along with the backbone of an amino acid in a ball-and-stick 
representation with the side -chain omitted for clarity. Amino acids are linked through their N- and 
C- termini and can form regular secondary structure. An example of a-helical structure is shown 
here; the backbone is shown in Cartoon representation, the side-chains are shown in Licorice 
representation with hydrogen atoms omitted for clarity. The structure of HIV-1 Protease (PDB ID 
1HVR) is shown as an example of tertiary structure. The entire protein is shown in Cartoon 
representation, colored by secondary structure type. Picture generated with VMD 1.8.4[3]. 
 

In vivo, proteins typically fold into a more or less well-defined three-dimensional 
structure. In 1950 Linus Pauling and Robert Corey proposed the structure of an a-helix 
based on possible hydrogen bonding patterns of amino acids[4], and later proposed the ß-
sheet in 1951[5]. This was followed by the first full three-dimensional structure 
determination of the protein myoglobin, by John Kendrew et al.[6]. In 1973 Anfinsen 
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reported that bovine pancreatic ribonuclease, although non-functional when denatured 
with urea, was able to regain its functionality when the denaturing conditions were 
removed[7]. This indicated that the primary structure of a protein was implicitly related 
to its secondary and tertiary structure, i.e. all the information for the folding of a protein 
to its native structure is contained in its amino acid sequence. 
 

1.1.2 Protein Folding 
Understanding just how a protein folds into its final structure is one of the most 

important problems in structural biology. One of the main reasons for this is that protein 
folding is linked to protein function – an incorrect fold can result in malfunction or non-
function of the protein. In fact, protein misfolding is implicated in many diseases[8], 
including Alzheimers and Parkinson’s disease[9]. In addition to folding from the 
denatured state, understanding the dynamics of the folded protein itself can also be 
important for understanding how proteins interact with one another (such as 
conformational changes that can accompany the process of signaling[10]), or how certain 
drugs might interact with a target protein[11].  

It was recognized and stated by Levinthal[12] that proteins could not arrive at their 
native structure from a completely random search, as this would take an astronomical 
amount of time due to the number of conformational degrees of freedom in a typical 
protein, and proteins are known to fold on the order of µs to seconds[13]. Levinthal 
concluded there must be certain pathways that would guide protein folding. This idea was 
later restated in terms of the free energy landscape of a protein being funnel-shaped[14]. 
In these terms, the energy ga ined during folding is represented by the depth of the funnel, 
and the number of states available at a given energy (i.e. entropy) is represented by the 
width of the funnel. Folding is then ‘downhill’, with losses in entropy compensated by 
favorable gains in energy. 

A concept important to protein folding is that of cooperativity. A process can be 
thought of as cooperative if the next step in that process is easier than the previous step. 
Cooperativity can be seen at the level of tertiary structure in proteins; partially folded 
structures are usually less stable than the folded or denatured states[15]. Cooperativity is 
also present at the level of protein secondary structure. For example, a long a-helical 
segment is more stable than shorter a-helical fragments of total equivalent length[16]. 
The concept of cooperativity is explored further in Chapter 3. 
 

1.1.3 Experimental Study of Proteins 
Over the past century, a variety of tools and methods have become available to 

research the problems of protein structure and folding (for a brief review, see reference 
[17]). One method used to obtain protein structures is X-ray crystallography. In this 
method, crystals containing the protein of interest are grown and exposed to X-rays. The 
protein’s structure can then be determined from the diffraction pattern of the X-rays. This 
method is capable of obtaining high resolution structures (around ~1 Å in the best cases), 
and is the most commonly used for protein structure determination (as of early 2007 
~85% of structures in the RCSB Protein Data Bank are from X-ray crystallography[18]). 
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 However, there are several drawbacks to this method. It can be very difficult to 
obtain a crystal of the desired protein – in some cases mutations to the protein must be 
made in order to get it to crystallize properly. Also, since the protein must be 
immobilized within a crystal lattice, there is no information about the dynamics of the 
protein in solution, although there is some information regarding the flexibility of the 
crystallized conformation of the protein. In addition there is sometimes the question of 
whether the conditions under which the protein crystal was obtained has altered the 
conformation of the protein[19].  

Another method commonly used to study proteins is nuclear magnetic resonance 
(NMR) spectroscopy. In this method, a sample of a protein is placed within a strong 
magnetic field. The nuclei of certain atoms in the protein can then be made to resonate 
after an applied pulse of electromagnetic radiation. The nuclei give off a characteristic 
signal that depends on their surrounding environment, which is called the chemical shift. 
This signal is also proportional to the number of nuclei present. Interactions between 
various nuclei from spin-spin coupling can result in further modifications of the signal. 
The chemical shift and spin-spin coupling result in a spectrum that is more or less unique 
for a molecule. This is especially useful for proteins, as it can distinguish between 
different conformations.  

One major advantage of NMR over X-ray crystallography is that the protein can be 
observed in an aqueous environment which is close to what the protein actually 
experiences in vivo. In addition, since the protein is not bound by a crystal lattice and is 
able to move freely, information on the conformational dynamics of the protein can be 
obtained. For example, changes in conformation as a function of temperature change can 
be followed. The main disadvantage of NMR is in sample size; the larger the protein, the 
more overlap there is from a multitude of signals and the less one is  able  to assign 
portions of the NMR spectra to individual groups or atoms.  

Circular dichroism (CD) is often used to measure secondary structure content in 
proteins based on absorption of circularly polarized light. Different secondary structure 
types, such as a-helices and ß-sheets for example, give rise to different signals, with the 
amplitude of the signal related to how much of the conformation is present. As in NMR 
spectroscopy, proteins can be studied in solution with CD, allowing changes in protein 
conformation to be studied as well. The main limitation of CD is that it can only give an 
overview of secondary structure, and not specifically where the secondary structure 
occurs in the protein. 

Proteins which contain aromatic residues such as tryptophan can also be studied 
using UV fluorescence. Briefly, fluorescence is the process by which a photon of light is 
absorbed by a molecule, causing electronic excitation. Relaxation of the molecule to the 
ground state is accompanied by the emission of radiation, which can be detected. This 
technique is sensitive to the environment that a given residue is in; if the residue is 
solvent exposed, fluorescence will be relatively high, but if that residue becomes buried 
in the protein the fluorescence will be ‘quenched’. The simplest application of this 
method is in proteins containing only one fluorophore, since there are complex electronic 
effects when multiple fluorophores are present.  
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1.2 Molecular Dynamics Simulations 
Another method that has the potential to provide information on protein structure 

and folding that is complementary to that obtainable by experiment is computational 
simulation. In this theory-based method, a model of the given system and all the 
interactions contained within is created, and an attempt is made to predict certain 
properties of the system. One of the most popular computational methods is molecular 
dynamics (MD) simulation. Since the first MD simulation of 216 molecules of liquid 
water was performed by Stillinger and Rahman[20], and the first MD simulation of a 
protein soon after[21], MD simulation has become an important field of research (see 
Figure 1-2). Recent advances in MD simulation methods and computing power have 
further enhanced their reliability and utility (for a brief review, see reference [22]). 
 

 
Figure 1-2. Number of articles with the topic “Molecular Dynamics” published per year, based on a 
search using ISI Web of Knowledge. 
 

1.2.1 Basics of MD Simulation 
In the most basic sense, MD simulation is the attempt to predict how a molecule 

will move over time by calculating the forces on the molecule derived from a specific 
representation of the molecular energy. Ideally, when running an MD simulation of a 
given protein the representation of that protein should be as complete and accurate as 
possible. In the most extreme case, this would mean having a quantum mechanical 
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representation of all atoms and electrons. Unfortunately this is not possible – due to the 
complexity of such calculations a complete quantum representation has only ever been 
given for a hydrogen atom. Larger systems can be solved for by use of some 
approximations, such as the Born-Oppenheiemer approximation[23]. Although recently 
there have been advances in quantum dynamics simulation[24], quantum calculations 
themselves are quite time-consuming. Because of this, most MD remains non-quantum; 
that is to say, uses the classic laws of physics. Atoms are represented as spheres with a 
certain mass and radius, and their electrons are represented as point charges which are 
obtained from quantum calculations[25]. 

In MD simulations, the energy of a given configuration of atoms is described by a 
force field. The force field contains terms that represent all the various interactions in the 
system. The precise form of the force field can vary, but for protein simulations force 
fields will usually contain terms that describe bond bending and stretching, torsion angle 
rotation, and non-bonded interactions (van der Waals and Coulombic interactions). A 
simple example of a force field is shown in Equation 1-1. Once the energy of a molecule 
at a certain point in time is known, the forces on the molecule can be calculated and the 
future positions of the atoms in the protein can be predicted using Newton’s second law 
of motion. While a full description of the detailed mechanics of MD simulations is 
outside the scope of this work, further details can be found in reference [23].  
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Equation 1-1. Example of a force field equation for use in MD simulations. U is the potential energy, 
XN represents the coordinates of N atoms, the bond and angle terms are given by a simple harmonic 
potential, the torsions are represented by a periodic term with a certain number of wells, and the 
non-bonded interactions are represented by a Lennard-Jones 6-12 potential and a Coulombic term.  
 

1.2.2 MD Simulations in Structural Biology 
MD simulations can be very useful in not only obtaining data complementary to 

experiment, but also in obtaining data that can be difficult to obtain from experiments. 
One of the potential uses of MD simulations is the prediction of protein structure from an 
amino acid sequence. Theoretical prediction of protein structure is especially attractive in 
the case where the structure of a protein can be difficult to obtain by experimental 
methods (such as membrane proteins for example [26]). Anfinsen’s discovery that the fold 
of a protein was linked to its amino acid sequence[7] implies that the three dimensional 
structure of a protein can be predicted. This has recently been demonstrated by 
Simmerling et al., who in 2002 predicted the correct structure of the 20 residue Trp-cage 
mini-protein[27], which was later confirmed by experiment. However, all-atom structure 
prediction remains a challenge for larger peptide systems. 

One advantage of MD simulation over experimental methods is it allows 
observation of a single molecule. In typical experiments large numbers of molecules are 
present, and so only the average behavior of the ensemble is observed (although there 
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have been advances in single molecule experiments, see [28]). MD simulations also have 
the advantage that molecules can be followed with atomic- level detail. While the 
resolution of experimental methods can be quite good, it is often the case that certain 
portions of the molecule cannot be resolved through experimental methods (for example, 
highly mobile loop regions in X-ray crystal structures). In fact, MD simulation techniques 
are used in refinement of structures obtained from experiment [29]. MD can also be used 
to explain discrepancies in protein structures obtained with different experimental 
methods[30].  

MD can also be used for the fast screening of potential drugs that may bind to a 
protein target[31]. Processes that can be difficult to observe experimentally, such as the 
motion of individual ions through ion channels in cell membranes, can be studied in 
detail via MD simulation[32]. MD simulation also permits direct manipulation of 
physical parameters in order to gain insight into various phenomena, such as the 
adjustment of Van der waals interactions between solute and solvent to study the concept 
of hydrophobicity[33]. 
 

1.2.3 Sampling in MD Simulations 
One major problem in obtaining thermodynamically relevant information on a 

system with MD simulations is that of sampling. Arguably the most accurate MD 
simulations are those in which all atoms are represented. Using such a representation, a 
system with N atoms would require N2 calculations to be performed at each step of the 
simulation. For a relatively small (76 residue) protein like Ubiquitin (PDB ID 1UBQ) that 
has approximately 600 atoms, this means roughly 360,000 calculations each step. The 
number of calculations grows rapidly prohibitive as the number of atoms increases, 
especially if solvent atoms are explicitly represented. Because of this, all-atom 
simulations of even small proteins in explicit solvent have only currently reached into the 
µs range[34], which is only around the timescale of folding of small proteins[13]. Two 
methods commonly employed to increase sampling in MD simulations are the replica 
exchange method and the use of continuum solvation.  
 

1.2.3.1 Replica Exchange Molecular Dynamics 
The problem of adequate sampling in MD simulations can be at least partially 

addressed through the use of enhanced sampling techniques such as parallel 
tempering[35] or replica exchange molecular dynamics (REMD)[36]. The work 
presented in this thesis makes extensive use of REMD to obtain well-converged 
ensembles of structures, which is required for calculation of thermodynamically relevant 
information such as free energy. REMD involves N non- interacting MD simulations of 
the desired system, each at a different temperature. Exchanges between the structures of 
neighboring replicas are attempted periodically and accepted with probability shown in 
Equation 1-2. As defined here, REMD allows the structure to make a random walk in 
temperature space. The main advantage to REMD is that it allows structures that may be 
kinetically trapped at low temperature to overcome potential energy barriers by 
exchanging to a higher temperature. 
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The temperature distribution of the replicas should be chosen so that 1) there is 
sufficient overlap between the potential energy distributions of neighboring replicas to 
ensure exchanges occur and 2) the highest temperature allows the structure to overcome 
any potential energy barriers in a reasonable amount of time. For some discussion on the 
selection of an optimal temperature distribution for replica exchange, see references [37] 
and [38]. 
 

( ) ( )( )[ ]{ }01101100 exp,1min,, EEEEp −−−=→ ββββ  
Equation 1-2. Probability of accepting an exchange between neighboring replicas. E is potential 
energy, and ß = (kBT)-1, where kB is Boltzmann’s constant and T is temperature. 
 

Although the superior convergence of REMD over standard MD has been 
demonstrated for small peptides[39], there are still several issues that must be kept in 
minds when running REMD simulations. One important consideration is that although 
REMD is an enhanced sampling method, this in and of itself does not guarantee 
converged data. The default exchange criterion assumes Boltzmann-weighted ensembles, 
and this is generally not true at the beginning of a REMD simulation. A consequence of 
this is that until all replicas are converged, none are converged. Because of this, the best 
guarantee of convergence is still comparison of various order parameters obtained from 2 
or more independent simulations; all work presented in this thesis using REMD uses this 
criteria for convergence.  
 

1.2.3.2 Continuum Solvent Models 
Another approach commonly used to address the problem of sampling in MD 

simulations is the use of continuum solvent models. An accurate description of the 
solvent surrounding a protein is essential in order to correctly describe its behavior. This 
can be done in a straightforward manner by explicitly including all solvent atoms as part 
of the system. However, this greatly increases the number of degrees of freedom 
available to the system, and obtaining relevant thermodynamic data requires sampling 
over these degrees of freedom. In a continuum solvent model there is no need to 
explicitly include solvent atoms – all solvent degrees of freedom are accounted for 
implicitly. While this can greatly enhance sampling in MD simulations, care must be 
taken to ensure that solvent effects are still accurately accounted for. This topic is 
covered in much more detail in Chapter 5. 
 

1.3 Model Systems 
Since the protein folding problem is quite complex, it is often desirable to study it 

on a simpler level. It has long been recognized that proteins contain a large amount of 
regular secondary structure in the form of a-helices and ß-sheets. Current theories of 
protein folding consider the formation of secondary structural elements as an important 
first step in the protein folding process[40-42]. Model peptides can be used to study the 
properties of these basic units of secondary structure and so provide insight into early 
stages of protein folding[43]. For example, several ß-hairpin peptide models have been 
used to explore various aspects of hairpin formation (for a review, see reference [44]).  
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An ideal model peptide is one that is small, but still exhibits properties of larger 
proteins such as secondary structure formation, tertiary structure formation, folding 
cooperativity, and so on. Model peptides generally fall into two categories: peptides that 
are derived from a larger, naturally occurring protein, and peptides that have been 
designed. Derived peptides have the advantage that they are ‘all natural’, and therefore 
probably are good models for actual folding events. One example is the N-terminal 
domain of ribosomal protein L9, which has been studied as a model of specific 
interactions in the denatured state of proteins [45]. Another example is the Trp-cage 
miniprotein, which is often studied via MD simulation since it is fast to fold and the 
smallest peptide (only 20 residues) that exhibits both secondary and tertiary structure[46]. 

Derived model peptides are not always available to study certain problems. In these 
cases it may be possible to design an appropriate model peptide. It is even possible to 
make use of unnatural amino acids to facilitate study of a given problem. For example, 
Schenck & Gellman designed DPDP, a 20-residue model ß-sheet peptide, to study 
cooperativity in ß-sheet formation. This peptide makes use of two unnatural amino acids 
(D-Proline) in the turn regions; replacement of these with L-Proline residues effectively 
‘turns off’ hairpin formation. Designed peptides are also a useful benchmark for gauging 
current knowledge of the underlying forces which drive and stabilize protein folding and 
structure. For example, the very stable trpzip4 peptide was designed by replacing certain 
residues of the ß-hairpin fragment of protein G with tryptophan, creating a stronger 
hydrophobic core[47]. 

Since large protein systems can be costly to simulate, the small size of model 
peptide makes them ideal systems for study by MD simulations. For some examples of 
model peptides used to study protein folding via MD simulations, see reference [43]. The 
work presented in this thesis focuses on using model peptides to study protein folding, 
cooperativity, stability, and solvation. 

 
 

1.4 Outline of Research Projects 
The research outlined below is focused on the study of four topics relevant to 

protein folding and stability via MD simulations of model peptides. Chapter 2 covers the 
study of protein folding and unfolding pathways using the 12 residue ß-hairpin model 
Trpzip2. Chapter 3 and Chapter 4 cover the study of both cooperativity in folding and 
individual hairpin stability in the 20 residue 3-stranded ß-sheet model DPDP. Finally, 
Chapter 5 covers the study and comparison of various models for aqueous solvation using 
a 10 residue polyalanine peptide. The work in Chapter 3 and Chapter 5 has been 
published as references [48] and [49] respectively. 
 

1.4.1 Folding and Unfolding Pathways Characterized in a Model ß-
hairpin 
Understanding how proteins fold to a well defined structure is a complex problem 

of great interest. The folding and unfolding behavior of a small ß-hairpin model peptide 
was studied via converged REMD simulations and MD simulations. Folding and 
unfolding kinetics were studied using non-equilibrium temperature jump simulations, and 
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results were validated against free energy data obtained from REMD simulations. The 
unfolded state is observed to have a high tendency to sample a ß-turn, along with non-
specific hydrophobic contacts. Folding involves an increased specificity of these contacts 
and formation of native backbone hydrogen bonds, with both events occurring at the 
folding free energy barrier. While unfolding data can be fit to a single exponential 
implying a 2-state process, folding data requires a double exponential fit, suggesting the 
presence of kinetic partitioning. Further analysis reveals that folding involves a fast phase 
which involves direct transition to the native state, and a slow phase involving kinetic 
trapping in misfolded conformations. These same misfolded conformations are shown to 
be part of the free energy landscape obtained from REMD simulations. The combined 
kinetic and thermodynamic data describe a process of folding that is much more complex 
than the simple 2-state process typically ascribed to small systems.  
 

1.4.2 Measurement of Folding Cooperativity between Two Hairpins of 
a 3-stranded ß-sheet 
Cooperativity in ß-sheet formation is a problem of particular interest since certain 

diseases related to protein misfolding involve the formation of ß-sheet- like structures. 
The thermodynamic behavior of a previously designed three-stranded ß-sheet was studied 
via several µs of REMD simulations. The system is shown to populate at least four 
thermodynamic minima, including 2 partially folded states in which one hairpin is 
formed and the other hairpin is absent. Simulated melting curves show different profiles 
for the C and N-terminal hairpins, consistent with differences in secondary structure 
content in published NMR and CD/FTIR measurements, which probed different regions 
of the chain. Individual ß-hairpins that comprise the 3-stranded ß-sheet are observed to 
form cooperatively. Partial folding cooperativity between the component hairpins is 
observed, and good agreement between calculated and experimental values quantifying 
this cooperativity is obtained when similar analysis techniques are used. However, the 
structural detail in the ensemble of conformations sampled in the simulations permits a 
more direct analysis of this cooperatively than has been performed based on experimental 
data. The results indicate the actual folding cooperativity perpendicular to strand 
direction is significantly larger than the lower bound obtained previously. 
 

1.4.3 Mutations Affecting Individual Hairpin Stability in a 3-stranded 
ß-sheet 
Since certain diseases related to protein misfolding involve the formation of ß-

sheet- like structures, it is important to understand the forces which stabilize ß-sheets and 
enhance sheet formation. In a previous study of a 3-stranded ß-sheet model peptide, the 
stability of the C-terminal hairpin was found to be significantly greater than the N-
terminal hairpin. Based on observations of the hairpins from experiment and 
computational simulations, several mutants were simulated in an attempt to understand 
the underlying causes for the difference in hairpin stability. Mutation of a Tyr residue 
central to a hydrophobic cluster to a Thr was found to be destabilizing, but a Tyr to Val 
mutation was not, underlying the importance of a hydrophobic core. The addition of a 
salt-bridge to the N-terminal hairpin was found to have a negligible affect on stability. 
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Moving a Phe residue to the central strand of DPDP was found to be stabilizing through 
formation of a second  hydrophobic core and stabilization of the first hairpin. A Ser to Val 
mutation near the turn region of the first hairpin was found to be even more stabilizing 
and significantly improved the stability of the N-terminal hairpin through elimination of 
an unfolding intermediate structure. However, a mutant combining both the Phe and Ser 
to Val mutations was found to have stability that was only in between the two mutants by 
themselves, indicating these mutations compete somehow. The results suggest that turn 
optimization is central to improving overall hairpin stability. 
 

1.4.4 Evaluation of Implicit Solvent Model Accuracy via Detailed Free 
Energy Calculations 

Computational simulations routinely make use of implicit solvent models. However, 
the accuracy of these models compared to explicit solvation is unclear. The effects of the 
use of three generalized Born (GB) implicit solvent models on the thermodynamics of a 
simple polyalanine peptide are studied via comparing several hundred ns of well-
converged replica exchange molecular dynamics (REMD) simulations using explicit 
TIP3P solvent to REMD simulations with the GB solvent models. It is found that when 
compared to REMD simulations using TIP3P, the GB REMD simulations contain 
significant differences in secondary structure populations; most notably an over-
abundance of a-helical secondary structure. This discrepancy is explored via comparison 
of the differences in the electrostatic component of the free energy of solvation (??GPol) 
between TIP3P (via Thermodynamic Integration calculations), the GB models, and an 
implicit solvent model based on the Poisson Equation (PE). The electrostatic component 
of the solvation free energies are calculated using each solvent model for four 
representative conformations of Ala10. Since PE is found to have the best performance 
with respect to reproducing TIP3P ??GPol values, effective Born radii from the GB 
models are compared to effective Born radii calculated with PE (so-called perfect radii), 
and significant and numerous deviations in GB radii from perfect radii are found in all 
GB models. The effect of these deviations on the solvation free energy is discussed, and 
it is shown that even when perfect radii are used the agreement of GB with TIP3P 
??GPol values does not improve. This suggests a limit to the optimization of the 
effective Born radius calculation, and that future efforts to improve the accuracy of GB 
must extend beyond such optimizations. It also suggests that simulations with GB models 
will not be able to produce quantitative results without further optimization, although 
qualitative results may still be obtained. 
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Chapter 2  
A Study of Folding and Unfolding Pathways of a Model 
ß-hairpin 
 

2.1 Introduction 
An important aspect of the protein folding problem lies in understanding the 

process by which proteins locate their native conformations from the vast available phase 
space. Small model peptides can provide insight into the dynamics of basic units of 
secondary structure such as a-helices and ß-sheets, the formation of which is thought to 
be important in the overall folding process[43]. The study of ß-hairpin and related ß-sheet 
structure is particularly interesting as the formation and aggregation of such structure is 
thought to be characteristic of many diseases in which protein misfolding is 
implicated[9]. This study focuses on ß-hairpin secondary structure formation, 
characterization of the native and unfolded ensemble and the changes that occur through 
the folding transition.  

The results of previous computational studies of ß-hairpins have varied, and several 
folding mechanisms have been proposed. Bonvin et al. proposed a mechanism for the 
first ß-hairpin of tendamistat in which the turn is formed first, followed by hydrogen 
bond formation starting at the turn and subsequent stabilization by side-chain 
interactions[50]. The folding mechanism of the ß-hairpin fragment of protein G (GB1) 
proposed by Muñoz et al. also involves hydrogen bond formation initiating at the turn, 
then becoming stabilized by side-chain interactions[51]. Pande et al. proposed a slightly 
different mechanism for GB1 in which hydrophobic interactions between side-chains 
drive the strands together, after which the hydrogen bonds form to stabilize the 
structure[52]. Dinner et al. also proposed that folding was driven by hydrophobic 
collapse, after which hydrogen bonds propagate out from the hydrophobic core[53]. 
Klimov et al. proposed that following hydrophobic collapse, hydrogen bond formation 
proceeded rapidly from the turn, but this may depend on the position of the hydrophobic 
residues from the turn[54]. Zhou et al. proposed that hydrophobic collapse and hydrogen 
bond formation happen roughly at the same time[55]. In general, the difference in these 
mechanisms is the balance between hydrophobic collapse and hydrogen bond formation, 
and the order in which the hydrogen bonds form.  

In contrast to experiments, a major drawback to MD simulations is the difficulty in 
obtaining well-converged ensemble-averaged data. Direct observation of folding events 
in unrestrained simulations may not be possible on timescales accessible to the 
simulation. An alternate approach is to generate thermodynamic properties with enhanced 
sampling techniques such as REMD, at the cost of losing explicit time-dependent 
behavior (i.e. direct observation of folding events) in the process. Using simulations in 
which the folding process was not observed to describe folding events usually relies on 
interpretation of free energy barriers observed in a reduced dimensionality and/or along 
pre-determined order parameters. These may not accurately reflect the actual barriers or 
even the minima encountered during folding of individual members of the ensemble.  
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In this study, the thermodynamics and kinetics of the trpzip2 ß-hairpin model[56] 
are studied via a combination of well-converged REMD and non-equilibrium T-jump 
MD simulations respectively. A significant tendency to form the ß-turn is found in the 
unfolded ensemble, along with the formation of non-specific hydrophobic contacts. 
Folding involves an increase in contact specificity coincident with formation of native 
backbone, and unfolding generally reflects the reverse process with differences in the 
sequence of events. While a single exponential describes the unfolding process, the  
folding process is described by a double exponential which partitions the folding 
ensemble into a slow and fast phase. It is shown that the fast phase is comprised of 
structures which transition directly to the native state from the unfolded state, and the 
slow phase results from a transition from the unfolded state to a misfolded structure. 
These misfolded structures are also seen in the converged REMD simuatlions. Finally, it 
is demonstrated that although unfolding occurs with single exponential kinetics, separate 
pathways are observed in the unfolding process. 
 

2.2 Methods 
 

2.2.1 Model System and Order Parameters 
The model system chosen was the tryptophan zipper (trpzip) developed by 

Starovasnik et al.[56], shown in Figure 2-1. This ß-hairpin structural motif is stabilized 
through cross-strand tryptophan pairs. Trpzip2 (SWTWENGKWTWK, with a type I’ ß-
turn at NG) has the most cooperative melting curve and highest stability (~90% at 300K) 
among the trpzips; therefore, it was selected for use in this study. Thermodynamic 
properties for this peptide have been determined by NMR and CD spectroscopy, and a 
family of structures was refined using restraints from NMR experiments[56] (PDB code 
1LE1). The N-terminal of the peptide was acetylated and the C-terminal was amidated, in 
accordance with the experimental system[56].  

 In addition to RMSD from native structure, two other measures of structure were 
used in subsequent analysis. HBlost is defined as the number of native backbone 
hydrogen bonds lost. Native backbone hydrogen bonds were defined based on the PDB 
structure and were considered between E5O-K8H, K8O-E5H, T3O-T10H, T10O-T3H, 
and S1O-K12H (shown as orange, brown, gold, blue, and violet lines respectively in 
Figure 2-1). These hydrogen bonds are also referred to in the results as Top, TopMid, 
BotMid, Bottom, and Lowest respectively, reflecting their proximity to the reverse turn. 
A hydrogen bond was considered present if the distance between the amide hydrogen and 
carbonyl oxygen was less than 2.9 Å.  

The number of contacts between Trp side chains  was also calculated. All six 
possible pairs of Trp residues were considered in order to obtain a measure of non-
specific hydrophobic clustering; the two native pairs (W2-W11 and W4-W9, shown as 
black and cyan lines respectively in Figure 2-1) and four non-native pairs. A hydrophobic 
contact between the Trp residues was considered present if the distance between the 
center of mass of the Trp side-chains was less than 6.5 Å. 
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Figure 2-1. NMR-based conformation of trpzip2 (pdb code 1LE1). Side-chains are shown only for 
Trp residues. Native backbone hydrogen bonds and Trp packing contacts defined in the text are 
shown as color-coded lines, with the colors matching data curves for these contacts as shown in 
subsequent figures. The number of native backbone hydrogen bonds that are not present defines the 
“HBlost” order parameter. 
 

2.2.2 Temperature Jump Simulation Details 
To obtain the kinetics of trpzip2 folding/unfolding, simulations of an unfolded 

ensemble and a folded ensemble were subjected to simulations in which the temperature 
was instantaneously adjusted to the target temperature of 350 K (referred to hereafter as a 
T-jump simulation). All simulations were carried out using a locally modified version of 
Amber 6[57]. The systems were weakly coupled to an external bath[58] with a constant 
of 1.0 ps to maintain constant temperature. The SHAKE algorithm[59] was used to 
constrain all bond lengths, allowing a time step of 2.0 fs to be used. All non-bonded 
interactions were evaluated at each time step with no cut-offs. All simulations used the 
Generalized Born (GB) implicit solvent model[60] (igb = 1 in Amber), without additional 
friction terms. Although this lack of viscosity prevents direct comparison of simulated 
and experimental rate constants, conformational sampling is enhanced[61]. The force 
field used was ff94[62], with modifications made to reduce over-stabilization of a-helical 
conformations[63]. The total simulation time for folding and unfolding simulations was 
2.1 µs. 

Folding was studied using the following procedure. Non-native structures were 
generated as starting structures for the folding T-jump simulations from MD simulation at 
800 K. Forty-nine snapshots with proper stereochemistry and trans peptide bonds were 
chosen randomly. The backbone RMSD values of these structures to the native structure 
ranged from 2 to 8 Å. This ensemble of structures was subjected to a temperature jump 
by instantaneously changing the bath temperature to 350 K. First passage times were 
calculated as the time at which the instantaneous backbone RMSD for residues 2-11 fell 
below 0.6Å to ensure that the native basin was reached. After folding, the simulations 
were terminated. The fraction of structures that had not yet folded was then calculated as 
a function of time.  

Unfolding was studied using an analogous procedure. Initial structures for 53 
unfolding trajectories were obtained by assigning different initial velocities 
corresponding to a distribution at 350 K to the native conformation that had been 
previously equilibrated at 300 K. First passage times were identified when the RMSD 
rose above 3.0 Å to ensure complete unfolding of the structure. The fraction of structures 
that had not yet unfolded was then calculated as a function of time.  
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It is noted here that these simulations are not strictly temperature jump 
simulations in the sense that the entire ensemble is not allowed to relax to a new 
equilibrium position. However, the termination of each simulation after a folding or 
unfolding event does allow direct calculations of the folding rate without contribution 
from the unfolding rate and vice versa and also eliminates the excessive time it would 
require each ensemble to relax to equilibrium (up to 5 µs[64]).  
 

2.2.3 Replica Exchange Simulation Details 
Converged equilibrium data was obtained with Replica Exchange Molecular 

Dynamics (REMD) simulations performed with Amber 8[65]. For each REMD 
simulation, 14 replicas at temperatures ranging from 251.7 K to 554.7 K were used. Extra 
replicas were added around the experimental melting temperature of 345 K to ensure 
better sampling for generation of the melting curve. Exchanges between replicas were 
attempted every ps and coordinates of each replica were saved at every exchange. An 
exchange acceptance ratio of about 15% was achieved. Two independent REMD 
simulations were run; one with all replicas starting from the experimental native 
conformation, and the other with all replicas starting from an unfolded conformation. 
Each REMD simulation was run for about 85000 exchanges (for a total simulation time 
of 85 ns per replica). All other details of the REMD simulations were the same as the T-
jump MD simulations. 
 

2.2.4 Thermodynamic Analysis  
Data from the individual replicas in the REMD simulations were used to generate 

a melting curve for Trpzip2. Structures were classified as native when RMSD from the 
experimentally determined structure was under 1.7 Å (based on location of free energy 
barrier, see Figure 2-2). Fractions of folded and unfolded structures were calculated at 
each temperature below 373 K, and ?G was calculated assuming a two-state model of 
folding using Equation 2-1. These data were fit to the Gibbs-Helmholtz equation 
(Equation 2-2) to obtain values for melting temperature, enthalpy of melting, and heat 
capacity. 
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Equation 2-1. Gibbs free energy (?G) assuming a 2-state system. R and T are the gas constant and 
temperature respectively, and F is the fraction of folded structures. 
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Equation 2-2. Gibbs -Helmholtz equation. ?G is the free energy, ?Hm is the enthalpy of melting, T 
and Tm are the temperature and melting temperature respectively, and ?CP is the heat capacity at 
constant pressure. 
 

Free energies as a function of order parameters were obtained from histograms of 
converged REMD data; free energy values shown are relative to the most populated 
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histogram bin. Lower limits for uncertainties in thermodynamic values, melting curves, 
and contact fractions are reported as half the difference between the values obtained from 
each independent REMD simulation.  
 

2.3 Results  
 

2.3.1 Trpzip2 Thermodynamics: REMD simulations 
Before carrying out a detailed analysis on any system, it is important to validate 

the model by ensuring that the simulations reproduce the experimentally determined 
structure and stability. Figure 2-2 shows free energy of trpzip2 at 350 K as a function of 
backbone RMSD from the native structure. The free energy minimum at RMSD = 0.8 
corresponds to the native structure. The fraction of native structures based on an RMSD 
cutoff of 1.7 Å (location of the free energy barrier from native) is 0.40 ± 0.05, which 
seems reasonable given that this temperature is just 5 K over the experimentally 
determined melting temperature. The error bars, which are measured as half of the 
difference between values obtained with the separate REMD simulations, show that good 
convergence has been achieved; the largest errors are less than 0.5 kcal mol-1. 
 There are two other well-defined free energy minima in Figure 2-2 located at 
RMSD = 2.4 and 3.2 Å. Visual examination of structures extracted from these minima 
based on RMSD cutoffs show they represent misfolded conformations of trpzip2, termed 
invertedTrp, wrongTrp, and GKturn, shown in . The minimum at RMSD = 2.4 Å contains 
a mixture of invertedTrp and wrongTrp structures. Based on an RMSD cutoff of 1.7 Å 
the fraction of invertedTrp and wrongTrp structures are 0.023 ± 0.004 and 0.031 ± 0.004 
at 350 K respectively. In the wrongTrp structure one of the strands has inverted so that 
Trp residues that would normally stack are on opposite sides of trpzip2. Good Trp 
packing is no longer possible due to the strand inversion. In the invertedTrp structure 
both strands have inverted so that all of the Trp residues are on the opposite side of 
trpzip2 relative to where they are in the native structure. Although Trp packing is still 
possible in this case, the inversion of the strands puts strain on the turn region, as 
evidenced by the kinked turn in this structure. In both cases, the turn itself is no longer 
type II'. Backbone hydrogen bonding is still possible, although the hydrogen bonding 
pattern obviously differs from native due to the strand inversions. 
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Figure 2-2. Free energy for Trpzip2 as a function of backbone RMSD from the native structure, 
calculated from two independent REMD simulations. The minimum located at RMSD=0.8 
corresponds to native structure. The other minima located at RMSD = 2.4 and 3.2 correspond to 
misfolded structures. Error bars reflect the difference between the two REMD simulations. 
 

The minimum at RMSD = 3.2 Å consists of the GKturn structure, in which the 
reverse turn has shifted towards the C-terminus. In addition, the strands are inverted as in 
the invertedTrp structure. Based on an RMSD cutoff of 1.7 Å the fraction of GKturn 
structures at 350 K is 0.049 ± 0.005. Although there are less potential backbone hydrogen 
bonds in GKturn, Trp2 and Trp9 are positioned close enough to still pack. It should be 
noted that these three structures do not represent an exhaustive search of all possible 
misfolded structures (such as from cluster analysis); however they likely represent the 
majority of well-defined misfolded structures due to their location in free energy minima. 
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Figure 2-3. Misfolded structures extracted from the non-native free energy minima shown in Figure 
2-2. Structures are shown with only the backbone (blue) and Trp residues (red) in licorice 
representation. The backbone of the NG turn is colored orange. Hydrogens are omitted for clarity. In 
the invertedTrp structure, both strands are inverted so that the Trp residues are on the opposite face 
of trpzip2 compared to the native structure. In wrongTrp only one strand is inverted. In the GKturn 
structure, the turn has been shifted one residue towards the C-terminus. Picture generated with 
VMD 1.8.4[3]. 
 
 Although there is a clear barrier to folding to and unfolding from the native state 
at RMSD = 1.7 Å in Figure 2-2, it is impossible to ascertain from the limited information 
available in this plot whether the non-native free energy minima represent folding 
intermediates or off-pathway kinetic traps. Since kinetic information is not available from 
REMD simulations, folding pathways of trpzip2 were studied using standard MD as 
described later in this chapter.  

In order to estimate the thermal stability of trpzip2, the fraction of native structure 
present (based on a 1.7 Å RMSD cutoff) was calculated from the REMD simulation data. 
The resulting melting curve is shown in Figure 2-4, along with an analogous curve 
generated from experimental data[56]. Agreement from about 320 K to 360 K is quite 
good, indicating that simulations in this temperature range are probably reliable. As in 
Figure 2-2, the size of the error bars indicate good convergence has been achieved 
between the individual REMD simulations. However, the curves begin to diverge at 
lower temperatures. This is likely because the solvent model used in this study is unable 
to reproduce the effect of cold denaturation seen in the experimental melting curve. 
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Figure 2-4. Melting curves of trpzip2, reproduced from experimental parameters[47] (black curve) 
and the average values from two independent REMD simulations calculated using an RMSD cutoff 
of 1.7 Å (orange circles). The blue curve is a fit of the Gibbs -Helmholtz equation (Equation 2-2) to 
the REMD data. Although the curves begin to diverge at low temperature, agreement in the range 
from 320 to 360 K is quite good. 
 

The melting curve data obtained from the REMD simulations was fit to the 
Gibbs-Helmholtz equation (see Methods on page 13), and the melting temperature Tm, 
enthalpy of melting ? Hm, and heat capacity ?CP were calculated. The calculated values 
of Tm and ? Hm are in very good agreement with experiment. The calculated ? Hm is about 
10% too small, while the calculated Tm of 344 K is just 1 K below the experimentally 
determined melting temperature of 345 K. In contrast, the calculated value for ? CP is 
much smaller than the experimental value, and the uncertainty is far greater. This is 
because the heat capacity, when calculated from a melting curve using Equation 2-2, 
depends greatly on the curvature at the extreme ranges of temperature. As shown in 
Figure 2-4, the agreement between experiment and the REMD simulations  at these 
temperatures is poor and likely reflects the inability of the solvent model used in this 
study to properly account for the properties of aqueous solvation at these temperatures. 

The ability to closely reproduce the native hairpin structure and several key 
thermodynamic parameters suggests that the simulations provide a useful model for 
folding of this peptide, particularly at temperatures near Tm. An additional validation of 
our approach was provided by a more detailed analysis of the packing of the Trp side 
chains that stabilize the native hairpin. In particular, the face-to-face stacking of the 
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indole rings originally observed in the NMR-based conformations (PDB code 1HRX, 
now withdrawn) differs from that obtained after a further refinement stage that included 
chemical shift data[47] (PDB code 1LE1). In our simulations, the native conformations 
adopted the edge-to-face packing seen in the more accurate NMR-based conformations, 
even though all simulations that began with “native” conformations used 1HRX. 
 

Experiment REMD
?Hm (cal/mol) 16770 ± 60 15998 ± 504
?Cp (cal/mol K) 281 ± 2 85 ± 50
Tm (K) 345 ± 0.1 344 ± 3  
Table 2-1. Enthalpy of melting, heat capacity, and melting temperature from experiment[47] and 
calculated from REMD simulation data. Errors are half the difference between values obtained from 
each independent REMD simulation. 
 

2.3.2 Characterization of the Non-native Ensemble 
The interaction of the indole rings of the Trp side chains was suggested to be a 

dominant stabilizing factor for the trpzip hairpin[56]. The fraction of all possible Trp 
residue pairs present as a function of HBlost is shown in Figure 2-5. The plot shows that 
the packing in the native state (HBlost=0) is highly specific for native Trp pairs 2:11 and 
4:9. The bottom Trp pair (2:11) appears particularly well packed. The middle Trp pair 
(2:9) shows some packing in the native structure, but not to the degree of the native pairs. 
The total fraction of Trp packing in the native state (sum of all Trp-Trp packing fractions) 
is 1.2, indicating that on average at least one well packed Trp pair is present in this state. 
These observations are all consistent with the NMR-derived conformation (Figure 2-1). 

As more backbone hydrogen bonds are lost (HBlost increase), Trp packing 
becomes non-specific in nature. In addition, there is a decrease in the total fraction of Trp 
packing (0.44 at HBlost=5). This is consistent with a study done by Yang et al. which 
also showed residual Trp packing in the unfolded state that could only be disrupted with 
high concentrations of denaturant and high temperature[66]. The increase in Trp packing 
specificity from the unfolded state to the native state, along with the entropy loss from 
formation of backbone hydrogen bonds, likely represents a significant contribution to the 
entropic component of the free energy barrier for folding trpzip2. 
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Figure 2-5. Fraction of Trp residue packing present at 350 K as a function of backbone hydrogen 
bonds lost (HBlost). Packing between two Trp residues was calculated using the distance between the 
center of mass of the two Trp residues and a di stance cutoff of 6.5 Å. Packing is high for Trp2 -Trp11 
and Trp4 -Trp9 in the native state (HBlost=0), consistent with the NMR structure shown in Figure 
2-1. Packing becomes much less specific as hydrogen bonds are lost, and overall Trp-Trp packing 
decreases. 
 

Figure 2-6 shows the fraction of each native backbone hydrogen bond present as a 
function of HBlost. According to this plot, the backbone hydrogen bond most likely to 
form first (~96% of the time in fact) when going from the unfolded state (HBlost=5) to 
the native state is the hydrogen bond closest to the reverse turn (labeled Top). This is a 
sensible result, and is consistent with the previously stated purpose of the reverse turn; to 
reduce the entropic cost of bringing the individual strands of the hairpin together. 
However, the Top hydrogen bond also tends to be the first hydrogen bond lost from the 
native state (about 88% of the time). This can be rationalized due to the large twist[56] in 
the trpzip2 hairpin conformation which weakens this hydrogen bond, perhaps in favor of 
improving interactions between the aromatic rings. In fact, it can be seen in Figure 2-5 
that packing of the Trp4-Trp9 pair does increase slightly from HBlost=0 to HBlost=1. 
The remaining hydrogen bonds tend to be lost in order of their proximity to the reverse 
turn, with those hydrogen bonds closest to the turn being lost last.  
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Figure 2-6. Fraction of backbone hydrogen bonds present at 350 K as a function of HBlost. The 
hydrogen bond nearest the turn (Top) tends to be the first one formed from the unfolded state (at 
HBlost=4) as well as the first one lost from the Native (at HBlost=1). The other hydrogen bonds tend 
to be lost starting from the turn region towards the termini of the hairpin. However, the exact 
pathway is not available from the thermodynamic data. 
 

Thus, Figure 2-5 and Figure 2-6 provide a potential picture of folding. In the 
unfolded state, tprzip2 consists of non-specific Trp packing. The turn then serves to bring 
the individual strands together, stabilized by the formation of the Top hydrogen bond. 
This is followed by the formation of more hydrogen bonds near the turn region and more 
specific Trp packing. During this process the Top hydrogen bond is destabilized, and 
when Trp packing has become native- like this hydrogen bond tends to be lost, perhaps to 
accommodate more favorable arrangement of the Trp residue pairs.  

Unfortunately, there is no information about actual folding pathways in the 
REMD simulation data because of the non-continuous nature of REMD simulation 
trajectories. It is also not possible to discern the relationship between the native state and 
misfolded structures shown in Figure 2-3. It is therefore desirable to obtain kinetic data to 
link these various thermodynamic data together and obtain a clear picture of the actual 
folding process that this peptide undergoes.  
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2.3.3 Temperature-jump Simulations 
Ensembles of folded and unfolded structures were subjected to a temperature-

jump as described in Methods and simulations were continued until first passage was 
recorded for 85% of the folding ensemble and 100% of the unfolding ensemble. It is 
critical to observe folding/unfolding events in a large percentage of each ensemble for 
two reasons: 1) to ensure that all relevant pathways have been sampled, and 2) the earliest 
observed events (rapid folding events for example) may not be relevant to the behavior of 
the majority of an ensemble[67].  
 

 
Figure 2-7. A) Fraction of unfolded structures as a function of simulation time at 350 K for the 
unfolded ensemble. Black dots represent a folding event in the ensemble. When the data is fit with a 
single exponential (red line), the fit is quite poor. However, when fit with a double exponential (blue 
line), the fit is improved significantly. The double exponential can be separated into a fast phase 
(purple line) and a slow phase (orange line) representing unfolded to native and misfolded to 
unfolded transitions respectively (see text for details). B) Fraction of unfolded structures as a 
function of simulation time at 350 K for the folded ensemble. Here, the data can be fit to a single 
exponential. 
 

We initially attempted to fit the data with a single exponential, assuming simple 
2-state kinetics[68]. The decay (folding) or rise (unfolding) in the fraction of non-native 
conformations is shown in Figure 2-7. Unfolding can be fit by a single exponential with a 
relaxation time of 13 ns (Figure 2-7b). In contrast, folding data requires at least two 
exponentials with approximately equal weights (Figure 2-7a), and relaxation times 
differing by nearly an order of magnitude (4.5 ns and 38.5 ns). The double exponential fit 
suggests the presence of kinetic partitioning[69], in this case through at least two single 
exponential processes. Similar partitioning has been encountered in the folding kinetics 
of proteins[70]. It should be noted here that a single exponential fit does not imply a 
single unfolding pathway (or even a single rate constant); parallel reactions initiated from 
the same basin will always give rise to single-exponential behavior. 

In order to ascertain the reason for the double exponential fit of the folding data, 
trajectories that proceeded past the timescale for which the faster process is nearly 
complete (>20ns, Figure 2-7) were inspected for potential kinetically trapped structures 
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that might contribute to the slower phase. This revealed sampling of non-native 
metastable hairpin conformations; in fact, the same conformations shown in Figure 2-3 
that were obtained from the REMD simulations (wrongTrp, GKturn, and invertedTrp). 
None of these misfolded structures were present in the unfolded ensemble (at 800 K) 
before the T-jump simulations. 

In order to confirm that these non-native hairpin structures were responsible for 
the slow folding phase, simulations sampling misfolded structures were separated from 
the rest of the ensemble of T-jump refolding trajectories. Simulations that sampled 
misfolded hairpins showed single-exponential folding to the native state with a relaxation 
time of 31 ns, very similar to the slower phase of the double exponential behavior seen 
for the entire ensemble (38 ns).  

The misfolded hairpin structures represent off-pathway intermediates (Figure 
2-8). The transition from the unfolded to a misfolded state occurs on a timescale similar 
to the transition from unfolded to native state (~4 ns in each case). In addition, none of 
the unfolding trajectories sampled the misfolded structures prior to their transition into 
the unfolded state. These results demonstrate that the transition into the misfolded 
structures is not responsible for the slow folding behavior. Examination of refolding 
trajectories revealed that the transition between misfolded and native conformation is not 
direct; misfolded structures always show significant unfolding prior to reaching the 
native state (see Figure 2-9 for an example of such a trajectory). The misfolded structures 
have RMSD values near 2.4 and 3.2Å, yet RMSD values rise to ~5 Å before successful 
folding occurs. This serves to illustrate how folding pathways cannot be directly observed 
from thermodynamic data; the apparent free energy barrier between misfolded and native 
structures observed in Figure 2-2 obscures the fact that transitions do not directly occur 
between those respective minima. 
 

 
Figure 2-8. Potential folding scheme for trpzip2 based on kinetic information from T-jump 
simulations. Structures either fold from the Native state (N) directly to the Unfolded state (U), or fold 
to a misfolded structure (M). Misfolded structures are required to unfold before they can reach the 
native state, giving rise to the double exponential behavior seen in folding. Unfolding simply consists 
of a transition to the unfolded state, giving rise to the single exponential behavior seen in unfolding. 
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Figure 2-9. An example of a folding trajectory of one of the T-jump simulations. The unfolded 
structure at the beginning rapidly relaxes to the GKturn structure (A), where it remains for some 
time. Unfolding occurs at ~2 ns, and the structure refolds to the WrongTrp structure at ~4.4 ns (B). 
After unfolding again, the native structure is finally found (D). This trajectory serves to illustrate 
that there is no direct transition between misfolded states and the native state. 
 

First passage times to the folded state were then recalculated starting from the 
first snapshot after leaving a misfolded basin; in other words, the transition from unfolded 
to misfolded conformation was eliminated from those trajectories. In this case, folding 
behavior was single exponential with a timescale nearly identical to the fast folding 
phase, consistent with the observation that a transition from the unfolded state to the 
native state is rapid. Thus the slow folding is not due to entering the misfolded basins  
from the unfolded state, nor to folding after leaving the misfolded basins; rather the rate 
limiting step is the unfolding of the misfolded structures.  

Finally, the ensemble of trajectories that never sampled a misfolded conformation 
(~50%) shows single exponential folding with a relaxation time nearly identical to the 
fast phase of the double-exponential fit to all simulations seen in Figure 2-7. This 
indicates that the trajectories that sampled a misfolded structure give rise to the entire 
slow phase of folding. The fact that the unfolding T-jump simulations can be fit to a 
single exponential is consistent with no direct transitions between the native state and 
misfolded conformations. 
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2.3.4 Analysis and Comparison of Folding and Unfolding Pathways 
As we noted above, folding events were not observed to originate directly from 

the misfolded hairpins. Thus, folding pathways were examined using the ensemble of 
folding trajectories that did not become kinetically trapped in a misfolded basin. For 
unfolding, the entire ensemble of unfolding trajectories was used. For each ensemble, the 
time-dependent fraction of 7 native contacts (the 5 native backbone hydrogen bonds and 
2 Trp-packing contacts) at 350 K was calculated (Figure 2-10). Comparison of relative 
rates of forming each contact provides insight into the sequence of contact formation (in 
an ensemble-averaged manner). Comparison of folding and unfolding also highlights any 
differences in the two processes.  
 

 
Figure 2-10. A) Fraction of backbone hydrogen bonds and Trp-packing vs simulation time at 350 K 
for the portion of the unfolded ensemble that did not sample any misfolded structures. The turn 
forms almost immediately, followed later by rapid formation of backbone hydrogen bonds and Trp-
packing in that order. Backbone hydrogen bonds form proceeding from the turn region towards the 
termini. B) Fraction of backbone hydrogen bonds and Trp-packing vs simulation time at 350 K for 
the folded ensemble. The bottom (relative to the turn region) Trp pair (W2-W11) breaks first, 
followed by the lowest hydrogen bonds, followed by the top Trp pair (W4-W9), followed by the rest 
of the hydrogen bonds. The top two hydrogen bonds break much slower than the rest of the contacts. 
 

The most apparent feature of this data is that the contact corresponding to the ß-
turn forms on a much more rapid timescale than any of the other contacts. During 
unfolding, this contact was lost most slowly and was retained by a large fraction of the 
ensemble even after the remaining contacts were nearly completely lost. Both sets of 
observations imply a high tendency to form the turn in the unfolded state, consistent with 
analysis of the REMD data.  

For the remainder of the contacts, it is interesting to note that the rates of contact 
formation during folding vary by less than 15%, while nearly 300% variation is seen 
during unfolding under the same conditions. In both cases, however, the ordering of 
backbone hydrogen bond formation or loss is consistent, with zipping occurring from the 
turn out, and unzipping from the termini toward the turn.  
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Although unfolding is the reverse of folding with respect to the backbone  
hydrogen bonds, Trp packing shows an important difference. During folding (Figure 
2-10a), native Trp-Trp contacts formed only after the hairpin was complete, with Trp4-
Trp9 forming before Trp2-Trp11. In contrast, unfolding (Figure 2-10b) occurs by initial 
loss of a single Trp pair contact (usually Trp2-Trp11), followed by loss of the adjacent 
backbone hydrogen bonds, then the second Trp pair contact, and finally the last set of 
hydrogen bonds. Thus formation of the two native Trp pairs is the last step during 
folding, but loss of both pairs is not the first step during unfolding.  

These trends in the ensemble data were confirmed by visual inspection of multiple 
individual trajectories. It was found that unfolding actually occurs simultaneously by two 
very different pathways. In the predominant pathway (90% of the unfolding simulations) 
unfolding proceeds by initial loss of the Lowest hydrogen bond (S1O-K12H) followed by 
successive loss of backbone hydrogen bonds from the termini towards the turn, consistent 
with the order of contact loss seen in Figure 2-10b. However, a second minor unfolding 
pathway also exists (10%) in which the TopMid hydrogen bond (K8O-E5H) is initially 
lost, destabilizing the turn region, and unzipping proceeds away from the turn towards the 
termini. This pathway is not apparent from the contact loss curves obtained these 
simulations, presumably due to the lower weight of this unfolding pathway in the 
ensemble data. It is also of interest to note that no reverse of the minor unfolding pathway 
was seen for any member of the folding ensemble (hydrogen bonds for the open end of 
the hairpin never formed before those near the turn).  

A free energy landscape was constructed using the  Lowest and TopMid hydrogen 
bond distances from the converged REMD simulation data at 350 K (Figure 2-11a). As 
the data is presented here there are two free energy barriers to cross in order for trpzip2 to 
unfold. The first is the initial escape from the native free energy minimum, and 
corresponds to breaking either the Lowest or TopMid hydrogen bond. The second 
corresponds to breaking all remaining contacts; this barrier is significantly higher if the 
TopMid hydrogen bond is broken first. There is also another free energy barrier for this 
pathway that occurs at a TopMid distance ~5.5 Å. Since pulling apart the two strands 
near the turn region is inherently more difficult than pulling them apart at the termini, this 
likely corresponds to breaking another contact – another hydrogen bond or a Trp pair. 
Higher free energy barriers for this pathway are consistent with the fact that this pathway 
only occurs in ~10% of unfolding simulations. 
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Figure 2-11. A) Free energy landscape as a function of the Lowest and TopMid hydrogen bond 
distances from REMD simulations of Trpzip2 at 350 K. B) Unfolding pathway observed during T-
jump simulation overlaid onto the free energy landscape – unfolding starts at the termini and 
proceeds towards the turn. This was the predominant unfolding pathway (~90%). C) Alternate 
unfolding pathway – unfolding starts near the turn and proceeds towards the termini. This was a 
minor pathway (~10%).  
 

In order to better visualize these pathways, the last 500 frames from unfolding 
simulation trajectories sampling each pathway were projected onto the landscape (Figure 
2-11b and Figure 2-11c). Each unfolding pathway begins in the free energy minimum. It 
is seen here that structures can travel as much as 4 Å along either coordinate without then 
crossing into the unfolded basin; this simply corresponds to partial unfolding events. In 
Figure 2-11b the Lowest hydrogen bond is eventually lost completely, and the structure 
then spends some time in the second free energy basin before finally crossing into the 
unfolded basin. Likewise, in Figure 2-11c the TopMid hydrogen bond is lost completely,  
but the structure then spends much more time in the second free energy basin before 
crossing into the unfolded basin, most likely because the barriers are much higher.  

The landscape thus suggests an explanation for the more cooperative folding 
process as compared to unfolding (Figure 2-10). Multiple barriers are encountered during 
both of the unfolding pathways, yet no significant free energy barrier to folding is present 
once either native hydrogen bond has formed. It should be noted however that since this 
landscape employs backbone hydrogen bond order parameters, it does not provide insight 
into the different coupling of these parameters to Trp pair contact formation observed 
between folding and unfolding simulations. 
 

2.4 Conclusions 
The thermodynamics and kinetics of the model ß-hairpin peptide trpzip2 were 

studied via well-converged REMD simulations and several µs of T-jump MD 
simulations. A free energy plot of the REMD data as a function of backbone RMSD from 
native trpzip2 showed a well-defined native minimum. There were also 2 well-defined 
non-native minima. Analysis of these minima revealed they were composed of various 
types of misfolded structure. The melting curve of trpzip2 calculated with data from 
REMD simulations was in good agreement with experiment. Several thermodynamic 
parameters were also calculated and found to agree with experimental values, except for 
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heat capacity; this was the result of the poor behavior of the GB solvent model used at 
temperature extremes.  

The unfolded state of trpzip2 was studied with respect to Trp-Trp residue packing 
and backbone hydrogen bond formation. It was found that Trp packing is highly specific 
in the native state. Trp packing is also present in the unfolded state, although it becomes 
unspecific. The backbone hydrogen bond nearest the turn was found to have a tendency 
to be the first formed from the unfolded state. However, this hydrogen bond was found to 
have a tendency to be broken in the native state. 

Unfolding in T-jump simulations was found to be single exponential in nature. 
However, folding was found to be double exponential, and comprised a fast and a slow 
phase. The fast phase was found to correspond to the transition from unfolded directly to 
native trpzip2. The slow phase was found to correspond to kinetic trapping of trpzip2 into 
the misfolded states observed in the REMD simulations. Misfolded structures were 
required to unfold before they could fold to the native state.  

Analysis of hydrogen bond and Trp packing formation vs. time for folding 
pathways that did not encounter misfolded structures showed almost immediate 
formation of the turn hydrogen bond, followed by rapid formation of the hydrogen bonds 
from the turn region towards the termini and then formation of Trp-Trp cross-strand 
pairs. However, unfolding was found to proceed by disruption of the Trp pair nearest the 
termini, followed by disruption of adjacent hydrogen bonds, followed by disruption of the 
next Trp pair, and then disruption of remaining hydrogen bonds. This analysis reflects the 
behavior of the ensemble as a whole, so minor pathways may not be reflected.  

In fact, two unfolding pathways were identified for trpzip2 based on order of 
backbone hydrogen bond loss. In the predominant pathway (~90%), hydrogen bonds 
were lost from the termini towards the turn, but in another minor pathway (~10%) 
hydrogen bond loss started from the turn and proceeded towards the termini.  

These data present a complex picture for the folding and unfolding of trpzip2. In 
the unfolded state, trpzip2 most likely resembles a molten globule-like structure with 
non-specific Trp packing. The Trp packing serves along with the turn in keeping the two 
strands of the hairpin in close proximity. The strands eventually come together and 
rapidly form backbone hydrogen bonds; however, the backbone hydrogen bond pattern 
may be non-native and a misfolded structure can result. If the backbone hydrogen 
bonding pattern is native, the native Trp-pairs also form rapidly and the folded structure 
is reached. Unfolding requires the breaking of a Trp-pair, which is followed by breaking 
of adjacent hydrogen bonds. Unfolding most often begins at the termini, but in certain 
cases can proceed from the turn region.  

The implication of the folding pathway for trpzip2 being different from the 
unfolding pathway is that different free energy barriers are encountered during each 
process. This is not to say that microscopic equilibrium is not maintained – it is possible 
that folding could occur by formation of hydrogen bonds at the termini first, but the 
reverse turn makes this so unlikely that it is simply never observed.  
 It should be noted that the accuracy of the data obtained in this study is sensitive 
to choice of forcefield and solvent model. In particular, the solvent model used in this 
study has shown a tendency to over-stablize a-helical conformations [71-74]. However, 
the forcefield may be used to compensate for solvent model inadequacies through 
modification of torsional parameters[75]. While this does not address the underlying 
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problem of solvent model accuracy, it can be used to obtain useful data as long as one is 
careful to maintain agreement with experimental results. The forcefield used in this study 
was developed based on trpzip2 with same solvent model as in this study[63], and it is 
noted that good agreement with experimental data was obtained in this study.  
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Chapter 3  
Folding Cooperativity in a 3-stranded ß-sheet Model 
 

3.1 Introduction 
 How a protein folds into its final three-dimensional structure based on the 
information contained in a linear chain of amino acids is one of the most important 
problems in molecular biology. At the basic level of this process is the formation of units 
of protein secondary structure, a-helices and ß-sheets. ß-sheet formation is more complex 
than a-helix formation; ß-sheets are made up of two distinct structural elements, strands 
and turns. Interactions between strands can occur between residues that are quite distant 
from each other in the protein chain, and whether these residues are in hydrogen-bonded 
sites or not can change the stability of their interaction[76]. The type of turn linking 
strands together can also have a profound effect on stability[77]; a strongly turn-
promoting sequence reduces the entropy cost of bringing two ß-strands together.  

The folding process of many proteins is thought to be cooperative and consisting 
of two-states[68]: the native or folded state, and the unfolded state. Cooperativity can 
also be seen at the level of secondary structure. The formation of isolated a-helix 
structure has been shown to be cooperative[78-80]. Unlike a-helices however, ß-sheets 
have the ability to exhibit cooperativity in two dimensions: parallel to strand direction 
and perpendicular to strand direction[81].  

Cooperativity in ß-sheet formation along the direction of the strand can be thought 
of in terms of native backbone hydrogen bond formation between two adjacent strands 
(essentially ß-hairpin formation). If the process is cooperative, the formation of each 
hydrogen bond between strands has a lower free energy cost than the formation of the 
preceding hydrogen bond. Stanger et al. observed that the stability of several designed ß-
hairpins was increased when the strand length was increased from 5 to 7 residues[82]. In 
a model study of backbone hydrogen bond formation in ß-sheets, Guo et al. found there 
was a sequence-independent cooperativity parallel to strand direction inherent in ß-sheet 
structure hydrogen bond formation[83]. 

Cooperativity perpendicular to strand direction can be thought of in terms of 
multiple hairpin formation: the formation of one hairpin will reduce the free energy cost 
of forming another hairpin. In studies of a designed three-stranded ß-sheet, Beta3s, de 
Alba et al. found little cooperativity if any between strands, i.e. perpendicular to strand 
direction[84]. However, the reference peptides used to calculate cooperativity in Beta3s 
contained charged termini while Beta3s did not, and the overall population values were 
quite low (13-31%), so a cooperative effect (if present) may not have been seen. In 
another study, Sharman & Searle found that a designed three-stranded ß-sheet was more 
stable than its isolated C-terminal hairpin in aqueous methanol[85], indicating some 
cooperativity. Griffiths-Jones & Searle obtained similar results for 3ß, another designed 
three-stranded ß-sheet, and calculated that adding the N-terminal strand stabilized 3ß by 
0.26 kcal mol-1[86].  

Syud et al. observed a larger effect in studies of yet another designed three-
stranded ß-sheet, DPDP, and calculated that the formation of the N-terminal hairpin 
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stabilized the C-terminal hairpin by as much as 0.42 kcal mol-1[87]. DPDP was originally 
designed by Schenck & Gellman[81] specifically to study the cooperativity of ß-sheets 
perpendicular to strand direction. DPDP takes its name from the D-Pro residues in its two 
hairpin turns. D-Pro residues are strong promoters of type I’ and II' turns[88] which 
strongly favor ß-hairpin formation[89]. For example, significant stabilization of Beta3s 
occurred when its turn sequences were replaced with D-Pro-Gly turns[90]. DPDP was 
observed to fold into the expected three-stranded ß-sheet structure by NMR 
spectroscopy[87]. The ß-sheet population of DPDP ranges from 75-83% at 277 K as 
estimated from NMR data by Ha chemical shift deviations, to 42-59% at 278 K as 
estimated by CD and FTIR[91]. We note that the NMR experiment probed the amount of 
secondary structure present only in the C-terminal hairpin, while the CD/FTIR data 
reflects overall secondary structure content for the entire peptide. Melting curves 
calculated for DPDP via these methods lacked the sigmoidal characteristic expected for 
two-state folding. The varying ß-sheet populations given by the two different probes are 
also consistent with a non-two-state process. Syud et al. have suggested that a four-state 
model is more reasonable for DPDP[87]. 

In order to study cooperativity perpendicular to strand direction in DPDP, 
Schenck et al. created LPDP, an analogue of DPDP in which the turn D-Proline in the N-
terminal hairpin was replaced with L-Proline, effectively abolishing N-terminal hairpin 
formation. A subsequent analysis by Syud et al. compared the free energy of formation of 
the C-terminal hairpin in DPDP (with the N-terminal hairpin at least partially present) to 
the free energy of formation of the C-terminal hairpin in LPDP (N-terminal hairpin 
absent)[87]. The resulting data established that having the  N-terminal hairpin present in 
DPDP stabilized the formation of the C-terminal hairpin by about 0.4 kcal mol-1. Syud et 
al. also found cooperativity in similar experiments with a designed four-stranded ß-
sheet[87]. 

In this study, the thermodynamic behavior of DPDP was studied via more than 
2.4 µs of standard molecular dynamics (MD) and replica exchange molecular 
dynamics[35, 36] (REMD) simulations. REMD (also known as parallel tempering MD) is 
a simulation technique that is able to cross high energy barriers in a shorter amount of 
time and provide improved sampling at lower temperatures than standard MD. REMD 
works by simulating N non- interacting replicas at N different temperatures, where N is 
chosen so that there is sufficient energy overlap between replicas. A replica at low 
temperature is given a greater chance to cross energy barriers by being exchanged with a 
replica at a higher temperature. This exchange is accepted or rejected based on a 
Metropolis criterion. Further details of the method have been presented elsewhere[35, 
36]. 

Unlike standard MD, REMD simulations were able to provide reproducible free 
energy surfaces, illustrating the improved convergence of REMD over normal MD. The 
global free energy minimum obtained with REMD (from which a representative structure 
is shown in Figure 3-1) is shown to adopt the expected 3-stranded ß-sheet conformation 
(an atomic-detail structure for the 3-stranded sheet form of DPDP has not been 
published). The simulation data shows that the C-terminal hairpin is significantly more 
stable than the N-terminal hairpin, consistent with the higher ß-sheet population observed 
via NMR experiments (which focused on the C-terminal hairpin) as compared CD/FTIR 
measurements, which probed the entire peptide.  
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Figure 3-1. Three stranded ß-sheet model of DPDP as determined through simulation. Backbone is 
shown as a cartoon, sidechains are shown in a ‘licorice’ representation. Residues that form the 
hydrophobic cluster (I3, S5, Y10, K17, L19) are shown in red. Picture generated with VMD 1.8.3[3]. 
 

Previous experiments have only provided a lower bound for the cooperativity 
between the component hairpins of DPDP due to the uncertainty of the state of the N-
terminal hairpin in fully folded DPDP. When we analyze our full ensemble of structures, 
we are able to reasonably reproduce this lower limit to folding cooperativity. However, 
due to the atomic- level resolution provided by the computational data, the state of each 
hairpin is known for every structure in the ensemble. The cooperativity can therefore be 
calculated directly by comparing the free energy of formation of a hairpin among subsets 
of the ensemble in which the state of the other hairpin is well-defined (either present or 
absent). The results of this work indicate that the actual cooperativity perpendicular to 
strand direction is about 2 kcal mol-1 larger than previously estimated lower limit. Similar 
values of cooperativity are obtained for both hairpins, suggesting this may be a general 
effect in ß-sheets. 

An alternate approach to quantifying the extent of cooperativity could be 
investigated through comparing hairpin stabilities in full- length DPDP to those in 
peptides containing only the region corresponding to each hairpin. This type of fragment 
analysis has been employed to study the unfolded state of proteins under conditions in 
which is it poorly populated[92]. We chose not to investigate that route in the present 
case since the truncation of the sequence could lead to end effects such as fraying, 
resulting in an additional level of uncertainty that we believe can be avoided through 
detailed structural analysis of for the full- length peptide. Our approach of examining only 
the full sequence is also consistent with published DPDP cooperativity analysis based on 
experimental data[87], thus permitting a direct validation of our results.  
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3.2 Methods 
 

3.2.1 Model System 
A model system was created from the sequence of DPDP 

(V1FITSdPGKTY10TEVdPGOKILQ20, dP=D-proline, O=ornithine) except that a Lysine 
was substituted for the Ornithine. Replacing Ornithine with a Lysine in a related peptide 
analogous to the C-terminal hairpin of DPDP caused no detectable effect on the 
structure[93]. The termini were amidated and acetylated in accordance with experiments. 
DPDP was designed with a net charge of +2 to prevent aggregation[81], and our model 
retains this net charge.  
 

3.2.2 Simulation Details 
Simulations were carried out using Amber version 8.0[65]. All hydrogen atom 

bond lengths were constrained using the SHAKE algorithm[59]. All nonbonded 
interactions (ie. without cutoff) were calculated at each time step. All systems were 
modeled with the AMBER ff99 force-field with modified backbone parameters to reduce 
a-helical bias[63]. Steepest descent energy minimization was performed on all structures 
for 500 steps prior to simulation. All simulations were carried out using an 
implementation[60, 94] of the Generalized Born (GB) implicit solvent model available in 
Amber (igb=1). Explicit counterions were not included, consistent with most studies that 
employ continuum solvation models. Some studies have questioned the validity of 
implicit solvent models[71, 95] for protein folding studies, however, implicit solvent 
models have been used successfully in studies of both ß-hairpin and ß-sheet systems[53, 
66, 96-99]. Also, previous studies of ß-sheets in explicit solvent have not shown that 
water plays a specific structural role in the folding/unfolding process[100, 101]. 
Obtaining well-converged thermodynamic data in explicit solvent remains a significant 
challenge even for systems of the size of DPDP; therefore we employed an implicit 
solvent model with the understanding that careful validation against available 
experimental data must be obtained. 

Simulations were performed using REMD as implemented in Amber version 8. A 
total of 12 replicas were used for REMD simulations of DPDP at the following 
temperatures: 260.1, 279.3, 300.0, 322.2, 346.0, 371.6, 399.1, 428.7, 460.4, 494.5, 531.0, 
and 570.3 K. The number of replicas was chosen so that sufficient energy overlap would 
be achieved between replicas. The temperature for each replica was generated based on 
an exponential distribution and chosen so that an exchange acceptance ratio of 0.15 
would be achieved. Exchanges between replicas at neighboring temperatures were 
attempted at an interval of 1 ps. Temperatures were maintained between exchanges by 
coupling to an external bath using Berendsen’s scheme[58]. 
 

3.2.3 Native Contacts and Data Analysis 
A list of contacts in the ß-sheet state (Table 3-1) were defined from analysis of a 

low temperature (277 K) 10 ns normal MD run starting from the model 3-stranded sheet 
structure. Hydrogen bond contacts were included if they existed for more than 70% of the 



 

 35 

simulation, and side-chain contacts were considered extant if the center of mass of the 
side-chain (Ca for the glycines) was less than 6.5 Å from another non-neighboring side-
chain more than 60% of the time. This procedure is similar to that followed in a study of 
a different three-stranded ß-sheet[100]. Based on these criteria 28 contacts were defined, 
as listed in Table 3-1. Cutoffs for QH1 and QH2 were chosen based on the boundaries of 
the free energy basins obtained for these order parameters in DPDP (Figure 3-3). 
Hydrogen bonds were defined as a distance between hydrogen donor and acceptor of less 
than 2.5Å. No angle cutoff was used. 
 
Hairpin Contact Type Hairpin Contact Type

1 V1-I3 Sidechain 2 T9-Q20 Sidechain
1 V1-E12 Sidechain 2 Y10-K17 Sidechain
1 F2-T11 Sidechain 2 Y10-L19 Sidechain
1 I3-S5 Sidechain 2 T11-V13 Sidechain
1 I3-E12 Sidechain 2 T11-I18 Sidechain
1 T4-G7 Sidechain 2 T11-Q20 Sidechain
1 T4-T9 Sidechain 2 E12-dP14 Sidechain
1 S5-Y10 Sidechain 2 E12-G15 Sidechain
1 V1H-E12O Hbond 2 E12-K17 Sidechain
1 V1O-E12H Hbond 2 V13-I18 Sidechain
1 I3H-Y10O Hbond 2 T9O-Q20H Hbond
1 I3O-Y10H Hbond 2 T11H-I18O Hbond
2 K8-Y10 Sidechain 2 T11O-I18H Hbond
2 K8-Q20 Sidechain 2 V13H-K16O Hbond  

Table 3-1. Native contact list for DPDP. Contacts obtained from 10 ns of standard MD simulation at 
277K. 
 

Free energy landscapes were calculated from multidimensional histograms 
according to ?Gi = - RTln(Ni/N0), where Ni is the population of a particular histogram 
bin along the desired coordinates (e.g. fraction of contacts and radius of gyration), and 
N0 is the most populated bin, making 0.0 kcal mol-1 the lowest free energy state. The free 
energy curves in Figure 3-6 were calculated in a similar manner using 1-dimensional 
histograms. Hairpin X was considered ‘present’ when QHX was greater than 0.5.  

?G values for each hairpin state in Table 3-2 were calculated at 279 K using ?G = 
- RTln(X/N-X). For the data corresponding to the experiments in which the state of the 
neighboring hairpin was not determined, X is the number of structures with the hairpin of 
interest present and N is the total number of structures. This corresponds to the net ?G 
for formation of the hairpin in the entire ensemble. For the data in which the state of the 
neighboring hairpin is considered, X is the number of structures with the hairpin of 
interest present and also with the neighboring hairpin in the specified state (either present 
or absent). N is the total number of structures with the neighboring hairpin in the 
specified state. For example, in the case of ?G for formation of hairpin 2 with hairpin 1 
present, X is the number of structures with both QH2>0.5 and QH1>0.5, while N is the 
number of structures with QH1>0.5.  

Uncertainties in these ?G values were calculated as half the difference between the 
values obtained from the linear and collapsed simulations. Uncertainties in ??G values 
were obtained from the square root of the sum of squares of the individual ?G 
uncertainties. 
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3.3 Results 
Since no atomic-resolution structure has yet been published for DPDP, several 

different conformations were generated as starting points for simulations: a model of the 
fully folded 3-stranded ß-sheet, a completely extended structure generated by the Leap 
module of AMBER using only the amino acid sequence (referred to hereafter as linear), 
and a compact structure (referred to hereafter as collapsed). The collapsed structure was 
chosen at random from an ensemble of structures generated with standard MD 
simulations starting from the linear system at 350 K (see Methods for details, total 
simulation time ~161 ns), with the sole criteria that no ß-sheet backbone hydrogen 
bonding be present. A structure candidate for the fully formed sheet was selected from 
the same simulations as a structure that exhibited the backbone hydrogen bonding scheme 
expected based on analysis of NMR data for DPDP[87] (Figure 3-1). Although this 
structure was chosen based on backbone hydrogen bonding atom distances and not 
energy, further MD and REMD simulations verify that this structure falls within the 
global free energy minimum at 279 K (average RMSD <1.0 ? ), and is therefore 
representative of the 3-stranded ß-sheet state in the simulation model in addition to 
possessing the secondary structure indicated by experimental measurements.  

A list of 28 “native” contacts were defined, as listed in Table 3-1 (see Methods). 
QTotal is defined as the fraction of 3-stranded sheet contacts formed, QH1 is the fraction 
of N-terminal hairpin contacts formed, and QH2 is the fraction of C-terminal hairpin 
contacts formed. Hereafter we refer to the N-terminal hairpin (residues 1-13) as hairpin 1 
and the C-terminal hairpin (residues 8-20) as hairpin 2. For each of these contact 
parameters 1.0 means all contacts were present and 0.0 means no contacts were present. 
Hairpin 1 was considered folded if QH1 > 0.5, hairpin 2 was considered folded if QH2 > 
0.5, and DPDP was considered folded only if both cutoffs were satisfied. In addition to 
contacts, the radius of gyration (RG) for the side-chains of residues I3, S5, Y10, K17, and 
L19 was used as an alternate order parameter. A clustering of these residues on one face 
of DPDP was inferred from NOE data[87]. 
 

3.3.1 Molecular Dynamics Simulations 
It is important to validate the extent of sampling convergence before performing 

thermodynamic analysis of simulation data. A reasonable measure of convergence is 
obtained by comparing data obtained from simulations initiated from different 
conformations to look for evidence of kinetic trapping[69] on the timescale that is 
simulated. Any differences in the resulting data provide a lower bound for true 
uncertainty. Two normal MD simulations of DPDP were performed at 350 K starting 
from both the 3-stranded sheet structure and the linear structure (referred to hereafter as 
the ß-sheet and linear MD simulations) for 235 and 218 ns respectively. Two-
dimensional population histograms of these simulations calculated from various 
coordinates are shown in Figure 3-2. 
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Figure 3-2. Two-dimensional population histograms of DPDP from standard MD simulations at 350 
K representing about 230,000 structures. A logarithmic contour scale is used. (a) and (b) show 
QTotal vs. RG for simulations starting from the 3-stranded sheet model and linear structures 
respectively. The linear simulation (b) is trapped and never forms the three-stranded sheet. The ß-
sheet model simulation (a) explores some conformational space but never fully unfolds. (c) and (d) 
show QH1 vs. QH2 for simulations starting from ß-sheet model and linear structures respectively. 
Again, the linear simulation (d) is trapped. While hairpi n 1 shows a tendency to unfold in the 
simulation starting from the model three stranded sheet (c), hairpin 2 never unfolds. Overall, data is 
poorly converged.   
 

Figure 3-2a and Figure 3-2b show population as a function of the QTotal and RG 
order parameters. In the ß-sheet MD simulation (Figure 3-2a) DPDP mainly stays in a 
wide (QTotal) and narrow (RG) peak centered on a QTotal of about 0.80, which corresponds 
to the fully formed sheet. In this state the core tends to be compact, with RG around 5.5 
?. A second peak located around QTotal=0.45 and RG=6.0 ? corresponds to partially 
unfolded structures. A fully unfolded state is never reached. In contrast, DPDP in the 
linear simulation remains in a peak located below QTotal=0.20, indicating that few ß-sheet 
contacts form and the folded state is never reached. In this unfolded state, RG fluctuates 
between 6.5 ? and 8.5 ?, indicating the hydrophobic core is much less compact than 
when the sheet is fully formed. 

Next, the fractional structure sampled by each of the component hairpins was 
examined. Two-dimensional population histograms for order parameters QH1 vs.QH2 
are shown in Figure 3-2c and Figure 3-2d. The ß-sheet simulation (Figure 3-2c) contains 
two major peaks: the fully formed sheet (top right) and hairpin 1 unfolded (top left). This 
suggests that hairpin 1 is less stable than hairpin 2. In contrast, structures in the linear 
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simulation (Figure 3-2d) never form a significant fraction of either hairpin; QH1 and 
QH2 mainly stay at about 0.0 with no other peaks present.  

It should be noted that calculation of free energies from population data requires 
sampling of a proper Boltzmann weighted ensemble, and the large differences between 
the landscapes in Figure 3-2 indicate that the simulations are kinetically trapped on this 
timescale (~200ns). Thus, any free energies obtained from these simulations would have 
extremely large uncertainties and convey little insight into the thermodynamic properties 
of DPDP, and so were not calculated. In addition, the complete lack of correspondence 
between the overall topology of the landscapes shown in Figure 3-2 suggests that they 
may not even provide a reliable indication of the positions or characteristics of important 
local minima that may be traversed during the folding process. However, the relatively 
high stability of the ß-sheet structure during the 235 ns simulation suggests that our initial 
structure model is at least reasonable. In order to further probe the conformational space 
of DPDP, verify that the 3-stranded ß-sheet model is indeed the “native” conformation 
under these simulation conditions, and to calculate free energy landscapes employing 
various order parameters, more extensive sampling was obtained using REMD. 
 

3.3.2 Replica Exchange Molecular Dynamics 
Two sets of REMD simulations were run, with all 12 replicas in one simulation 

starting from the extended linear structure and all 12 replicas in the other simulation 
starting from the collapsed conformation (see Methods for details). The alternate starting 
structures were used in order to obtain convergence estimates, as described above. 
Neither simulation included any of the ß-sheet model structure, nor did any initial 
structure have any ß-hairpin hydrogen bonds. Each simulation was carried out for 
~130,000 exchange attempts, for a total simulation length of ~1.5 µsec for each initial 
structure. 
  Figure 3-3 shows the free energy landscapes for QTotal vs. RG and QH1 vs. QH2 
at 346 K. This temperature was chosen to enable comparison to the standard MD results 
at 350 K shown in Figure 3-2. In addition, since this temperature is above the melting 
point (Tm) of the 3-stranded sheet conformation (see below), minima corresponding to 
non-native conformations are reasonably well populated. This facilitates visual 
interpretation of the folding landscape. The qualitative features of the landscape are 
consistent with other temperatures, and the temperature-dependent populations of the 
various minima will be discussed in more detail below. In order to permit direct 
comparison to experimental data obtained at 277 K, quantitative folding cooperativity 
analyses are performed using the ensemble sampled at 279 K. 

Despite some quantitative differences in relative depth of the minima, it appears 
that the major features of the free energy landscape of DPDP are qualitatively consistent 
between both REMD simulations. This is a dramatic difference from the poorly 
converged data obtained using standard MD. Both REMD simulations were started from 
unfolded structures, yet both found the fully formed ß-sheet within a reasonable amount 
of simulation time (<15 ns, data not shown). This is quite good compared with our 
standard MD simulation starting from an unfolded state, which showed no ß-sheet- like 
structure even after 200 ns of simulation time. The simulations were able to reproducibly 
find three-stranded ß-sheet structures that were consistent with experimental observations 
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of DPDP as a fully formed sheet. These structures were the global free energy minimum 
at low temperatures under our simulation conditions and should be good representatives 
of the 3-stranded sheet state of DPDP, for which an atomic-resolution structure has not 
yet been published. The agreement between free energy landscapes calculated from 
REMD simulations is also much better than that obtained from normal MD and illustrates 
the superior convergence of the REMD method as has been observed by others[96]. 
 

 
Figure 3-3. Free energy landscapes of DPDP from REMD simulations at 346K representing about 
130,000 structures. Data is much better converged than that obtained from standard MD (Figure 
3-2), as seen from the similarity of the landscapes from simulations starting from different 
structures. (a) and (b) show QTotal vs. RG for simulations starting from collapsed and linear 
structures respectively. There are at least three major minima in these landscapes, showing that 
DPDP is a non-two-state system. (c) and (d) show QH1 vs. QH2 for simulations starting from 
collapsed and linear structures respectively. These landscapes indicate DPDP behaves more like a 
four-state system, with minima corresponding to (clockwise from top-right) fully formed ß-sheet, 
only hairpin 1 folded, unfolded, and only hairpin 2 folded. Both (c) and (d) show that hairpin 2 alone 
is about 1.0 kcal mol -1 more stable than hairpin 1 alone. 
 

It is apparent from the QTotal vs. RG landscapes shown in Figure 3-3a and Figure 
3-3b that DPDP is not a two-state system. Both landscapes contain at least three well-
populated free energy minima (with depths ranging from 0-2 kcal mol-1) centered at 
QTotal=0.80, 0.45, and 0.15. The global free energy minimum, located at QTotal=0.80 in 
both REMD data sets, corresponds to the fully formed ß-sheet under the simulation 
conditions, with high similarity (average RMSD <1.0) to the 3-stranded model structure 
we selected from our MD simulation (see Methods). This is particularly encouraging 
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because no ß-sheet hydrogen bonds were present in any of the initial structures for these 
REMD simulations, yet both predict the 3-stranded sheet as the global free energy 
minimum. The minimum is centered slightly lower than QTotal=1.00, reflecting some 
fraying at the ends of each hairpin due to thermal fluctuations; this is expected as contacts 
were defined at the lower temperature of 277 K. The broad oval shape of the minimum 
with respect to QTotal is also consistent with a moderate degree of conformationa l 
flexibility in the fully formed sheet, though the narrow range of RG values sampled in 
this basin indicates that the hydrophobic core remains substantially intact during these 
fluctuations. The next of the three minima, centered at QTotal=0.45, corresponds to an 
ensemble of partially folded structures, the nature of which will be discussed below.  

The minimum at QTotal=0.15 corresponds to the unfolded state. The core is much 
less compact in this state, as seen from the RG coordinate which ranges from about 6.5 to 
9.0 ?. The non-zero QTotal indicates that this ensemble retains at least some structure 
elements of the ß-sheet, although this data does not reveal whether the residual contacts 
are consistent among all structures in this state. Analysis of the fraction of each of the 
contacts sampled in this fairly well-defined minimum reveals that the residual contacts 
arise predominantly from turn formation, which is not surprising considering the strong 
propensity of D-proline to form type I' and II' ß-turns[88, 89]. It is this drive toward turn 
formation that provides DPDP with significant stability as compared to peptides of 
similar length without D-proline residues[81, 87, 90], as a strong turn is related to greater 
hairpin stability[77, 102, 103].  

Next, the stability of hairpin 1 compared to hairpin 2 was examined. Figure 3-3c 
and Figure 3-3d show free energy landscapes calculated from the QH1 and QH2 order 
parameters. These landscapes suggest that DPDP populates at least 4 states, with the four 
basins corresponding to formation of (clockwise from top right) both hairpins (3-stranded 
sheet), only hairpin 1, neither hairpin (unfolded), and only hairpin 2. This 4-state model is 
consistent with that proposed by Syud et al.[87] and Griffiths-Jones & Searle [86] for 
three-stranded anti-parallel ß-sheet folding. It is apparent from these figures that the basin 
with hairpin 2 present and hairpin 1 absent is lower in free energy than that with hairpin 1 
present and hairpin 2 absent, i.e. hairpin 2 is thermodynamically more stable than hairpin 
1. Based on relative free energies of these basins, it is estimated that formation of hairpin 
2 alone is ~1.0 kcal mol-1 more stable than ha irpin 1 alone in both simulations. Difference 
in hairpin stability has been observed for other 3-stranded ß-sheets[96, 104]. 

In order to further examine the nature of the structures in the partially unfolded 
ensemble (QTotal=0.45), free energy landscapes were plotted as a function of QTotal and 
either QH1 or QH2 (Figure 3-4). These landscapes show that the minima in the previous 
QTotal vs. RG landscapes (Figure 3-3a and Figure 3-3b) centered at QTotal=0.45 are 
themselves made up of two separate minima corresponding to having either hairpin 1 or 
hairpin 2 folded. This data matches the QH1 vs. QH2 landscapes shown in Figure 3-3c 
and Figure 3-3d, showing that four states are indeed present under these conditions. Also, 
it is seen that at QTotal =0.45 it is more favorable (again ~1.0 kcal mol-1 in both 
simulations) to have hairpin 2 folded than hairpin 1. Since partially formed hairpins are 
not well-populated, each of the two hairpins shows significant cooperativity parallel to 
the strand direction. This is consistent with NMR data[87] that indicates similar 
populations of hairpin 2 when measured using different residues in the C-terminal strand. 
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Figure 3-4. Free energy landscapes from REMD simulations at 346 K representing approximately 
130,000 structures. (a) and (b) show QTotal vs QH1 for simulations starting from collapsed and 
linear structures respectively. (c) and (d) show QTotal vs QH2 for simulations starting from 
collapsed and linear structures respecti vely. The minima  at QTotal=0.45 previously seen in Figure 
3-3a and Figure 3-3b are seen here to be made up of partially folded hairpin 1 and hairpin 2 
structures. Again, hairpin 1 is less stable than hairpin 2; at QTotal=0.45 structures with high QH1 
are about 1.0 kcal mol -1 higher in free energy than structures with high QH2.  
 
 Melting curves for DPDP and its component hairpins are shown in Figure 3-5. 
However, it should be noted that these curves are not intended to quantitatively reproduce 
experimental values since the order parameter used to calculate fraction folded in this 
case (Q) may be quite different from the data obtained from various experimental probes, 
particularly since folding is not two-state; such behavior has been reported 
previously[64]. As described above, we use a contact fraction cutoff of 0.5 since it 
reasonably matches the boundaries of the free energy basins observed in Figure 3-3 and 
Figure 3-4. However, melting curves obtained with this cutoff slightly overestimate the 
hairpin and sheet stability as compared to NMR and CD measurements. This may 
indicate that our simulation model overestimates the stability of ß-sheet formation, 
although the differences correspond to only a few tenths of kcal mol-1 in free energy, well 
below our expectation of error for an additive molecular mechanics force field with a 
continuum solvent model. The difference may also reflect the challenge in comparing 
fractional population based on atomic coordinates to those based on experimental 
observables, particularly for systems that do not fold cooperatively. If a more restrictive 
cutoff value of 0.75 is used, the agreement with both sets of experimental data is 
significantly improved, with the melting curve for hairpin 2 falling within the range based 
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on NMR data and the melting curve for the 3-stranded sheet falling within the range 
indicated by the CD data. In any case, one must always exercise caution when 
interpreting data obtained using a strict cutoff based on structural properties. 
 

 
Figure 3-5. Average melting curves for DPDP hairpin 1, hairpin 2, and overall ensemble from linear 
and collapsed REMD simulations. The data is quite sensitive to choice of cutoff. The black lines 
represent a less restrictive cutoff of 0.50, while the red lines represent a more restrictive cutoff of 
0.75. Hairpin 1 structures were considered folded when QH1 was greater than the cutoff, hairpin 2 
structures were considered folded when QH2 was greater than the cutoff, and fully formed ß-sheet 
structures were considered formed when both cutoffs were satisfied. Using a more restrictive cutoff 
(0.75), the hairpin 2 melting curve intersects with NMR data (green line) and overall melting 
behavior intersects with CD data (blue line). Regardless of cutoff, hairpin 2 is more stable than 
hairpin 1 in each case. Error bars reflect differences between the linear and collapsed REMD data 
sets. 
 

The calculated curves are also quite useful in comparing the stability of the 
individual hairpins to that of the full ß-sheet. It is clear from Figure 3-5 that the relative 
temperature-dependent stabilities do not strongly depend on the choice of cutoff; for both 
values tested, hairpin 2 is much more stable as compared to hairpin 1. 
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3.3.3 Cooperativity 
Cooperativity perpendicular to strand direction in our simulations was measured 

in two ways using the ensemble of structures at 279 K from the REMD simulations. 
Since our cooperativity calculations are based solely on simulation data for DPDP, there 
is the additional advantage that the effect of the L-Pro substitution (LPDP) need not be 
considered.  

The first calculation was intended to generate data comparable to that which had 
been obtained through experiment [87], in which hairpin 2 population was compared 
between DPDP and LPDP (in which hairpin 1 is expected to be absent). For this case, we 
calculated the free energy for formation (?G) of hairpin 2 in two sets of DPDP structures: 
our entire ensemble (to match DPDP in experiments) and only the subset of structures 
which lacked hairpin 1 (QH1<0.5, analogous to LPDP in experiments). Differences in the 
free energy of formation of hairpin 2 (??G) between these sets of structures are 
presumably attributable to the influence of the conformation of hairpin 1. Since hairpin 1 
is only partially folded in DPDP, the effect on hairpin 2 will depend on the extent of 
hairpin 1 folding (which was not determined in the experiments and is therefore not 
evaluated for the purpose of this particular calculation). It is for this reason that Syud et 
al. acknowledged that their values for cooperativity represent only a lower limit.  

The resulting free energy profiles for the sub-ensembles are shown in Figure 3-6, 
and the free energies of hairpin formation and cooperativity are listed in Table 3-2 
(obtained from the ensembles at 279 K as described in Methods). It is immediately 
apparent that the free energy profile of formation for a given hairpin is strongly 
influenced by the presence or absence of the neighbor, indicating at least partial 
cooperativity. The formation of hairpin 2 in the overall ensemble (Figure 3-6a, 
comparable to DPDP in experiments) becomes 1.1 ± 0.7 kcal mol-1 less favorable when 
hairpin 1 is known to be absent (Figure 3-6e, comparable to LPDP in experiments). This 
is in reasonable agreement with the values of 0.38 to 0.42 kcal mol-1 obtained by Syud et 
al.[87]. Although only hairpin 2 was used as an experimental probe of cooperativity, we 
also calculated the effect of (partial) hairpin 2 formation on the stability of hairpin 1. This 
effect is much greater than was calculated for ha irpin 2; the formation of hairpin 1 
becomes 3.0 ± 0.5 kcal mol-1 less favorable when hairpin 2 is absent. It is apparent that 
without hairpin 2, the formation of hairpin 1 is very unfavorable. It is important to note 
that this approach resulted in a ß-sheet cooperativity value that depends significantly on 
which hairpin is considered in the analysis (- 1.1 vs. - 3.0 kcal mol-1). 
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Figure 3-6. Free energy (in kcal mol -1) of individual hairpin formation in DPDP at 279 K for varying 
states of the other hairpin. The red curves were calculated from the REMD simulation starting from 
the linear structure, and the green curves were calculated from the REMD simulation starting from 
the collapsed structure. Hairpin 2 formation is shown as a function of QH2 (a) with the state of 
hairpin 1 undetermined (equivalent to DPDP in experiments), (c) with hairpin 1 present, and (e) with 
hairpin 1 absent (equivalent to LPDP in experiments). Hairpin 1 formation is shown as a function of 
QH1 (b) with the state of hairpin 2 undetermined, (d) with hairpin 2 present, and (f) with hairpin 2 
absent. Hairpin X was considered present if QHX>0.50 and absent if QHX=0.50. The noise at low 
values of QH2 in (a) reflects the fact that there is a low population of structures with only hairpin 1 
folded. 
 

Our next measure of cooperativity was intended to be more direct than was 
possible by comparing DPDP and LPDP. In this case, the free energy of formation of a 
given hairpin in the ensemble of structures lacking the other hairpin (Figure 3-6e and 
Figure 3-6f) was compared to the free energy of formation of that hairpin when the other 
hairpin is known to be present (Figure 3-6c and Figure 3-6d). For hairpin 2, this ? ? G  
was calculated by comparing the free energy of formation of hairpin 2 in two sets of 
structures; those with hairpin 1 absent (QH1 less than 0.50) (Figure 3-6e) and those with 
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hairpin 1 present (QH1 greater than 0.50) (Figure 3-6c). This corrects the cooperativity 
value for the partial hairpin folding within DPDP. In this case the formation of hairpin 2 
when hairpin 1 is present becomes 3.2 ± 0.5 kcal mol-1 more favorable than the formation 
of hairpin 2 when hairpin 1 is absent. This ??G value is nearly three times that obtained 
when the state of hairpin 1 was not taken into account (- 1.1 ± 0.7 kcal mol-1). 
 
a) ?G H2 -1.3 ± 0.6 d) ?G H1 -0.8 ± 0.4
b) ?G H2 w/ H1 -3.4 ± 0.4 e) ?G H1 w/ H2 -1.1 ± 0.3
c) ?G H2 w/o H1 -0.2 ± 0.3 f) ?G H1 w/o H2 2.2 ± 0.2
??G H2exp (a-c) -1.1 ± 0.7 ??G H1exp (d-f) -3.0 ± 0.5
??G H2sim (b-c) -3.2 ± 0.5 ??G H1sim (e-f) -3.3 ± 0.4  
Table 3-2. Average cooperativity values calculated from both REMD simulations in kcal mol -1 at 279 
K for various hairpin states of DPDP. ? ? Gexp refers to cooperativity values obtained using 
ensembles corresponding to those studied experimentally, while ?? Gsim uses ensembles that correct 
for partial formation of the neighbor hairpin in ensemble (a). A detailed discussion of this difference 
is presented in the text, and uncertainty calculations are described in Methods.   
 

In contrast, the values obtained for hairpin 1 formation when hairpin 2 is known 
to be present are quite similar to those obtained when the state of hairpin 2 is not taken 
into consideration (- 3.3 ± 0.4 kcal mol-1). This is because no significant fraction of 
structures having hairpin 1 without hairpin 2 is sampled, as stated above. In each case, the 
end result is that having one hairpin present stabilizes the formation of the other hairpin 
by ~3 kcal mol-1, indicating significant cooperativity perpendicular to strand direction.  

We noted that the cooperativity values obtained for the two hairpins differed 
significantly when the partial folding of the partner hairpin is not considered. In contrast, 
when the data is corrected for partial folding of the neighboring hairpin the values 
become quite similar (- 3.2 ± 0.5 vs. - 3.3 ± 0.4 kcal mol-1). This sequence independence 
of the resulting cooperativity measure indicates that including the partial folding 
correction results in a more robust analysis method, and also suggests that the value may 
reflect general properties of ß-sheets; further study on other sequences should be carried 
out to confirm this hypothesis. 
  

3.3.4 Relative Hairpin Stability 
The overall ensemble of structures consists of four states: folded, unfolded, and a 

partially folded state that is composed of structures with either one of the two hairpins 
formed, in agreement with the non-two-state folding behavior of DPDP observed by 
Syud et al.[87]. There exists some population of structures with only hairpin 1 or only 
hairpin 2 folded, resulting in a four-state folding model as has been proposed for 3-
stranded ß-sheets by Griffiths-Jones & Searle [86]. 

Our simulations indicate that hairpin 2 is more stable than hairpin 1. The melting 
curve in Figure 3-5 shows the ß-sheet population ranges obtained from NMR[87] and 
CD/FTIR[91] experiments. The difference between these ranges agrees well with the 
observed difference between our simulated melting curves for hairpin 2 and the fully 
formed ß-sheet. Syud et al. measured the change in Ha chemical shifts of residues in 
hairpin 2, using a cyclic peptide that corresponded to a DPDP hairpin 2 as the fully 
folded reference state and LPLP as the random coil reference state (replacing D-proline 
with L-proline abolishes the hairpin turn[81]). They noted that, since folding is not 2-
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state, their NMR measurements only provided the population of hairpin 2, which were 
used to estimate cooperativity values. In contrast, the CD/FTIR measurements of 
Kuznetsov et al.[91] probe the entire peptide and thus the average ß-sheet content for all 
states.  

A previous computational study of DPDP by Wang & Sung[105] indicated that 
hairpin 1 was more stable than hairpin 2. However, their result was based on 100 ns of 
standard MD data at 297 K; our standard MD simulations were very poorly converged on 
this timescale even though they were run at a higher temperature of 350 K. In addition, 
this observation does not appear to be consistent with the results from NMR and CD 
experiments; if hairpin 1 were more stable, then the NMR experiment should report a 
lower population than CD, which was not observed. 

Why is hairpin 2 so much more stable than hairpin 1? Our computational 
observation appears to be consistent with experimental studies of DPDP. Syud et al. 
found that replacing the second D-Pro in DPDP with Asn did not alter the folding pattern 
or cooperativity values of that hairpin significantly[87] (although overall stability was 
reduced). Chen et al. reported that mutating D-Pro in hairpin 1 to Asp resulted in 
formation of a ß-bulge instead of a ß-turn, while the same mutation in hairpin 2 retained 
the ß-hairpin shape[102]. The fact that hairpin 2 appears less sensitive to mutations may 
indicate that it is intrinsically more stable than hairpin 1, though this is by no means a 
comprehensive analysis. It is also possible that having Ser5 in the i position of hairpin 1 
ß-turn detracts from the stability of hairpin 1. Amino acid propensities[106] indicate that 
Ser is strongly turn-promoting, which may lead it to compete for turn geometry with D-
Pro and Gly in hairpin 1, reducing the population of the native hairpin. In contrast, the i 
position in hairpin 2 is occupied by Val, which is considered turn-breaking. This suggests 
that mutating Ser5 to Val may confer additional stability to hairpin 1, and perhaps also to 
the 3-stranded sheet state due to the cooperativity between the hairpins. Furthermore, 
analysis of contact melting profiles (data not shown) reveals that hairpin 2 in DPDP 
contains two strong non-turn contacts: a salt-bridge between Glu13 and Lys18 and a 
hydrophobic cross-strand interaction between Tyr11 and Leu20. Cross-strand salt-
bridging is known to have a stabilizing effect in ß-hairpins[107, 108].  Rao & Caflisch 
suggested that the C-terminal hairpin of another designed 3-stranded ß-sheet was more 
stable than the N-terminal hairpin due to strong hydrophobic interactions, particularly a 
contact between aromatic Trp and Tyr[96]. In contrast, hairpin 1 has no salt bridge and 
weaker hydrophobic interactions overall. Mutations targeting hairpin 1 and Tyr11 
specifically are explored in Chapter 4. 

The experimentally observed cooperativity between the individual hairpins is 
reproduced in our simulations, although our data is more amenable to direct calculation 
of the actual magnitude of the effect. Schenck & Gellman studied the population of 
hairpin 2 in two sequences: DPDP and LPDP, in which the D-Pro in hairpin 1 was 
replaced by L-Pro, effectively “turning off” formation of hairpin 1[81]. DPDP 
demonstrated increased population of hairpin 2 as a result of partial hairpin 1 formation. 
Subsequent NMR experiments by Syud et al.[87] estimated that the additional stability 
conferred upon DPDP by “turning on” hairpin 1 to be from - 0.42±0.22 kcal mol-1 to 
- 0.38±0.13 kcal mol-1 at 277 K, depending on the Ha resonance chosen. Importantly, 
they noted that this value is a lower limit on the true cooperativity since hairpin 1 is not 
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always in the hairpin state in DPDP, thus limiting the effect on hairpin 2. In other words, 
hairpin 1 in DPDP is not fully “turned on”. 

Experimental cooperativity va lues are not available for hairpin 1, but our 
calculations show a similar effect; the free energy difference between a) having hairpin 1 
irrespective of the state of hairpin 2 and b) having hairpin 1 without hairpin 2 is - 2.9 ± 
0.5 kcal mol-1 at 279 K. Interestingly and unlike hairpin 2, this value is relatively 
insensitive to whether we consider the state of hairpin 2; the ??G value for formation of 
hairpin 1 in ensembles of structures with hairpin 2 fully present or fully absent is - 3.3 ± 
0.4 kcal mol-1. This insensitivity most likely reflects the relative instability of hairpin 1 
with respect to hairpin 2 and the relatively low population of hairpin 1 in the absence of 
the full 3-stranded ß-sheet.  

It is interesting to note that all of our calculations place the value for hairpin 
cooperativity at about - 3.3 ± 0.5 kcal mol-1 at 279 K. Further investigation is needed to 
determine whether this value reflects general properties of ß-sheet systems. 
 

3.4 Conclusions 
 Several aspects of the thermodynamic behavior of the three-stranded ß-sheet 
DPDP were investigated via several microseconds of well-converged REMD simulation 
of DPDP. It was found that the replica exchange method was superior to standard MD for 
exploring the thermodynamic landscape of this system. DPDP was found to behave in a 
four-state manner, consistent with expectations based on experimental evidence. Hairpin 
2 was more stable than Hairpin 1, consistent data obtained from NMR measurements of 
Hairpin 2 and CD/FTIR measurements of the overall peptide. The folding cooperativity 
perpendicular to strand direction was found to be about -3.3 kcal mol-1, significantly 
larger than the previously estimated lower limit. Similar values were obtained for each 
hairpin, suggesting this may be a general effect in ß-sheet systems, although further 
experiments would be needed to confirm the generality of this result. Cooperativity has 
been observed for a 4 stranded ß-sheet sequence related to DPDP[87], so it is possible 
this effect may be extended to the addition of several strands, and is consistent with the 
tendency for ß-sheet structures to aggregate[8].  
 It should be noted that the accuracy of the data obtained in this study is sensitive 
to choice of forcefield and solvent model. In particular, the solvent model used in this 
study has shown a tendency to over-stablize a-helical conformations [71-74]. However, 
the forcefield may be used to compensate for solvent model inadequacies through 
modification of torsional parameters[75]. While this does not address the underlying 
problem of solvent model accuracy, it can be used to obtain useful data as long as one is 
careful to maintain agreement with experimental results. The forcefield used in this study 
was developed based on a ß-hairpin peptide with same solvent model as in this study[63], 
and was used to generate results for that ß-hairpin that matched experiment (See Chapter 
2), so it might be expected to be transferable to other small ß systems using this solvent 
model. The good agreement of hairpin cooperativity in DPDP calculated in this study 
with that obtained by experiment is a good indication that these results are reliable and 
likely within acceptable error (~1 kcal mol-1). 
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Chapter 4  
Effect of Mutations on Individual Hairpin Stability in a 3-
stranded ß-sheet Model 
 

4.1 Introduction 
An important aspect of the protein folding problem is that of protein stability. A 

protein can be made to fold faster or more efficiently by either stabilizing the native state, 
or destabilizing the unfolded state[109] or a misfolded conformation[92]. Understanding 
the origins of stability in proteins may therefore give insight into the folding process. In 
particular, understanding stability in ß-sheet structures can be particularly important, as 
the formation of these types of structures are implicated in diseases related to protein 
misfolding[8]. 

ß-hairpins can garner stability from two main sources; interactions between the 
strands, which include hydrogen bonds and hydrophobic clustering of side-chains, and 
turns, which can reduce the entropic penalty of bringing two strands together. In previous 
work on the three-stranded anti-parallel ß-sheet model peptide DPDP, it was noted that 
despite both turns having DPro and Gly in the i+1 and i+2 positions of their reverse 
turns, the C-terminal hairpin was more stable than the N-terminal hairpin by about 1.0 
kcal mol-1. For simplicity, the N-terminal and C-terminal hairpins are hereafter referred to 
as Hairpin 1 and Hairpin 2 respectively. 

In this study, contributions to stability from the strands and turn regions of DPDP 
are probed by several well-converged REMD simulations of various mutants of DPDP. 
The affect of perturbing the hydrophobic core of DPDP is explored by mutating a Tyr 
residue central to this core. Several mutations focus specifically on improving the 
stability of Hairpin 1 by either improving hydrophobic contacts between the two strands 
of Hairpin 1, optimizing the i position of the reverse turn, or introducing a salt bridge.  

Of all the mutations made, three were seen to improve the stability of the first 
hairpin (as judged from the melting profile of each mutant). One mutant, referred to as 
FT, improved stability by moving a hydrophobic Phe residue from the first strand in the 
N-terminal hairpin to the central strand. The other mutant, referred to as S5V, mutated a 
Ser in the i position of the N-terminal hairpin reverse turn to a Val. It is shown this 
improves stability by destabilizing a potential unfolding pathway, and so is an example of 
negative design. The last mutant, referred to as EVK, was just as stable as S5V despite 
having the introduction of a salt-bridge in addition to the turn optimization. An attempt 
was made to combine the FT and S5V mutations; this mutant is referred to as FTV. 
However, FTV showed a stability only between that of S5V and FT, indicating these 
mutations are not additive and perhaps compete with each other.  
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4.2 Methods 

4.2.1 Model Systems 
All systems simulated here were based off of the 3-stranded ß-sheet model peptide 

DPDP (sequence Ace-V2FITSdPGKTY10TEVdPGOKILQ20-NH2, dP=D-proline, 
O=Ornithine), except that a Lysine was substituted for the Ornithine. Replacing Ornithine 
with a Lysine in a related peptide analogous to the C-terminal hairpin of DPDP caused no 
detectable effect on the structure[93]. The termini were amidated and acetylated in 
accordance with experiments. DPDP was designed with a net charge of +2 to prevent 
aggregation[81], and our model retains this net charge. 

Several mutants were made of DPDP by simply deleting the side-chain atoms of 
the target residue except for the Cß atom, then building in the side-chain of the desired 
type using the Leap module of Amber. Six different mutants were simulated grouped into 
3 classes: mutants of a Tyr residue central to the hydrophobic core of DPDP, mutants 
focusing on improving the stability of Hairpin 1, and combinations of different mutations. 
Mutated residues in each mutant are shown in Table 4-1. 
 

2 4 5 8 9 10 11
Wildtype Phe Thr Ser Lys Thr Tyr Thr
Tyrosine Mutants
Y10V Val
Y10T Thr
Hairpin 1 Mutants
FT Thr Phe
S5V Val
Combination Mutants
EVK Glu Val Lys
FTV Thr Val Phe  
Table 4-1. Summary of DPDP mutants.  
 

4.2.2 Simulation Details 
Simulations were carried out using Amber version 8.0[65]. All hydrogen atom 

bond lengths were constrained using the SHAKE algorithm[59]. All nonbonded 
interactions (ie. without cutoff) were calculated at each time step. All systems were 
modeled with the AMBER ff99 force-field with modified backbone parameters to reduce 
a-helical bias[63]. Steepest descent energy minimization was performed on all structures 
for 500 steps prior to simulation. All simulations were carried out using an 
implementation[60, 94] of the Generalized Born (GB) implicit solvent model available in 
Amber (igb=1). Explicit counterions were not included, consistent with most studies that 
employ continuum solvation models. 

Simulations were performed using REMD as implemented in Amber version 8. A 
total of 12 replicas were used for all REMD simulations at the following temperatures: 
260.1, 279.3, 300.0, 322.2, 346.0, 371.6, 399.1, 428.7, 460.4, 494.5, 531.0, and 570.3 K. 
The number of replicas was chosen so that sufficient energy overlap would be achieved 
between replicas. The temperature for each replica was generated based on an 
exponential distribution and chosen so that an exchange acceptance ratio of 0.15 would 
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be achieved. Exchanges between replicas at neighboring temperatures were attempted at 
an interval of 1 ps. Temperatures were maintained between exchanges by coupling to an 
external bath using Berendsen’s scheme[58]. 

For each mutant, two REMD simulations were run; one starting from a ß-sheet 
conformation, and one starting from a linear conformation. Each simulation was run for 
at least 80,000 exchanges, until good convergence was seen as measured by the 
differences in the melting curves obtained with each simulation. The total simulation time 
for all mutants was ~ 1.2 µs/replica.  
 

4.2.3 Order Parameters and Melting Curve Calculation 
Since none of the mutations studied here change the structure of the backbone of 

DPDP, the fraction of backbone hydrogen bonds formed (X) was chosen as the main 
gauge of stability that would be common to all structures. Four native backbone hydrogen 
bonds were defined for each hairpin (see Table 3-1). Overall melting curves were 
calculated using the criteria that for a structure to be considered folded, each hairpin must 
have X>0.5. Melting curves for individual hairpins were calculated using the same cutoff 
(X>0.5). Error bars represent half the difference observed between the independent 
REMD simulations. 

 

4.3 Results 

4.3.1 Tyrosine mutants 
 In their studies of DPDP, Syud et al. identified a clustering of residues (I3, S5, 
Y10, K17, and L19) as a possible stabilizing force in DPDP[87]. Examination of the 
folded structure of DPDP reveals the reason these residues are able to come into close 
contact is the twist of the ß-sheet, which creates a concave space on either side of DPDP 
where residues can cluster (Figure 4-1a). The central residue of this cluster is Y10, and so 
mutations of this residue were made to explore what factors may be important in this 
position. Two mutations were considered: Y10V and Y10T. These mutations were 
chosen for several reasons. Both Val and Thr, like Tyr, prefer ß-sheet conformations 
according to statistical amino acid preferences[106, 110]. Val and Thr are different 
enough from Tyr structurally that changes in stability can be expected, and similar 
enough to each other that direct comparison is relatively simple; the change from Val to 
Thr amounts to exchanging a methyl group for a hydroxyl.  
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Figure 4-1. Twist and hydrophobic clustering in DPDP. Solvent Accessible Surface Area of the 
backbone calculated with VMD 1.83[3] shown in transparent grey, N-terminal acetyl group shown in 
blue. a) Hydrophobic cluster of residues (colored orange) inferred from NMR experiments. The twist 
of the sheet serves to bring these residues closer to each other. Tyr10, the central residue of this 
cluster is mutated to Val and Thr in Y10V and Y10T respectively. b) Potential hydrophobic cluster of 
residues (colored yellow) on the opposite face of DPDP. The central residue of this cluster is Thr11. 
Note Phe2 in the more solvent exposed position in strand 1. Thr11 and Phe2 are swapped in the FT 
mutant. 
 

Two REMD runs of each mutant were performed starting from a folded structure 
based on the folded structure of DPDP and an extended linear structure. Mutants were 
run until reasonable convergence (comparable to wildtype DPDP) in melting curve plots 
was achieved. All other mutants were run in the same fashion. The total simulation times 
for each of these mutants (both from folded and linear structures) were Y10V=200ns, and 
Y10T=140ns. Since the definition of native contacts will vary from mutant to mutant, 
comparisons were made using X (fraction of backbone hydrogen bonds formed) instead 
of native contacts, as was done in Chapter 3.  

Melting curves calculated from X for DPDP wildtype, Y10V, and Y10T are 
shown in Figure 4-2a. Y10T is less stable than DPDP, which is not surprising considering 
this mutation involves the loss of many side chain atoms. In addition, the shape of the 
curve is much more linear, indicating that the cooperativity observed in DPDP has been 
all but eliminated in Y10T. What is surprising is that the Y10V melting curve shows 
almost no change from the DPDP curve. The fact that mutation of Tyr to Val (net loss of 
5 atoms and the aromatic ring) produces little change is interesting, but even more 
significantly the further change from Val to Thr (net change of two atoms) results in a 
comparatively drastic change in stability. 

A plot of the average distribution of radius of gyration (RG) values for the DPDP, 
Y10V, and Y10T simulations is shown in Figure 4-2b. Each distribution shows two peaks 
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located at approximately RG=5.5 Å and RG=6.4 Å. However, it is clear that the residue 
cluster is on average much more compact in the DPDP and Y10V simulations than in the 
Y10T simulations. It had been seen previously in Figure 3-3a and Figure 3-3b in Chapter 
3 that transition from the folded minimum to the intermediate minimum was 
accompanied by an increase in RG, i.e. disruption of the hydrophobic core. Essentially, 
mutation of one of the methyl groups of Val to a hydroxyl results in disruption of the 
hydrophobic core in DPDP, as it is unfavorable to bury the more polar hydroxyl group. 
This results in a lower overall stability. 
 

 
Figure 4-2. a) Melting curves calculated using fraction backbone hydrogen bonds present for DPDP, 
Y10V, and Y10V. Y10T is destabilized compared to DPDP, Y10V is relatively unchanged. b) 
Distribution of radius of gyration (RG) of the hydrophobic cluster (depicted in Figure 4-1a) for 
DPDP, Y10V, and Y10T. The hydrophobic core is disrupted far more often in the Y10T mutant 
compared with DPDP or Y10V, causing the lower stability seen in Figure 4-2a. Error bars represent 
half the difference between values obtained from two independent REMD simulations starting from 
different structures.  
   

4.3.2 Hairpin 1 mutants 
 Since the previous simulations of native DPDP indicated that H1 was 
significantly less stable compared to the H2, several mutations were made to the 
sequence of H1 to try and improve stability and understand the differences between the 
two hairpins. Three mutants were considered: F2T/T11F (referred to as FT), S5V, and 
T4E/S5V/T9K (EVK). The total simulation times for the mutants are FT=140 ns, 
S5V=260 ns, and EVK=270 ns. 

The first mutant, FT, was made with the idea of improving hydrophobic contacts 
in DPDP. Figure 4-1a shows the hydrophobic cluster on one side of DPDP thought to 
provide stability; simulations showed disruption of this cluster to be destabilizing. It was 
envisioned that residues F2, T4, T11, K16, and I18 on the other side of DPDP may be in 
a position to form an analogous hydrophobic cluster (referred to hereafter as the alternate 
hydrophobic cluster, Figure 4-1b). If these residues were to form a similar cluster, then 
T11 would be in the key position occupied by Tyr in the original cluster, and previous 
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simulations showed that Thr was destabilizing in such a position. Therefore a double 
mutant was made, F2T/T11F, essentially swapping the Phe and Thr, which are located 
across from each other in the hydrogen bond registry of DPDP. This mutation seemed 
sensible for several reasons. First, the mutation conserves the overall composition of 
DPDP because only the positions of residues are being swapped. Second, it places Phe in 
the position analogous to the one occupied by Tyr in the other cluster. Third, it moves the 
more hydrophobic Phe closer to the interior of the protein where it might have more 
solvent protection, and the more polar Thr to a more solvent exposed position in the first 
strand. 
 An examination of the melting curves for DPDP and FT (Figure 4-3) show that 
the FT mutant is overall more stable than DPDP. In addition, the stability of H1 is 
significantly increased, while the stability of H2 is relatively unchanged. This suggests 
that the majority of improvement occurs in H1 contacts. Since it was theorized that 
stability would be achieved by forming an alternate hydrophobic cluster of residues 2, 4, 
11, 16, and 18, the radius of gyration of these residues was plotted for DPDP, the FT 
mutant, and the S5V mutant (Figure 4-4a). From this plot it is seen that the distribution of 
radius of gyration values for the alternate hydrophobic cluster of FT are shifted lower 
than the distributions for DPDP and S5V (a turn 1 mutant), indicating the alternate cluster 
is more compact in the FT mutant. For comparison, the distribution of the RG values for 
the original hydrophobic cluster are shown for the same systems in Figure 4-4b. Here it is 
seen that the distributions hover around the same value, indicating that the original cluster 
is not perturbed in these mutants.  

Different turn types are known to have a significant affect on hairpin stability. 
The DPro/Gly sequence in DPDP has a strong propensity to form type I' and type II' 
reverse turns. Despite both turns having this sequence, each hairpin has a different 
stability. To explore how strongly the identity of the residues in the turn sequence affect 
stability, two mutants of the H1 turn region were made. The first, S5V, makes it so that 
the four residues in the i through i+3 positions are the same in both turns (VdPGK). The 
second, EVK, makes it so that 6 residues including the turn are the same (EVdPGKK). 
This mutation also creates the potential for a salt bridge between residues E4 and K9. 
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Figure 4-3. Melting curves for wildtype DPDP and the FT mutant. Melting curves are shown for 
overall, only Hairpin 1 (H1) and only Hairpin 2 (H2). In DPDP Hairpin 2 is more stable than Hairpin 
1, but in the FT mutant the hairpins are approximately equal in stability, resulting in a net gain in 
stability for FT over wi ldtype DPDP. 
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Figure 4-4. Radius of gyration of various hydrophobic clusters in DPDP, FT, and S5V. a) Radius of 
gyration of the 'alternate' cluster depicted in Figure 4-1b. The average value is shifted slightly lower 
in FT, indicating the alternate cluster is more compact in this mutant. b) Radius of gyration of 
hydrophobic cluster depicted in Figure 4-1a. The average value is similar for all systems, indicating 
that these mutations do not perturb this cluster. 
 
 Figure 4-5 shows melting curves for DPDP, EVK, and S5V. Both the EVK and 
S5V mutants are much more stable than DPDP. In addition, H2 stability is now 
approximately equal to H1 stability for the EVK and S5V simulations. Since the EVK 
and S5V mutations are overall comparable in stability, it can be inferred that most of the 
stabilization is occurring from the S5V mutation, while salt bridging between E4 and K9 
provides only a slight increase in stability. Since the addition of the salt bridge appears to 
marginally affect stability it is likely that overstabilization of salt-bridging, known to be a 
problem in some simulations with GB solvation[72, 95, 111-113], is not a factor in this 
system, although ideally a T4E/T9K mutation would be available to observe the actual 
effects of adding a salt bridge in this position. 
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Figure 4-5. Melting curves for DPDP, EVK, and S5V. EVK and S5V are much more stable than 
DPDP. Since the stability of S5V and EVK is approximately equal, the majority of the stabilization 
comes from the S5V mutation. Note also how H1 and H2 stabilities are approximately equal in the 
EVK and S5V mutants. 
 
 Unlike previous mutations, there is no readily apparent reason why the S5V 
mutation should offer any stability benefits other than the fact that the same sequence is 
in H2 in DPDP. Figure 4-6 shows free energy landscapes as a function of f/? dihedral 
angles for residues 5, 4, and 3 in both DPDP and S5V. It is seen that the S5V mutation 
seems to drastically reduce the propensity of certain residues to access the left-handed 
helical region of the f /? plot, particularly residue 5. This effect is seen to be translated 
down to residues T4 and I3. It was thought that structures with residue 5 dihedrals in the 
left-handed helical regions accessible to Ser5 in DPDP but not to Val5 in S5V were 
perhaps responsible for the lower stability of DPDP. 

Structures that fell within either of the two wildtype DPDP residue 5 free energy 
landscape minima (Figure 4-6) centered at f/?=-130, 95 (the ‘normal’ ß-sheet 
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conformation) and f/?=40, 65 (the left-handed a-helical region) were analyzed. H1 from 
representative structures from these clusters are shown in Figure 4-7. It is immediately 
apparent that strand 1 is ‘kinked’ in the structures located in the left-handed a-helical 
region. The native backbone hydrogen bond between S5H and K8O has been disrupted 
and a non-native backbone hydrogen bond between T4O and K8H forms, stabilizing this 
‘kinked’ conformation and forming a 3-residue bulge in place of the 2-residue turn. In 
DPDP it is known that mutation of DPro7 in turn 1 to Asp resulted in the formation of a 5 
residue bulge, while the same mutation in turn 2 had no effect[102], indicating that 
perhaps the sequence of turn 1 is predisposed to form bulge- like structures. 
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Figure 4-6. Free energy (in kcal mol -1) Ramachandran plots for residues 3, 4, and 5 in DPDP (left 
column) and S5V (right column).  Accessibi lity to the left-handed helix region of the Ramachandran 
space is drastically reduced in the S5V mutant. 
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Figure 4-7. Hairpin 1 of DPDP in the normal ß-sheet conformation (left) and the 'kinked' 
conformation (right). The top dashed line is drawn between the atoms forming the non-native 
backbone hydrogen bond (T4O-K8H) and the bottom dashed line is drawn between the atoms 
forming a native backbone hydrogen bond (S5H-K8O). 
 
 The S5V mutation, by reducing residue 5 access to the left-handed helical region 
of the Ramachandran space, prevents formation of this non-native hydrogen bond and the 
‘kinked’ structure. This effect can be seen most clearly in free energy plots using XTotal 
and the non-native hydrogen bond distance (T4O-K8H) as coordinates, shown in Figure 
4-8. In DPDP there is a clear thermodynamic pathway in which the non-native hydrogen 
bond forms at around XTotal=0.30; there is only a small barrier to proceed to the unfolded 
state from this intermediate state. However, in S5V this pathway is all but eliminated. 
Therefore S5V derives its stability via elimination of an intermediate state that facilitates 
unfolding of DPDP. 
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Figure 4-8. Free energy (in kcal mol -1) of 'kinked' structure non-native hydrogen bond formation as a 
function of XTotal. The intermediate stabilized by formation of this non-native hydrogen bond at 
XTotal=0.3 in DPDP is eliminated in the S5V mutant.  
 
 

4.3.3 FTV Mutant 
Both the FT (F2T, T11F) and S5V mutations were more stable than the wildtype. 

A triple mutant was made, FTV (F2T, T11F, S5V) in an attempt to combine the stabilities 
gained from each set of mutations to produce an even more stable peptide. Melt curves 
for DPDP, FT, FTV, and S5V calculated from fraction backbone hydrogen bonds (cutoff 
XH1, XH2 > 0.5 ~ folded sheet) are shown in Figure 4-9. The overall stability of the FTV 
mutant falls between the FT and S5V mutants, indicating the stability of the 2 mutations 
does not add and likely compete with each other in some way. 
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Figure 4-9. Melting curves for wildtype DPDP, the FT mutant, the S5V mutant, and the FTV mutant, 
which combines the FT and S5V mutations. The stability of FTV falls in-between that of FTV and 
S5V, suggesting these two mutations somehow compete with each other. 
 

Figure 4-10a and Figure 4-10b show normalized histograms of the radius of 
gyration for the ‘normal’ hydrophobic cluster (residues I3, S/V5, Y10, K17, and L19) and 
‘alternate’ hydrophobic cluster (residues F/T2, T4, T/F11, K16, and I18) respectively for 
wildtype DPDP and the FT, S5V, and FTV mutants. As expected, the alternate 
hydrophobic cluster is more compact in the FT and FTV mutants than in DPDP or S5V, 
although this cluster is overall not as compact as the normal hydrophobic cluster in any of 
the simulations. The position of the normal hydrophobic cluster peak does not change  
from the wildtype position for any of the mutants.  
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Figure 4-10. a) Normalized histogram of the radius of gyration of the hydrophobic cluster shown in 
Figure 4-1a for wildtype DPDP and the FT, S5V, and FTV mutants. The cluster in all three mutants 
is about as compact as it is in wildtype DPDP; it is also present more often in the mutants, reflecting 
the higher stability of the mutants. b) Normalized histogram of the radius of gyration of the alternate 
hydrophobic cluster shown in Figure 4-1b for wildtype DPDP and the FT, S5V, and FTV mutants. 
The FT and FTV mutations result in a slightly more compact cluster than wildtype DPDP or the S5V 
mutation. The alternate cluster is not as compact as the normal cluster. 
 

Figure 4-11 shows the normalized distance histograms of the non-native backbone 
hydrogen bond that is formed in ‘kinked’ structures which seem to destabilize the native 
state by providing a favorable unfolding pathway. There is a peak at 2 Å for the DPDP 
and FT simulations, indicating that this bond is formed. This peak is gone from the S5V 
and FTV mutations, indicating formation of the kinked structure is no longer as 
favorable, as seen previously. 

While the FTV mutant incorporates both the alternative hydrophobic core and 
elimination of the non-native backbone hydrogen bond that stabilized the FT and S5V 
mutants respectively, its overall stability is less than that of the S5V mutation alone. This 
seems to indicate that the FT mutation competes with the S5V mutation in some as yet 
unrevealed way. It also suggests that turn optimization is more important to overall 
stability of the hairpin that optimization of interactions between the strands, as has been 
noted previously[102]. 
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Figure 4-11. Distribution of the distance between the atoms which comprise the non-native hydrogen 
bond (shown in Figure 4-7). When formed, this non-native hydrogen bond can stabilize an unfolding 
intermediate and so destabilize the native state of DPDP. The wildtype and FT mutant both show 
formation of this hydrogen bond, while the S5V and FTV mutants do not, as expected. 
 

 
 

4.4 Conclusions 
 Several mutations were made of various residues in DPDP, revealing underlying 
roles for certain positions. Mutation of the central residue of a hydrophobic core in DPDP 
(Tyr10) to a Thr disrupted the core and lowered stability, while a mutation to Val showed 
little effect, indicating it is important for residues in this position to form hydrophobic 
contacts, and the importance of a hydrophobic core to overall sheet stability in this model 
peptide.  



 

 64 

A mutation designed to form a complimentary hydrophobic core on the opposite 
face of DPDP (the FT mutant) succeeded in increasing overall stability by stabilization of 
Hairpin 1. A second mutation of the i residue of turn 1 from Ser to Val increased stability 
significantly by eliminating an unfolding intermediate structure containing a non-native 
backbone hydrogen bond. This result indicates that Val may be preferable to Ser in the 
first position of a type I' or type II' reverse turn, and reinforces the idea that optimization 
of all residues in a turn is important to the stability of ß-hairpins. Addition of a salt-bridge 
to hairpin 1 (EVK) was found to have only a marginal effect on stabilizing hairpin 1. 
Also, the two mutations found to be most stabilizing (FT and S5V into FTV) were found 
to be non-additive; the FTV mutant actually showed stability in between that of FT and 
S5V, indicating these mutations compete, and reinforcing the idea that care must be taken 
when attempting to design in additional stability; optimization of the turn in ß-hairpin 
structures seems to be dominant over optimization of strand interactions. Intuitively this 
seems sensible, since a strong turn reduces the entropic cost of bringing two strands 
together.  
 It should be noted that although good convergence was achieved for all systems in 
this study, these results (specifically for the mutants) are likely sensitive to the choice of 
forcefield and solvent model (see also Conclusions in Chapter 3). For example, since the 
stability changes in the FT and Y10T mutations seem to result from hydrophobic effects, 
the accuracy of the solvent model will play a large role in the accuracy of the results. 
Ideally the mutant peptides in this study would be synthesized and the changes in stability 
would be studied via experimental methods in order to completely verify the results. 
Unfortunately, the magnitude of the stability changes shown here may not be detectable 
by current experimental methods for this specific system. Therefore it is hoped that 
perhaps the methods of optimization suggested here can be applied to larger systems 
where the effects might be more amenable to detection by experiment. 
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Chapter 5  
Secondary Structure Bias in Generalized Born Solvent 
Models: Comparison of Conformational Ensembles and 
Free Energy of Solvent Polarization from Explicit and 
Implicit Solvation 
 

5.1 Introduction 
 To correctly model protein behavior in an aqueous environment it is given that an 
accurate representation of solvent is necessary. In computational simulations of proteins 
it is common to either represent the solvent atoms explicitly or to estimate the solute 
response to bulk solvent using a dielectric continuum model, which is generally referred 
to as implicit solvation[114]. Although explicit solvent models are more realistic and 
physically rigorous [115], implicit solvent models have several features that make their 
use attractive. Not having to include solvent atoms can considerably reduce the size of a 
system, which can result in a significant decrease in the computational cost of a 
simulation. In addition, conformational sampling is increased from the lack of explicit 
solvent molecules in two ways: 1) there is no need to average over the extremely large 
number of solvent configurations in a simulation, 2) the lack of friction from solvent 
molecules effectively removes the viscosity of the solvent environment, accelerating 
molecular motions[61].  

In an implicit solvent model, the overall free energy cost of solvating a solute 
molecule is typically decomposed into a non-polar component (?GNonpol) and a polar 
component (?GPol) [116]. ?GNonpol is the free energy cost of rearranging the solvent to 
accommodate an uncharged solute molecule of arbitrary shape, and ?GPol is the free 
energy cost of solvent polarization due to solute charges. The most accurate method for 
calculating ?GPol in a continuum dielectric environment (neglecting salt effects) is 
solving the Poisson Equation (PE)[117]. However, this method is not easily incorporated 
into molecular dynamics (MD) simulations due to computational expense. Despite the 
recent advances that have been made in using implicit solvent models based on PE in MD 
simulations[118-120], this calculation remains highly computationally demanding[121]. 
In light of this, another method of calculating ?GPol is often used: the generalized Born 
(GB) implicit solvent model[122]. GB is based on PE but contains several 
approximations which increase the speed of the calculation. As a result, the GB model 
has become quite popular in computational simulations[123].  

However, this increase in speed comes at the cost of accuracy. Although the GB 
model has been shown to give solvation free energies in agreement with experiment for 
small molecules[122, 124], there has been some question as to the performance of this 
model for simulations of larger biomolecules. Grycuk has shown that significant errors 
arise in GB calculations due to the Coulomb-field approximation[125]. Several 
studies[72, 95, 111-113] have also shown that GB models tend to over-stabilize ion pair 
interactions, which can lead to the trapping of molecules in (and thus over-population of) 
non-native states. There have been several reports suggesting that certain GB models tend 
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to over-stabilize a-helical conformations[71-74], although the exact cause for this 
remains unclear. In addition, it has been shown for several biological macromolecules 
that accuracy of GB often results from widespread cancellation of errors[126, 127]. 

Due to these issues it is desirable to quantitatively compare ensemble properties 
from simulations with implicit and explicit solvent models. However, this kind of direct 
comparison can be difficult since explicit solvent simulations require a greater length of 
time to converge than implicit solvent simulations due to considerably slower 
conformational sampling for flexible solutes. Recently, the development of enhanced 
sampling techniques such as Parallel Tempering[35] or Replica Exchange Molecular 
Dynamics (REMD)[36] have provided a means to bridge the sampling gap between 
implicit and explicit solvent simulations. 

In this study we assess the performance of three GB implicit solvent models 
implemented in Amber[65] as compared to the TIP3P explicit solvent model and the PE 
implicit solvent model. Our test peptide is alanine decapeptide (Ala10, Ace-A10-NH2). 
We chose this model system to compare explicit and implicit solvent models as there are 
no potential salt bridges, eliminating formation of these as an issue. Ala10 is also long 
enough to form more than one or more repeats of basic secondary structure types found 
in larger proteins, such as helices and ß-hairpins. We recently reported extensive 
simulations of this peptide in water[74]. 

We compare ensembles of structures from well-converged REMD simulations of 
Ala10 using either the TIP3P explicit solvent or three variations of the GB implicit 
solvent model implemented in Amber[65]. It is shown that in simulations of Ala10 with 
the TIP3P solvent model, residues predominantly adopt a polyproline II (PP2) 
conformation, in agreement with various experimental observations of short Alanine-rich 
peptides (see discussion in Ref. 31). However, it is then shown that the conformational 
preferences of Ala10 are altered in simulations with GB solvent models; in particular, 
certain GB models appear to strongly foster the formation of a-helical conformations. 
The results suggest that these models may have serious limitations when one wants to 
quantitatively investigate the conformational preferences of peptides and proteins. 

To explain these observed differences between explicit and implicit simulations, 
we first directly compare explicit solvent ?GPol values obtained from Thermodynamic 
Integration (TI) calculations to ?GPol values from PE and GB implicit solvent models 
for four basic secondary structure types: right-handed a-helix, left-handed a-helix, ß-
hairpin, and polyproline II helix. In particular, we focus on comparing the difference in 
the electrostatic component of the solvation free energy between these conformations 
(??GPol), and how this relates to the ensembles of structures observed in the REMD 
simulations. In particular, we show that the observed a-helical bias in certain GB models 
results from overestimation of ??GPol for a-helical structures. We also show that in 
terms of reproducing TIP3P ??GPol values, the PE implicit solvent model has the best 
performance overall.  

Given that the PE implicit model has the best performance, we then compare 
effective Born radii calculated with GB to ‘perfect’ effective Born radii calculated with 
PE, and show that there are large discrepancies, especially for backbone atoms. It is 
shown that use of ‘Perfect’ effect Born radii improves the accuracy of the Self and 
Interaction terms of the GB energy calculation with respect to PE results (as has been 
reported previously[126]). However, it is also shown that in terms of reproducing TIP3P 
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??GPol values, a GB model with ‘Perfect’ effect Born radii does not approach the 
performance of the PE model, and indeed does not provide an appreciable improvement 
over any of the other GB models studied here. This suggests that there is a limit to how 
far radii optimization alone can improve the GB solvent model. 
 

5.2 Methods 
 

5.2.1 REMD Simulation Details 
The peptide simulated is Ala10 (Ace-A10-NH2) in TIP3P[128] and several 

variations of the GB implicit solvent model; GBHCT[60], GBOBC[129], and 
GBNeck[130] (igb = 1, 5, and 7 respectively in Amber 9). A variant of GBOBC with 
different a, ß, and ? parameters (discussed below) was also used (igb = 2 in Amber9). In 
the text, GBOBC will be used to refer to results with igb = 5, and results from GBOBC 
with igb = 2 parameters will be specifically noted using the igb value. For TIP3P REMD 
simulations, Ala10 was solvated in a truncated octahedral box with 983 solvent 
molecules. Amber 9[65] was used with the ff99SB force field[131] for all REMD 
simulations. It has been recently shown that this force field performs quite well and is 
able to reproduce NMR observables for ubiquitin in TIP3P water[132]. For consistency, 
MBondi2 radii[129] were used in both the GB REMD simulations and subsequent GB 
and PE energy calculations described below.  

For each solvent model, two separate REMD simulations of Ala10 were run 
starting from different initial conformations: an extended conformation and a collapsed 
conformation. The distribution of temperatures was chosen to ensure good overlap of 
potent ial energy between replicas and to achieve an exchange acceptance ratio of 0.20. 
The TIP3P REMD simulations involved 40 replicas at temperatures ranging from 266.9 
to 571.2 K. Since the GB REMD simulations had far fewer degrees of freedom, only 8 
replicas were required at temperatures ranging from 269.5 to 570.9 K. All data analysis 
was performed on REMD structure ensembles at 300.0 K. The high degree of 
convergence of these ensembles has been demonstrated in a previously published 
study[74]. 

Bonds to hydrogen atoms were constrained with the SHAKE[59] algorithm using 
a geometrical tolerance of 0.000001 Å. The non-bonded interaction cutoff was 7.0 Å for 
the TIP3P simulations, and 99.0 Å (effectively infinite) for the GB simulations. The 
TIP3P simulations were run in the nVT ensemble, long range electrostatic interactions 
were calculated using periodic boundary conditions via the particle mesh Ewald (PME) 
summation[133], and the non-bonded list was updated every 20 steps. Simulations were 
run with a time-step of 2 fs, with exchange attempts occurring every 1 ps. Both explicit 
and implicit solvent simulations employed a weak temperature coupling algorithm[58] 
with a time constant of 0.1 ps. 
 

5.2.2 Solvent Model Descriptions 
The following are brief descriptions of the GB implicit solvent models used in 

this work (GBHCT, GBOBC, and GBNeck), and the implicit model based on PE. The 
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basic premise of these implicit models is that the effect of the solvent surrounding a 
molecule can be reproduced by a continuum dielectric field.  

In the case of the GB solvent models, the idea can be traced back to the original 
Born equation for calculating ?GPol of a spherical ion of a certain size and internal 
dielectric value with a point charge at its center in an external dielectric medium 
(essentially Equation 5-6). This equation states that ? GPol will be proportional to the 
charge of the ion and inversely proportional to the size of the ion. So the larger the radius 
of an ion, the more the charge of that ion is blocked from the screening effect of the 
external dielectric, i.e. the solvent. In GB, this idea is extended to the case where there 
are multiple ‘ions’ (i.e. atoms with point charges) clustered together (such as is the case 
in a molecule), and attempts to take into account the descreening affects from the 
additional atoms by assigning them ‘effective’ radii. For example, the effective radius of 
an atom completely surrounded by solvent is simply equal to its intrinsic radius, but the 
effective radius of an atom at the center of a spherical cluster of atoms will be 
approximately equal to the radius of that cluster of atoms. Calculation of the effective 
radius is the key to the GB models studied here and is covered in more detail in the next 
section. 

Implicit models based on PE are more rigorous than GB. Instead of calculating 
?GPol based solely on the positions of the atoms, a 3-dimensional grid is set up that 
encompasses not only the atoms of interest but regions of solvent as well. At each grid 
point charge is defined (by distributing the atomic point charges near the grid points in 
some fashion) and the electrostatic potential is calculated via a finite difference method. 
Lines connecting each grid point are associated with a dielectric constant, which is either 
the solute (internal) or solvent (external) dielectric constant based on the location of the 
dielectric boundary (normally defined by the molecular surface). Because charges are 
discretized onto a grid, the calculation of the electrostatic potential and therefore ? GPol 
can be quite sensitive to the grid spacing, and so care must be taken when choosing the 
size of the grid. 
 

5.2.3 Solvent Model Details 
Each GB model used in this study has the same basic formulation. For a given 

solute (neglecting salt effects), the GB model calculates the electrostatic contribution to 
the solvation free energy between all atoms in the solute using Equation 5-1. 
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Equation 5-1. Generalized Born Equation. 
 

In Equation 5-1 ein and eout are the dielectric constants inside and outside the 
solute respectively, qi and qj are partial atomic charges on atoms i and j, and fGB is a 
function that modifies the strength of the charge interaction based on the screening of the 
charges by other atoms and the solvent. It is common (although other forms have been 
used[126, 134]) to calculate fGB using Equation 5-2. 
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Equation 5-2. Form of fGB  commonly used in Equation 5-1. 
 

In Equation 5-2 rij is the distance between atoms i and j, and Ri and Rj are the 
effective Born radii of atoms i and j[122]. The effective Born radius  (hereafter referred to 
as RGB) of an atom reflects the effect of solvent dielectric on the atom charge; the more 
surrounded an atom is by high-dielectric solvent, the more its charge is screened and the 
smaller its RGB becomes.  

The main difference in the three GB models studied here is in the calculation of 
RGB. The GBHCT model calculates RGB for each atom using Equation 5-3. 
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Equation 5-3. Effective Born radius calculation. 
 

In Equation 5-3 ?i is the intrinsic Born radius of atom i, and I is calculated using 
Equation 5-4. 
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Equation 5-4. Effective Born radius integral. 
 

Equation 5-4 modifies the intrinsic radius of the atom based on the amount of 
screening from all other atoms[129]; for a single ion RGB is equal to the intrinsic radius. 
The integral is calculated over the van der Waals (VDW) radii of those atoms, essentially 
defining the dielectric boundary as a VDW surface (as opposed to the molecular surface 
used in solutions to PE[135]). As it is implemented in Amber, the above integral is solved 
in an analytical and pair-wise way, the exact form of which is given by Hawkins et 
al.[60]. Another functionally identical solution to this integral has been given by 
Schaeffer & Froemmel[136].  
 It was shown that the above formulation would give RGB values that were too 
small for deeply buried atoms[127, 137] due to regions of high dielectric created when 
the VDW radii of spheres do not overlap inside a molecule, even if the region is 
inaccessible to solvent. To compensate for this, the GBOBC model introduced a 
correction to the RGB calculation, Equation 5-5. 
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Equation 5-5. GBOBC effective Born radius adjustment. 
 

In Equation 5-5 ?  =  I?i, and a, ß, and ? are adjustable empirical parameters[129]. 
This was designed to increase RGB for buried atoms, while leaving RGB for atoms near 
the surface relatively unchanged.  
 Although the GBOBC model compensated for the underestimation of RGB for 
buried atoms, there remained the possibility that because of the VDW surface 
representation, regions of high dielectric (or ‘Neck’ regions) that should be inaccessible 
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to water could develop between surface atoms, such as atoms in a hydrogen-bonding pair. 
The GBNeck model was designed to correct for these ‘Neck’ regions, and in doing so 
bring the VDW surface calculated in Equation 5-4 more in line with the molecular 
surface used in PE calculations. This correction is in addition to the one in Equation 5-5, 
and is applied during the calculation of the integral in Equation 5-4[130].  

In order to obtain effective Born radii from the PE model, a method similar to one 
used by Onufriev et al.[126] is used. Equation 5-1, the generalized Born equation, can be 
separated into Self (i=j) and Interaction (i?j) terms. From Equation 5-1 and Equation 5-2 
the Self solvation free energy for atom i, ?Gi, becomes Equation 5-6. 
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Equation 5-6. Atomic self-solvation free energy as related to effective Born radius. 
 

By setting all atomic charges to zero except the charge on atom i,  ?Gi can be 
solved using PE, from which Ri is easily obtained. Effective Born radii obtained in this 
fashion will be referred to hereafter as RPE. 

All PE calculations were performed with DelPhi version 2.0[135] using a grid 
spacing of 0.25 Å and an internal relative dielectric of 1.0. The grid spacing of 0.25 Å 
was found to provide the best balance of speed and accuracy, as smaller grid spacing did 
not result in significant improvement in calculated energies. Calculations of structures 
used an external relative dielectric of 78.5 to be consistent with Amber GB models. 
Calculations of effective Born radii with PE used an external relative dielectric of 1000.0 
(effectively infinite) for consistency with standard GB effective radii calculations, as 
suggested by Sigalov et al.[138]. A percent fill value of 80% was used. 
 

5.2.4 Thermodynamic Integration Calculations 
Thermodynamic Integration (TI) calculations were performed with Amber in 

order to obtain ?GPol values for Ala10 in explicit TIP3P solvent. State 0 had all solute 
atomic charges off, and state 1 had all solute atomic charges on. Calculations were 
performed on four different conformations of Ala10: a-helix (Alpha), left-handed a-helix 
(Left), polyproline II helix (PP2), and ß-hairpin (Hairpin). The Alpha, Left, and PP2 
conformations were generated with the Leap module of Amber. All f/? dihedrals in these 
conformations were set to ‘idealized’ values: Alpha = - 57.8°/-47.0°, Left = 57.8°/47.0°, 
PP2 = - 75.0°/145°. The Hairpin conformation was generated from the backbone of the ß-
hairpin peptide Trpzip2[56] (PDB ID 1LE1). Figure 5-1 shows cartoon representations of 
these four conformations. 
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Figure 5-1. Four representative conformations of Ala10 used for TI calculations, shown in a 
‘Cartoon’ style. Picture generated with VMD 1.8.4 [3]. 
 

There are two main considerations in these calculations. One is that over the 
course of the TI calculation the solute may change conformation, which is not desirable 
since only ?GPol values for specific conformations are desired. This was dealt with by 
applying simple positional restraints on all atoms to hold the molecule in the desired 
conformation. Another consideration is that when the charges in the solute are switched 
on, there are not only solvent-solute charge interactions but intra-solute charge 
interactions. This requires that two separate TI calculations be done; one in which the 
molecule is solvated, and one in which the molecule is in the gas phase. Subtracting the 
free energy values then not only cancels out the intra-solute charge interactions, but the 
restraint energies as well. 

All conformations were solvated with the same number of TIP3P waters as in the 
REMD simulations, energy minimized, and TI calculations were run for 0.2, 1.0, or 2.0 
ns with 5 or 7 ? values in order to test the sensitivity of the results to TI parameters. 
Conformations were preserved in TI calculations by use of 10 kcal mol-1 harmonical 
Cartesian coordinate restraints on all atoms. Final TI values were obtained from Gaussian 
integration over all ? values, excluding the first 50 ps of data from each ? value as 
equilibration. 
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5.2.5 Secondary Structure and Conformational Analysis 
Secondary structure values were calculated using DSSP[139] as implemented in the 

Ptraj module of Amber, which uses patterns of hydrogen bonding to differentiate between 
different types of secondary structure. In addition, residues were assigned local 
conformational preferences (Alpha, Left, PP2, Extended) based on their f /? dihedral 
angle statistics calculated over the REMD trajectories. A residue is considered in the 
given conformation if it falls within ±30° of the following f /? values, chosen based on 
approximate boundaries of the free energy basins sampled in the explicit solvent REMD 
simulation of Ala10: Alpha (- 70°/-25°), Left (50°/30°), PP2 (- 70°/150°), or Extended 
(- 150°/155°). 
 

5.3 Results 
 

5.3.1 Secondary Structure and Local Conformational Propensities 
Figure 5-2 shows secondary structure and local backbone conformational 

propensities calculated from backbone dihedral angles (see Methods for details) at 300.0 
K for all residues of Ala10 calculated from unrestrained REMD simulations conducted 
using either the TIP3P, GBHCT, GBOBC, or GBNeck solvent model. Local 
conformational propensity differs from secondary structure propensity in that it is not 
dependent on the conformation of neighboring residues; for example a particular residue 
may be in a helical conformation and yet not be part of any regular helical structure 
(perhaps its neighbors are in a PP2 conformation). The average secondary structure 
propensities and local conformational preferences of all residues in each simulation are 
given in Table 5-1. The overall agreement between independent simulations for each 
solvent model (as indicated by the small error values) shows that good convergence was 
achieved for all simulations; excellent convergence for these ensembles has been reported 
previously[74]. 
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Figure 5-2. Secondary structure and local conformational propensities for each residue of Ala10 
from unrestrained REMD simulations using various solvent models at 300.0 K. Residues 1 and 12 are 
the acetyl and amide N- and C-caps respectively. Error bars are calculated as half the difference of 
values reported from two independent simulations with the given solvent model, using different 
initial coordinates. 
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A) DSSP (Secondary Structure)
TIP3P GBHCT GBOBC GBNeck

310-Helix 2.89 ± 0.06 15.01 ± 0.08 12.66 ± 0.07 4.64 ± 0.09
a-Helix 2.45 ± 0.63 24.60 ± 0.06 10.06 ± 0.08 1.37 ± 0.01
p-Helix 0.01 ± 0.01 0.27 ± 0.02 0.09 ± 0.02 0.01 ± 0.01
Turn 14.26 ± 0.18 26.19 ± 0.29 25.54 ± 0.09 14.21 ± 0.30
B) Local Conformational Propensity (Backbone Dihedrals)

TIP3P GBHCT GBOBC GBNeck
Alpha 16.20 ± 0.33 57.57 ± 0.20 45.85 ± 0.20 22.63 ± 0.15
Left 6.00 ± 0.28 3.06 ± 0.16 2.58 ± 0.03 1.29 ± 0.04
PP2 34.65 ± 0.29 8.73 ± 0.01 15.14 ± 0.09 25.45 ± 0.04
Extended 17.61 ± 0.38 5.91 ± 0.08 9.87 ± 0.10 19.83 ± 0.15  
Table 5-1. A) Average percent secondary structure and B) local conformational propensities from 
Ala10 REMD simulations. Secondary structure was calculated using DSSP[139] as implemented in 
Ptraj, and local conformational propensity was calculated based on dihedral angle cutoffs. 
 

5.3.1.1 Explicit Solvent Simulations  
The unrestrained REMD simulations of Ala10 with the TIP3P solvent model give 

results that are consistent with several recent theoretical and experimental studies of 
related polyalanine peptides. On average, Ala10 residues in the TIP3P simulation are 
predominantly in the PP2 conformation, consistent with free energy calculations done by 
Mezei et al.[140]. The average amount of PP2 observed (34.65±0.29%) is in reasonable 
agreement with values obtained for a similar polyalanine peptide XAO (Ace-X2A7O2-
NH2, X=diaminobutyrate, O=ornithine), from both a previous explicit solvent 
computational study (42-47%[141]) and from experiment (40±8%[142]). Amide 
hydrogen atoms are involved in intramolecular hydrogen bonds for about 10% of the 
TIP3P simulation (data not shown), in close agreement with the value obtained from 
NMR data by Scheraga et al. (9%[143]) for XAO.  

The predominant secondary structure type identified by DSSP for the TIP3P 
simulation is Turn, indicating that any inter-residue hydrogen bonds that form tend to be 
in no specific pattern. Although there is a tendency for residues to adopt an Alpha 
conformation locally (16.20±0.33%), there is almost no a-helical or 310-helical structure 
(5.34±0.63% total). There is a similar tendency for residues to adopt Extended 
conformations locally (17.61±0.38%), but little parallel or anti-parallel ß-sheet structure 
formation (1.54±0.44% total). Residues very rarely adopt the Left conformation locally, 
consistent with the fact that this conformation is sterically hindered.  
 

5.3.1.2 Implicit Solvent Simulations  
In the unrestrained REMD simulations with the GBHCT and GBOBC solvent 

models there is clearly much greater preference for residues to be in the Alpha 
conformation locally compared to the TIP3P simulation; the GBHCT simulation in 
particular contains about 10 times the amount of average a-helical structure compared to 
the TIP3P simulation, and the GBOBC simulation contains about 4 times as much. A 
qualitative tendency for the GBHCT model to favor helix formation has been reported 
previously[73]. Similarly, there are greater amounts of 310-helical, a-helical, and even p-
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helical structure present in these simulations. There is also a greater amount of Turn 
structure in both GB simulations than in the TIP3P simulations, reflecting an increased 
amount of localized inter-solute interaction. This is consistent with the increased helical 
populations observed in the GB simulations. In both the GBHCT and GBOBC 
simulations there is much less tendency to adopt the PP2, Extended, and Left local 
conformations.  

Compared to the other GB models, the GBNeck simulation shows overall better 
agreement with the TIP3P simulation results. In particular, the amount of Extended local 
conformational propensity and percent Turn structure agree quite well with the TIP3P 
values. However, there is still a slightly larger preference for residues to be in the Alpha 
conformation locally (22.63±0.15% vs. 16.20±0.33% TIP3P). Also, while the GBNeck 
simulation contains about twice the amount of 310-helical structure as the TIP3P 
simulation, it contains only about half the amount of a-helical structure. As with GBHCT 
and GBOBC there is much less of a tendency to adopt the PP2 and Left local 
conformations than in the TIP3P simulations. 

These results show that even for a simple system such as Ala10 which has no 
problematic salt bridges, the choice of solvent model has a large impact on secondary 
structural propensities and the local backbone dihedral conformation of residues. In 
particular, the GBHCT and GBOBC solvent models appear to foster the formation of a-
helical structure when compared to the TIP3P solvent model, and although the GBNeck 
model appears to give better agreement with TIP3P solvent, there are still significant 
deviations.  

There are two questions that should be addressed at this point: 1) Are implicit 
models simply unable to reproduce explicit solvent results, or 2) is the specific form of 
the implicit model the cause of the bias? Answering yes to the first question implies that 
fundamental assumption of implicit models – that is, that the bulk properties of water can 
be represented as a continuum dielectric – is incorrect, at least for Ala10. Studies have 
shown that the behavior of water near the water-peptide interface can deviate 
significantly from that of bulk water[144, 145]. Answering yes to the second question 
implies that the problem is in the GB model itself, perhaps arising from its approximate 
nature with respect to PE. We address the first question by comparing the GBHCT, 
GBOBC, GBNeck, and PE models directly to the TIP3P explicit water model, and the 
second question by comparing the GB models directly to PE calculations. 
 

5.3.2 Comparison of Free Energies of Solvent Polarization from 
Explicit and Implicit Solvents 
Since the electrostatic component of the solvation free energy (?GPol) is 

expected to be dominant, it is desirable to directly compare ?GPol obtained from both 
implicit and explicit solvent simulations. Since there is no direct calculation of ?GPol in 
explicit solvent models, other methods must be employed. Thermodynamic Integration 
(TI) is a method by which the free energy is calculated as the work done in changing a 
system from one state to another (State 0 ?  State 1) by way of a switching function, 
usually represented by f(?), ? ranges from 0? 1[146]. Since ?GPol can be interpreted as 
the free energy cost associated with perturbing the solvent when the solute goes from an 
uncharged to a charged state, it can be calculated for a molecule in explicit water via TI 
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by making state 0 and state 1 the uncharged and charged states respectively, as has been 
done previously[147]. 

TI calculations were performed to obtain ?GPol values for four conformations of 
Ala10; three idealized conformations in which all backbone dihedral angles were 
approximately equal across all residues (Alpha, Left, and PP2), and an additional 
conformation generated from the backbone of a model ß-hairpin (Hairpin, see Methods 
for complete details). TI calculations were run with either 5 or 7 ? values and for different 
lengths of time to test the accuracy and sensitivity of the results, which are given in Table 
5-2. 
 

Alpha PP2 Left Hairpin
0.2 ns 5 ? -44.23 -75.62 -51.49 -55.09
1.0 ns 5 ? -44.10 -76.51 -51.29 -53.87
1.0 ns 7 ? -44.10 -76.43 -51.19 -54.36
2.0 ns 5 ? -44.04 -76.22 -51.42 -54.25  
Table 5-2. ?GPol (in kcal mol -1) for four representative conformations of Ala10 in explicit solvent  
calculated with TI using varying lengths of time and ? values. A TI simulation time of 1.0 ns or 
greater appears to give the best results; only these TI values are considered for comparison with 
implicit solvent. Varying the number of ? values from 5 to 7 has comparatively little effect.  
 

The ? GPol values generated from the TI calculations appear well converged; the 
difference between values is less than 1.0 kcal mol-1 over all variable changes. Increasing 
the simulation length from 0.2 ns to 1.0 ns has the largest effect, most likely from 
allowing the system more time to equilibrate. Because of this, only values from TI 
simulations 1.0 ns or greater in length are considered in the analysis. Increasing the 
number of ? values from 5 to 7 has little effect on final results, indicating that for this 
system 5 ? values is adequate. 

Table 5-3A shows the comparison of ?GPol values from explicit solvent to 
implicit solvent models for the four conformations of Ala10. The implicit solvent model 
values were obtained by averaging ?GPol from the set of structures (1000 for each 
conformation) generated during the 1.0 ns TI calculations. Each solvent model has the 
same overall trend in terms of which conformation has the most favorable (lowest) 
solvation free energy; PP2<<Hairpin<Left<Alpha. It is interesting to note that the less 
solvent exposed the conformation, the more ?GPol values from the various solvent 
models deviate from each other, as shown in the last column of Table 5-3A (labeled 
Stdev). For example, the ?GPol values from both explicit and implicit solvent models are 
very similar the well-solvated PP2 conformation, as shown by the small standard 
deviation of ?GPol across all models (0.69 kcal mol-1). The differences between the 
explicit and implicit solvent models show up more clearly in the less solvent-exposed 
Hairpin, Left, and Alpha conformations, with larger standard deviations of 2.02, 2.83, 
and 3.56 kcal mol-1 respectively. 
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A) ?GPol TIP3P PE GBHCT GBOBC GBNeck Stdev
Alpha -44.08 ± 0.04 -47.96 ± 0.77 -51.69 ± 1.21 -49.38 ± 1.21 -43.26 ± 0.90 3.56
PP2 -76.39 ± 0.15 -78.04 ± 0.91 -77.35 ± 1.05 -78.07 ± 1.09 -77.59 ± 1.02 0.69
Left -51.30 ± 0.12 -54.85 ± 0.90 -55.05 ± 1.08 -52.67 ± 1.10 -48.19 ± 0.91 2.83
Hairpin -54.16 ± 0.25 -57.27 ± 1.13 -57.48 ± 1.45 -56.03 ± 1.47 -52.85 ± 1.29 2.01
B) ??GPol TIP3P PE GBHCT GBOBC GBNeck
PP2-Alpha -32.31 -30.07 -25.67 -28.69 -34.33
PP2-Left -25.09 -23.19 -22.31 -25.40 -29.40
PP2-Hairpin -22.23 -20.77 -19.87 -22.03 -24.73
Alpha-Left 7.22 6.88 3.36 3.29 4.93
Alpha-Hairpin 10.08 9.31 5.80 6.66 9.60
Left-Hairpin 2.86 2.43 2.43 3.37 4.67
C) ??GPol RMSD† PE GBHCT GBOBC GBNeck
Overall 1.39 3.89 2.60 2.51
PP2 1.89 4.37 2.10 3.11
Non-PP2 0.55 3.34 3.02 1.71
†RMSD from TIP3P ??GPol values.  
Table 5-3. A) ?GPol (in kcal mol -1) calculated for four representative conformations from the TIP3P 
explicit solvent and various implicit solvent models. The last column, labeled Stdev, gives the 
standard deviation of all implicit models from the TIP3P value. B) ??GPol between all four 
conformations for all solvent models. C) RMSD of implicit solvent model ??GPol values from the 
TIP3P values. PP2 refers to the RMSD between PP2 and the compact structures (Alpha, Left, and 
Hairpin), and Non-PP2 refers to the RMSD between the compact structures themselves.  
 

It is not expected that the results from implicit solvent models will agree directly 
with the TI results from the TIP3P model since the intrinsic Born radii set used 
(Mbondi2) has not been optimized to reproduce explicit solvent values for some of these 
implicit models. It is still useful, however, to compare the differences in ?GPol between 
different conformations (??GPol), as this has a direct affect on the thermodynamics of 
the system, and so provides a way to relate individual ?GPol values from various solvent 
models to the ensembles of structures generated in the REMD runs. The ??GPol values 
between all conformations are given in Table 5-3B. 
 The first three sets of ??GPol values considered are those between the PP2 
conformation and all other conformations. As the PP2 conformation is much more highly 
solvated and extended compared to the other conformations, these comparisons give 
insight into the changes in solvation that accompany peptide or protein folding. It is 
shown in Table 5-3B that compared to TIP3P, ??GPol between the PP2 and Alpha 
conformations is underestimated by PE, GBOBC, and GBHCT models by - 2.23, - 3.62, 
and - 6.64 kcal mol-1 respectively. This indicates an insufficient desolvation penalty upon 
the transition to the Alpha conformation. In contrast, the GBNeck model overestimates 
??GPol by 2.02 kcal mol-1, indicating there is too much of a desolvation penalty upon 
the transition to Alpha.  

It is interesting to note that the PP2 and Alpha ??GPol values from both explicit 
and implicit solvent models correlate well (natural log fit, R2 = 0.9946) with the 
fractional a-helical structure (%a /[100-%a]) obtained from DSSP analysis of the 
corresponding REMD simulations (Figure 5-3). This shows a direct relationship between 
the change in free energy of solvation of a structure, and how much of that structure is 
observed in simulation. Based on the fit, the PE ??GPol value of –30.07 kcal mol-1 
would translate into ~6% a-helical structure for an ensemble sampled using PE (which 
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was not computationally feasible for this study). This suggests that even a model based 
on PE may be slightly too helical compared to TIP3P, although its performance is still 
much better than GBHCT or GBOBC. Of course this value is simply an extrapolation, 
and ideally simulations using implicit solvent based on PE will be used in the future to 
generate well-converged ensembles.  
 

 
Figure 5-3. Plot of fractional a-helical structure (%a/[100-%a]) obtained from DSSP analysis of 
REMD simulations with various solvent models versus the corresponding ??GPol value between the 
PP2 and Alpha conformations. The data points from right to left are for the GBNeck, TIP3P, 
GBOBC, and GBHCT solvent models. As the solvation free energy gap in the given solvent model 
between the PP2 and Alpha structures decreases, the amount of a-helical structure in simulations 
with that model increases. 
 

The ??GPol values between PP2 and Left follow a slightly different trend. 
Compared to TIP3P values, the PE and GBHCT models underestimate ??GPol by - 1.89 
and - 2.78 kcal mol-1 respectively, which is consistent with the smaller ratio of PP2 to 
Left conformation (as determined from the values in Table 5-1) observed in the GBHCT 
REMD simulation (2.9) compared to the TIP3P simulation (5.8). The GBOBC model is 
almost an exact match, only overestimating ??GPol by 0.31 kcal mol-1, consistent with 
the fact that the ratio of PP2 to Left in the GBOBC REMD simulation (5.9) is quite 
similar to the TIP3P value. The GBNeck model greatly overestimates ??GPol in this 
case by 4.31 kcal mol-1, consistent with the greatly increased ratio of PP2 to Left 
conformation found in the GBNeck REMD simulation (19.7).  

It is noted that while a repeating Left conformation itself is a high energy and not 
very realistic conformation, adopting a local left-helical conformation is important for 
residues in structures incorporating reverse-turns, such as ß-hairpins. It is perhaps 
unsurprising then that the ??GPol values between PP2 and Hairpin follow a similar trend 
to those between PP2 and Left. The PE and GBHCT models underestimate ??GPol by 
- 1.51 and - 2.40 kcal mol-1 respectively. The GBOBC model is again almost exact, 
underestimating by only - 0.24 kcal mol-1. The GBNeck model overestimates ??GPol by 
2.46 kcal mol-1.  



 

 79 

 The last three sets of ??GPol values considered are between the Alpha, Hairpin, 
and Left conformations, which are less solvated and have more favorable internal 
contacts compared to the PP2 conformation. The performance of PE in all three cases is 
superb; the largest deviation from TIP3P is ??GPol between Alpha and Hairpin, which is 
only 0.73 kcal mol-1.  

The overall performance for all three GB models for these compact structures is 
markedly worse than PE. All three GB models overestimate ??GPol between Alpha and 
Left; GBHCT and GBOBC by about 3.9 kcal mol-1, and GBNeck by about 2.3 kcal mol-1. 
The desolvation penalty between these two conformations being too large is consistent 
with the increased ratio of Alpha to Left conformational propensity observed in the 
GBHCT, GBOBC, and GBNeck REMD simulations (~18) compared to the ratio from the 
TIP3P REMD simulation (~3).  

The remaining comparisons show no consistent pattern and serve only to 
highlight how the performance of each GB model depends on conformation. The 
GBOBC and GBHCT models overestimate ??GPol between Alpha and Hairpin by 4.28 
and 3.42 kcal mol-1 respectively, while GBNeck only overestimates by 0.44 kcal mol-1. In 
contrast, the GBNeck model underestimates ??GPol between Left and Hairpin by 1.79 
kcal mol-1, while the GBOBC and GBHCT models are within 0.5 kcal mol-1 of the TIP3P 
value.  
 It is clear that the performance of implicit solvent models is dependent on the  
conformation of Ala10. As a way to gauge the overall performance of each implicit 
solvent model with respect to the TIP3P solvent model, the RMSD from TIP3P ?? GPol 
values for each implicit solvent model was calculated (Table 5-3C). The best overall 
performance is from PE, with an overall RMSD of 1.39 kcal mol-1. The next best 
performance is by the GBNeck and GBOBC models, with RMSDs of 2.51 and 2.60 kcal 
mol-1 respectively. The worst performance is from the GBHCT model, with an overall 
RMSD of 3.89 kcal mol-1. For reproducing the difference between PP2 and more 
compact states (analogous to folding, PP2 column in Table 5-3C), PE again has the best 
performance (1.89 kcal mol-1), with GBOBC coming in a close second (2.10 kcal mol-1). 
GBNeck and GBHCT perform worse, with RMSDs of 3.11 and 4.37 kcal mol-1. For 
reproducing the differences between compact states themselves (Non-PP2 column in 
Table 5-3C), PE is clearly superior to all of the GB models, with a RMSD of 0.55 kcal 
mol- 1. GBNeck is a distant second with a RMSD of 1.71 kcal mol-1, while GBOBC and 
GBHCT have RMSDs of 3.02 and 3.34 respectively.  
 The overabundance of helical structure in the REMD ensembles obtained with the 
GBHCT and GBOBC solvent models can now be rationalized. Essentially, these models 
over-stabilize a-helices because not enough of a desolvation penalty is paid for forming 
the a-helical structure; the already favorable internal energy of the a-helix is 
accompanied by an overly favorable solvation free energy. In contrast, the desolvation 
penalty for formation of a-helical structure with the GBNeck model is comparable to PE 
and TIP3P, and a-helical structure is not overly-abundant in the REMD simulations with 
this model.  

Overall, PE is the best of the implicit models at reproducing the differences in 
?GPol between different conformations of Ala10, while all GB models perform 
considerably worse. PE and GBOBC are both good at reproducing the differences 
between PP2 and the more compact conformations. Although PE is clearly superior to all 
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GB models at reproducing the differences between the compact conformations, it should 
be noted that GBNeck is still much better at this than GBHCT or GBOBC. It is 
interesting to point out that in particular all GB models have difficulty reproducing the 
difference between the right-handed and left-handed alpha helix.  

The reason for the relatively poor performance of these GB models compared to 
the PE model, especially for reproducing ??GPol between the more compact structures 
(Alpha, Left, and Hairpin) is not clear at this point. In the next section, this problem is 
explored by comparing the effective radii and energy calculations of these three GB 
models to effective Born radii and energy calculated with PE. 
 

5.3.3 Direct Comparison of GB to PE  
 

5.3.3.1 Effective Radii 
All implicit models rely on an accurate description of the dielectric boundary for 

good performance[116]. In this study, the model based on PE (DelPhi 2.0) calculates this 
boundary based on the molecular surface accessible to a probe with a radius comparable 
to that of a water molecule (1.4 Å), which is then mapped onto a cubic lattice. In these 
GB models, instead of a specific dielectric boundary, each atom is assigned an effective 
Born radius (RGB), which is essentially a measure of how well solvated the atom is. For 
atoms that are well-solvated (i.e. atoms that have a more favorable solvation free energy) 
this radius is small, reflecting the damping effect that a solvent with high dielectric has on 
atomic charge. The relationship between RGB and atomic solvation free energy (Self 
Energy) can be seen clearly from Equation 5-6. 

The fundamental difference between the GBHCT, GBOBC, and GBNeck models 
discussed here is in the calculation of RGB (see Methods for more details). Onufriev et 
al. showed that when RGB is calculated from atomic ?GPol obtained using PE, the 
resulting ‘perfect’ Born radii (RPE) improve the accuracy of both GB Self and 
Interaction energy terms, and improve overall agreement with PE[126]. Since out of all 
the implicit models, PE had the best performance in reproducing explicit solvent ??GPol 
values, examining the deviation between ‘perfect’ radii obtained via PE and those 
calculated with the various GB models may provide insight into areas where GB is 
deficient, and reveal specific areas to improve. 

Effective Born radii were calculated with PE (RPE), and compared to RGB 
obtained from the GBHCT, GBOBC, and GBNeck implicit solvent models using a subset 
of the last 500 structures from the Alpha, Left, and Hairpin TI calculation trajectories, 
and a subset of 100 structures (frames 500-599) from the PP2 TI calculation trajectories. 
A subset of structures was chosen since derivation of RPE for many structures is 
particularly time consuming as it requires a PE calculation for every atom in every 
structure. Fewer structures were used for PP2 as the PE calculations for these structures 
are particularly time-consuming (because of the large solvent-exposed surface area of this 
conformation).  

Table 5-4A-I shows the RMSD of RGB from RPE for each of the GB solvent 
models across all residues of Ala10 for the given atom type, averaged over all structures 
used in the ? GPol analysis shown in Table 5-3. The atom types considered are amide 
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hydrogen (H), carbonyl oxygen (O), amide nitrogen (N), carbonyl carbon (C), a carbon 
(CA), ß carbon (CB), a hydrogen (HA), backbone atoms (BB, representing H, O, N, C, 
and CA), and all atom types. Table 5-4J shows the average RMSD value over all 
conformations for the given solvent model. Table 5-5 shows the average difference 
instead of RMSD for each atom type, to convey whether RGB is under-estimated or over-
estimated with respect to RPE.  
 
GB Effective Radii Average RMSD from Perfect (PE) Radii (?)
A) All GBHCT GBOBC GBNeck F) C GBHCT GBOBC GBNeck
alpha 0.25 ± 0.01 0.19 ± 0.01 0.22 ± 0.02 alpha 0.16 ± 0.01 0.19 ± 0.02 0.42 ± 0.03
hairpin 0.18 ± 0.01 0.16 ± 0.01 0.12 ± 0.01 hairpin 0.08 ± 0.01 0.20 ± 0.01 0.25 ± 0.02
left 0.20 ± 0.01 0.20 ± 0.01 0.32 ± 0.03 left 0.12 ± 0.01 0.29 ± 0.03 0.58 ± 0.04
pp2 0.06 ± 0.00 0.11 ± 0.01 0.04 ± 0.00 pp2 0.07 ± 0.01 0.09 ± 0.01 0.05 ± 0.01
B) BB GBHCT GBOBC GBNeck G) CA GBHCT GBOBC GBNeck
alpha 0.35 ± 0.02 0.26 ± 0.01 0.31 ± 0.03 alpha 0.05 ± 0.01 0.34 ± 0.02 0.26 ± 0.02
hairpin 0.20 ± 0.02 0.20 ± 0.01 0.16 ± 0.01 hairpin 0.09 ± 0.01 0.26 ± 0.01 0.12 ± 0.01
left 0.27 ± 0.02 0.26 ± 0.02 0.45 ± 0.04 left 0.07 ± 0.01 0.36 ± 0.02 0.37 ± 0.03
pp2 0.06 ± 0.00 0.12 ± 0.01 0.05 ± 0.00 pp2 0.03 ± 0.01 0.18 ± 0.01 0.04 ± 0.01
C) H GBHCT GBOBC GBNeck H) CB GBHCT GBOBC GBNeck
alpha 0.71 ± 0.04 0.29 ± 0.04 0.19 ± 0.06 alpha 0.03 ± 0.00 0.03 ± 0.00 0.12 ± 0.01
hairpin 0.39 ± 0.04 0.19 ± 0.03 0.15 ± 0.03 hairpin 0.04 ± 0.00 0.04 ± 0.00 0.08 ± 0.00
left 0.50 ± 0.04 0.13 ± 0.02 0.43 ± 0.06 left 0.01 ± 0.00 0.02 ± 0.00 0.10 ± 0.00
pp2 0.04 ± 0.00 0.10 ± 0.01 0.02 ± 0.00 pp2 0.03 ± 0.00 0.04 ± 0.00 0.05 ± 0.00
D) O GBHCT GBOBC GBNeck I) HA GBHCT GBOBC GBNeck
alpha 0.16 ± 0.01 0.09 ± 0.01 0.20 ± 0.02 alpha 0.07 ± 0.00 0.19 ± 0.01 0.04 ± 0.01
hairpin 0.16 ± 0.01 0.08 ± 0.01 0.11 ± 0.02 hairpin 0.34 ± 0.03 0.23 ± 0.02 0.12 ± 0.03
left 0.18 ± 0.01 0.07 ± 0.01 0.24 ± 0.02 left 0.10 ± 0.01 0.21 ± 0.01 0.11 ± 0.02
pp2 0.03 ± 0.00 0.02 ± 0.00 0.04 ± 0.00 pp2 0.08 ± 0.00 0.18 ± 0.01 0.02 ± 0.00
E) N GBHCT GBOBC GBNeck
alpha 0.26 ± 0.01 0.30 ± 0.03 0.37 ± 0.04
hairpin 0.16 ± 0.01 0.21 ± 0.02 0.11 ± 0.02
left 0.27 ± 0.02 0.31 ± 0.03 0.52 ± 0.05
pp2 0.08 ± 0.01 0.13 ± 0.01 0.07 ± 0.01
J) Overall Averages

GBHCT GBOBC GBNeck GBHCT GBOBC GBNeck
All 0.17 0.16 0.17 C 0.11 0.19 0.33
BB 0.22 0.21 0.24 CA 0.06 0.29 0.20
H 0.41 0.18 0.20 CB 0.03 0.03 0.09
O 0.13 0.06 0.15 HA 0.15 0.20 0.08
N 0.19 0.24 0.27  
Table 5-4. A-I) RMSD of effective GB radii calculated with various GB models from effective radii 
calculated with PE (perfect radii) for four conformations of Ala10, shown for various atom types: 
All, BB (backbone atoms, H, O, N, C, CA), H (amide hydrogen), O (carbonyl oxygen), N (amide 
nitrogen), C (carbonyl carbon), CA (a carbon), CB (ß carbon), and HA (a hydrogen). J) Overall 
average RMSD over the four conformations of Ala10 for each GB solvent model. 
 

Two trends are readily apparent from the effective radii RMSDs shown in Table 
5-4A for all atom types and Table 5-4B for all backbone atom types: 1) The largest 
deviations of RGB from RPE are in backbone atoms, and 2) the deviation of RGB from 
RPE in PP2 conformations is significantly smaller than for the more compact Alpha, 
Left, and Hairpin conformations across all GB models. These two observations are 
consistent with the idea that the performance of GB models decreases the more buried an 
atom is, and also consistent with previously published comparisons of RGB with RPE[73, 
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126]. The corresponding average differences in Table 5-5A and Table 5-5B show that in 
general the GBOBC and GBNeck models tend to overestimate RGB (and thus 
underestimate solvation), while the GBHCT model underestimates RGB. 
 
GB Effective Radii Average Difference from Perfect (PE) Radii (?)
A) H GBHCT GBOBC GBNeck E) CA GBHCT GBOBC GBNeck
alpha 0.59 ± 0.38 0.18 ± 0.19 -0.11 ± 0.12 alpha 0.03 ± 0.03 -0.33 ± 0.07 -0.23 ± 0.11
hairpin 0.18 ± 0.34 -0.02 ± 0.18 0.03 ± 0.13 hairpin 0.05 ± 0.07 -0.25 ± 0.07 -0.09 ± 0.07
left 0.39 ± 0.30 -0.01 ± 0.10 -0.37 ± 0.20 left 0.05 ± 0.05 -0.35 ± 0.09 -0.32 ± 0.18
pp2 -0.04 ± 0.02 -0.10 ± 0.02 0.00 ± 0.02 pp2 0.02 ± 0.02 -0.18 ± 0.03 0.03 ± 0.02
B) O GBHCT GBOBC GBNeck F) CB GBHCT GBOBC GBNeck
alpha 0.12 ± 0.10 0.06 ± 0.06 -0.17 ± 0.10 alpha 0.00 ± 0.03 0.00 ± 0.03 -0.11 ± 0.03
hairpin 0.08 ± 0.13 0.03 ± 0.07 -0.09 ± 0.06 hairpin 0.02 ± 0.03 0.03 ± 0.03 -0.08 ± 0.02
left 0.15 ± 0.11 0.02 ± 0.05 -0.20 ± 0.12 left 0.00 ± 0.01 0.01 ± 0.01 -0.10 ± 0.03
pp2 -0.01 ± 0.03 -0.01 ± 0.02 -0.04 ± 0.01 pp2 0.02 ± 0.02 0.03 ± 0.02 -0.05 ± 0.01
C) N GBHCT GBOBC GBNeck G) HA GBHCT GBOBC GBNeck
alpha 0.24 ± 0.10 -0.26 ± 0.13 -0.30 ± 0.21 alpha -0.05 ± 0.04 -0.18 ± 0.03 -0.03 ± 0.03
hairpin 0.11 ± 0.11 -0.16 ± 0.12 -0.06 ± 0.09 hairpin 0.13 ± 0.31 -0.07 ± 0.21 0.04 ± 0.10
left 0.24 ± 0.11 -0.27 ± 0.14 -0.43 ± 0.29 left -0.04 ± 0.09 -0.20 ± 0.05 -0.09 ± 0.05
pp2 0.07 ± 0.04 -0.11 ± 0.07 0.05 ± 0.04 pp2 -0.08 ± 0.01 -0.18 ± 0.04 0.02 ± 0.01
D) C GBHCT GBOBC GBNeck
alpha 0.14 ± 0.07 -0.17 ± 0.08 -0.37 ± 0.21
hairpin 0.03 ± 0.07 -0.17 ± 0.10 -0.21 ± 0.13
left 0.10 ± 0.06 -0.26 ± 0.11 -0.50 ± 0.28
pp2 0.04 ± 0.05 -0.07 ± 0.04 -0.02 ± 0.04
H) Overall Averages

GBHCT GBOBC GBNeck GBHCT GBOBC GBNeck
H 0.28 0.01 -0.11 CA 0.04 -0.28 -0.15
O 0.08 0.02 -0.13 CB 0.01 0.02 -0.08
N 0.17 -0.20 -0.18 HA -0.01 -0.16 -0.02
C 0.08 -0.17 -0.27  
Table 5-5.  A-I) Average deviation of effective GB radii calculated with various GB models from 
effective radii calculated with PE (perfect radii) across all residues of four conformations of Ala10, 
shown for various atom types: H (amide hydrogen), O (carbonyl oxygen), N (amide nitrogen), C 
(carbonyl carbon), CA (a carbon), CB (ß carbon), and HA (a hydrogen). J) Overall average deviation 
over the four conformations of Ala10 for each GB solvent model. 
 

Each GB model shows different behavior across different atom types and 
conformations (Table 5-4C-I and Table 5-5A-G). The largest deviation in the GBHCT 
model is from the amide hydrogens (H), which has an average RMSD across all residues 
of 0.41 Å; this is the worst of all three GB models. A detailed look at the H atoms 
confirms that the deviation is greatest when the atoms are buried, such as when involved 
in hydrogen bonding. For example, the H atom of residue A1 in the hairpin structure 
(which is solvent exposed) shows almost no deviation, while RGB for the H atom of the 
very next residue (which is involved in a hydrogen bond) is underestimated by 0.70 Å 
(Data not shown). 

The average deviations across the Alpha, Hairpin, and Left structures seen in 
Table 5-5A indicate that in the GBHCT model RGB is always underestimated for H 
atoms, meaning that they are considered more solvent exposed than they should be 
according to PE. In addition, RGB is also underestimated for carbonyl oxygen (O) atoms 
in these conformations. This leads to the conclusion that in this model, backbone 
hydrogen bonding between H and O atoms will be over-stabilized due to an insufficient 
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desolvation penalty, consistent with the overabundance of helical structures observed in 
the unrestrained REMD structural ensembles.  

RGB is underestimated in general for all other atom types in GBHCT, particularly 
the amide nitrogen (N) atoms (average RMSD of 0.19 Å). However, the performance for 
carbonyl carbon (C) and a carbon (CA) atoms is the best of all the GB models (average 
RMSDs of 0.11 and 0.06 Å respectively). Overall, the performance of this model for 
Ala10 becomes progressively worse the less solvated the structure becomes. This 
behavior is consistent with previous observations of this GB model[127, 137]. 

The behavior of the GBOBC model is slightly more varied. The RGB for H and O 
atoms is still underestimated, particularly when these atoms are buried, but to a much 
lesser extent than in GBHCT (average RMSDs of 0.18 and 0.06 Å respectively). In fact, 
the GBOBC model has the best performance for O atoms out of any of the GB models. 
This indicates that backbone hydrogen bonds between H and O atoms may still be over-
stabilized, but to a lesser extent than in GBHCT. It is also interesting to note that the 
deviation of RGB for H atoms in the Left conformation is quite small compared to the 
other two GB models. However, RGB is overestimated for N, HA, C, and CA atoms 
(average RMSDs of 0.24, 0.20 Å, 0.19, 0.29, and respectively). The deviation for CA 
atoms is particularly large compared to that for GBHCT; in fact GBOBC has the worst 
performance for CA atoms out of the three GB models. As with the GBHCT model, the 
performance for the GBOBC model is worse for less well-solvated structures. 

The performance of GBNeck for H atoms is comparable to that of GBOBC 
(overall RMSD of 0.20), except for the Left conformation, where it has deviations as 
large as those of GBHCT. The performance of GBNeck for O atoms is also about as poor 
as GBHCT (overall RMSD of 0.15). In contrast to GBHCT and GBOBC however, 
GBNeck overestimates RGB for H and O atoms, the net result of which is a 
destabilization of hydrogen bonds between these two atoms due to an increased 
desolvation penalty. In fact, the GBNeck model in general overestimates RGB for all 
atom types. The performance of GBNeck for C atoms is particularly bad compared to the 
other two GB models (overall RMSD of 0.33), as is its performance for ß carbon (CB) 
atoms. The only atom type for which GBNeck performs well compared to the other GB 
models is a hydrogen (HA) atoms (overall RMSD of 0.08). Like the GBHCT and 
GBOBC models, the performance of the GBNeck model is worse for less well-solvated 
structures, except it has more deviation for the Left conformation than the Alpha 
conformation; the reason for this is not clear. 

It is seen here that each GB model has significant deviations in calculation of 
RGB for various atom types, and the differences are in general not consistent between the 
GB models. The only real consistency is that RGB approaches RPE for well-solvated 
structures. In terms of overall RGB RMSD from RPE, each model performs about 
equally, except for the GBNeck model and the Left conformation as noted above. The 
differences between the GB models will be further examined by translating the effective 
radii into actual solvation free energies. 
 

5.3.3.2 Solvation Free Energy 
Equation 5-6 shows that the effective Born radius of an atom is directly related to 

its solvation free energy; this is the Self energy portion of the GB equation (sum of terms 
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in Equation 5-1 when i=j). However, it is important to note that this energy is also highly 
dependent on the charge of the atom. The magnitude of the differences between the GB 
and PE effective Born radii shown in Table 5-4 and Table 5-5 will be strongly modified 
by the charges on the atoms. For each of the three GB solvent models, the average RMSD 
of PE self energies from GB self energies across all residues of Ala10 for various atom 
types are shown in Table 5-6. 
 
GB Atomic Self Energy RMSD from Perfect (PE) Atomic Self Energy (kcal/mol)
A) All GBHCT GBOBC GBNeck F) C GBHCT GBOBC GBNeck
alpha 0.90 ± 0.03 0.65 ± 0.03 1.11 ± 0.08 alpha 1.29 ± 0.09 1.39 ± 0.14 2.69 ± 0.18
hairpin 0.70 ± 0.04 0.73 ± 0.04 0.79 ± 0.06 hairpin 0.81 ± 0.08 1.78 ± 0.12 2.10 ± 0.14
left 0.83 ± 0.04 0.75 ± 0.05 1.37 ± 0.08 left 0.98 ± 0.09 1.97 ± 0.16 3.47 ± 0.18
pp2 0.32 ± 0.02 0.39 ± 0.03 0.30 ± 0.02 pp2 0.71 ± 0.08 0.87 ± 0.08 0.52 ± 0.06
B) BB GBHCT GBOBC GBNeck G) CA GBHCT GBOBC GBNeck
alpha 1.28 ± 0.05 0.93 ± 0.05 1.59 ± 0.11 alpha 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00
hairpin 1.00 ± 0.05 1.04 ± 0.05 1.13 ± 0.08 hairpin 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00
left 1.19 ± 0.05 1.07 ± 0.07 1.96 ± 0.11 left 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00
pp2 0.45 ± 0.03 0.56 ± 0.04 0.43 ± 0.03 pp2 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00
C) H GBHCT GBOBC GBNeck H) CB GBHCT GBOBC GBNeck
alpha 1.35 ± 0.06 0.49 ± 0.06 0.24 ± 0.06 alpha 0.03 ± 0.00 0.03 ± 0.01 0.14 ± 0.01
hairpin 0.82 ± 0.06 0.47 ± 0.04 0.30 ± 0.04 hairpin 0.05 ± 0.01 0.05 ± 0.01 0.09 ± 0.01
left 1.03 ± 0.06 0.31 ± 0.04 0.64 ± 0.07 left 0.02 ± 0.00 0.02 ± 0.00 0.12 ± 0.01
pp2 0.18 ± 0.02 0.40 ± 0.03 0.10 ± 0.02 pp2 0.03 ± 0.00 0.05 ± 0.00 0.07 ± 0.00
D) O GBHCT GBOBC GBNeck I) HA GBHCT GBOBC GBNeck
alpha 1.86 ± 0.08 1.00 ± 0.11 1.92 ± 0.15 alpha 0.03 ± 0.00 0.07 ± 0.00 0.02 ± 0.00
hairpin 1.73 ± 0.10 0.94 ± 0.10 1.16 ± 0.12 hairpin 0.09 ± 0.01 0.07 ± 0.00 0.02 ± 0.01
left 1.94 ± 0.09 0.72 ± 0.09 2.00 ± 0.16 left 0.04 ± 0.00 0.08 ± 0.00 0.04 ± 0.00
pp2 0.50 ± 0.05 0.38 ± 0.06 0.68 ± 0.05 pp2 0.03 ± 0.00 0.07 ± 0.00 0.01 ± 0.00
E) N GBHCT GBOBC GBNeck
alpha 1.07 ± 0.06 1.00 ± 0.09 1.10 ± 0.10
hairpin 0.76 ± 0.07 0.98 ± 0.08 0.53 ± 0.07
left 1.07 ± 0.07 1.03 ± 0.09 1.46 ± 0.11
pp2 0.45 ± 0.04 0.69 ± 0.05 0.38 ± 0.04
J) Overall Averages

GBHCT GBOBC GBNeck GBHCT GBOBC GBNeck
All 0.69 0.63 0.89 C 0.95 1.50 2.19
BB 0.98 0.90 1.28 CA 0.00 0.01 0.00
H 0.84 0.42 0.32 CB 0.03 0.04 0.10
O 1.51 0.76 1.44 HA 0.05 0.07 0.02
N 0.84 0.92 0.87  
Table 5-6. RMSD of the polar component of atomic self solvation free energy calculated with 
effective radii obtained using various GB models from atomic self solvation free energy calculated 
with perfect radii for four conformations of Ala10, shown for various atom types: All, BB (backbone 
atoms, H, O, N, C, CA), H (amide hydrogen), O (carbonyl oxygen), N (amide nitrogen), C (carbonyl 
carbon), CA (a carbon), CB (ß carbon), and HA (a hydrogen). J) Overall average RMSD of GB self 
solvation free energy from PE self solvation free energy over the four conformations of Ala10 for 
each GB solvent model. 
 

There is of course a direct relationship between deviations in effective radii and 
deviations in Self solvation free energy; an atom whose effective radius has been 
underestimated will have an overestimated solvation free energy, and vice versa. What is 
less clear is the relationship between the magnitude of deviation of effective radii and 
magnitude of deviation of self solvation free energy. It is apparent that the relatively 
small (for the most part < 0.5 Å) deviations in effective radii in Table 5-4 and Table 5-5 
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can translate into significant differences in Self energy on the order of ~1.0 kcal/mol, but 
this is, of course, highly dependent on the charge of the atom. For example, in the 
GBHCT model even though the average radii RMSD for H atoms was about three times 
as large as the average radii RMSD for O atoms, the average self energy RMSD for H 
atoms is only about half as large. As expected, radii deviations for atoms with small 
charges become almost insignificant in terms of energy. For example, although large 
deviations in the effective radius were observed for CA atoms in the GBOBC model, the 
energy differences are negligible (< 0.01 kcal/mol).  

Of course, the Self energy is just part of the GB model; only the Total GB energy 
can be directly related to observed structural ensembles, so it is important to calculate the 
Interaction energy as well (sum of terms in Equation 5-1 when i?j). Table 5-7 shows the 
Self, Interaction, and Total GB energies computed with effective radii obtained with the 
GBHCT, GBOBC, and GBNeck models (RGB), and PE derived effective radii (Perfect 
radii, RPE) for the structures used in the analysis shown in Table 5-4, Table 5-5, and 
Table 5-6. Note the excellent agreement of the Total ?GPol values in Table 5-7 with 
?GPol values in Table 5-3A, showing that choosing a subset of structures for the 
effective radii analysis has not adversely affected the results.  
 
Total PE Perfect GBHCT GBOBC GBNeck
alpha -47.96 ± 0.77 -47.42 ± 0.77 -51.64 ± 0.94 -49.38 ± 0.98 -43.27 ± 0.82
hairpin -57.28 ± 1.15 -57.70 ± 1.04 -57.45 ± 1.17 -56.02 ± 1.19 -52.83 ± 1.05
left -54.85 ± 0.90 -52.45 ± 0.82 -55.05 ± 0.90 -52.70 ± 0.93 -48.24 ± 0.08
pp2 -78.00 ± 0.92 -81.22 ± 0.97 -77.26 ± 0.94 -77.99 ± 0.95 -77.48 ± 0.92

Self PE Perfect GBHCT GBOBC GBNeck
alpha -763.77 ± 1.68 -763.77 ± 1.68 -813.34 ± 2.91 -748.18 ± 4.85 -703.92 ± 5.51
hairpin -822.96 ± 2.96 -822.96 ± 2.96 -843.65 ± 2.23 -798.59 ± 3.55 -787.25 ± 3.58
left -754.11 ± 1.86 -754.11 ± 1.86 -798.61 ± 3.00 -724.13 ± 5.15 -676.81 ± 5.54
pp2 -882.27 ± 1.45 -882.27 ± 1.45 -885.93 ± 1.47 -862.55 ± 2.12 -875.09 ± 1.52

Interaction PE† Perfect GBHCT GBOBC GBNeck
alpha 715.81 716.36 ± 1.75 761.70 ± 2.48 698.80 ± 4.34 660.65 ± 5.17
hairpin 765.68 765.26 ± 2.94 786.20 ± 1.89 742.57 ± 3.07 734.42 ± 3.22
left 699.26 701.66 ± 2.03 743.56 ± 2.75 671.43 ± 4.85 628.57 ± 5.35
pp2 804.27 801.05 ± 1.44 808.67 ± 1.32 784.56 ± 1.86 797.61 ± 1.36
†Calculated from PE(Total) - PE(Self)  
Table 5-7. Total, Self, and Interaction components of ?GPol (in kcal mol -1) calculated with either the 
PE or one of the GB implicit solvent models. 
 

In Table 5-7 it is apparent that although the deviations in the Total energy 
between PE and each GB model are on the order of a few kcal/mol, there are significant 
differences in the Self and Interaction GB energies which end up cancelling in the Total 
solvation free energy. This behavior for GB models has been observed previous ly[126, 
127]. 

As was noted by Onufriev et al.[126], use of effective Born radii calculated via PE 
improves the quality of interaction energies as well as self energies; surprisingly, this 
improvement is not always reflected in the Total energy, where other GB models may 
happen to have better agreement with PE results due to fortuitous cancellation of error. 
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For example, although perfect radii give the lowest Total energy deviation for the Alpha 
conformation (- 0.55 kcal/mol), it does not for the Left conformation (- 2.40 kcal/mol); in 
that case the lowest deviation is from the GBHCT model (0.20 kcal/mol). 

As in the previous section, the differences in Total, Self, and Interaction energies 
shown in Table 5-7 between different conformations are considered (Table 5-8) in order 
to better compare the performance of each implicit model. Here it is seen that despite the 
fact that using perfect effective radii brings the Self and Interaction GB energies much 
closer to those calculated with PE, the use of perfect radii shows no improvement over 
other GB effective radii calculations in terms of reproducing the solvation free energy 
differences between different conformations of Ala10. This finding is consistent with that 
from a study by Stultz, who suggested that agreement with PE alone may be an 
inadequate way to parameterize GB models for the purpose of calculating free energy 
differences[148].  
 
A) ??GPol Total

P-A P-L A-L P-H A-H L-H
PE -30.03 -23.15 6.89 -20.72 9.32 2.43
Perfect -33.80 -28.77 5.03 -23.52 10.28 5.25
GBHCT -25.62 -22.21 3.41 -19.81 5.80 2.40
GBOBC -28.61 -25.29 3.32 -21.97 6.64 3.32
GBNeck -34.21 -29.25 4.97 -24.66 9.56 4.59
B) ??GPol Self

P-A P-L A-L P-H A-H L-H
PE -118.49 -128.15 -9.66 -59.31 59.18 68.84
Perfect -118.49 -128.15 -9.66 -59.31 59.18 68.84
GBHCT -72.58 -87.32 -14.74 -42.28 30.30 45.04
GBOBC -114.37 -138.42 -24.05 -63.96 50.41 74.45
GBNeck -171.17 -198.28 -27.11 -87.85 83.33 110.43
C) ??GPol Interaction

P-A P-L A-L P-H A-H L-H
PE 88.46 105.01 16.55 38.59 -49.87 -66.42
Perfect 84.69 99.39 14.69 35.79 -48.90 -63.59
GBHCT 46.97 65.11 18.14 22.47 -24.50 -42.64
GBOBC 85.76 113.13 27.37 42.00 -43.76 -71.14
GBNeck 136.96 169.04 32.08 63.19 -73.77 -105.84
D) RMSD from PE

Total Self Interaction
Perfect 3.32 0.00 3.32
GBHCT 2.76 30.25 28.24
GBOBC 2.19 8.75 6.60
GBNeck 3.62 43.06 39.63
A=Alpha, P=PP2, L=Left, H=Hairpin  
Table 5-8.  A-C) Differences in components of ?GPol (from Table 5-7) between conformations of 
Ala10 (kcal mol-1). D) RMSD of ??GPol calculated with GB models from PE ??GPol for the Total, 
Self, and Interaction components of solvation free energy.  
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5.4 Conclusions 
 In this study, we directly compared the TIP3P explicit solvent model to results 
from PE and three GB solvent models. Well-converged REMD simulations using either 
the TIP3P solvent model or each of the three GB solvent models revealed that 
simulations with GB models show markedly different conformational and structural 
preferences. In particular, the GBHCT and GBOBC models contained an overabundance 
of helical structure compared to explicit solvent results and experiment. Thus the 
different solvent models not only provide ensembles with different secondary structure 
populations, but the “native” structure in each solvent model (as defined by the dominant 
conformation in the ensemble) differs depend ing on the solvent model used for the 
simulation. This result has significant implications for the use of these GB models for 
structure prediction or characterization of folding landscapes. 

Using the TIP3P model as the standard, we directly compared free energies of 
solvent polarization from each model for four different conformations of Ala10; right-
handed a-helix (Alpha), left-handed a-helix (Left), ß-hairpin (Hairpin), and polyproline II 
helix (PP2). The performance of implicit models was found to be dependent on 
conformation; in general, agreement with TIP3P results was best for the well-solvated 
PP2 conformation, growing progressively worse for more compact conformations 
(Hairpin, Left, and Alpha). PE was found to have the best overall performance in terms of 
reproducing differences in solvation free energy between the different conformations. It 
was also found that the amount of a-helical structure in the unrestrained REMD 
simulations is correlated to the solvation free energy gap between the PP2 (unfolded 
model) and Alpha conformations; in the GBHCT and GBOBC solvent models this gap 
was too small, which is related to the observed overabundance of helical structure in the 
REMD simulations. 

One difference between the TIP3P and GB REMD simulations reported here is 
the lack of a specific term for ?GNonpol in the GB simulations. The absence of this term 
could potentially further affect the thermodynamics in these simulations. However, it has 
been shown that the errors in ?GPol from the various GB models correlate well with 
structure populations observed in the REMD simulations, and so it appears ?GPol 
dominates the solvation free energy. Therefore it is likely that inclusion of a term for 
?GNonpol would not change the results significantly. 

The effective Born radius calculation of each GB model (RGB) was compared to 
effective Born radii calculated with PE (RPE). While small deviations in effective radii 
were found for PP2, significant deviations were found for the more compact 
conformations. It is likely that backbone hydrogen bonds are too stable in the GBHCT 
and GBOBC models because RGB is underestimated for amide hydrogen (H) and 
carbonyl oxygen (O) atoms, leading to an insufficient desolvation penalty for hydrogen 
bonds. Likewise, the GBNeck model overestimates RGB for these atoms, leading to 
unstable hydrogen bonds and a lower helical population. 

As has been reported by others, we note that substantial errors in the Self and 
Interaction GB energies tend to cancel in the net Total energies. The significant 
cancellation of error that we observe supports the idea that individual GB energy 
components should be considered when comparing total GB energies to results from PE, 
as is often done during development or validation of GB models.  
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As has been seen before, using RPE in the GB function improves the agreement 
between Self and Interaction energies compared to PE. However, this improvement does 
not translate into overall better performance; so-called ‘perfect’ radii are no better at 
capturing the difference between the conformations here than any other GB model that 
we tested. This may suggest a limit to how much GB models can be improved solely 
through optimization of the effective Born radius calculation. 
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Chapter 6  
Summary 
 
 
 
 The advance of computational methods used to study various problems in 
structural biology has been nothing short of astounding; consider that within the past few 
decades the application of these methods has gone from simple sub-picosecond 
simulations of a protein to multi-microsecond simulations and accurate all atom 
prediction of the three-dimensional structure of a protein solely from its sequence. There 
have been advances not only in computational resources (processor speed, storage 
capacity, parallel computation, etc.), but also in the techniques and algorithms used. All 
of these advances have enabled computational techniques to be applied to an ever-
widening range of problems.  

The work presented in this thesis is by no means a complete illustration of all the 
various applications of computational methods. Nevertheless, this work has shown how 
several of these methods (molecular dynamics, enhanced sampling, free energy 
calculations, etc.) can be used to describe protein folding pathways, examine 
cooperativity in protein folding, and analyze protein stability. This work has also 
emphasized that the accuracy of results from computational methods should always be 
verified against experimental data if possible, since computational models often rely on 
assumptions and simplifications (such as in the case of the GB implicit solvent model) 
that can result in significant errors in some cases.  

This work has focused largely on the ß-sheet secondary structure type; in 
particular the ß-hairpin model Trpzip2, and the 3-stranded ß-sheet model DPDP. Since a 
ß-hairpin represents the simplest form of ß-sheet structure, study of the folding 
mechanism of the hairpin can provide insight into the earliest stages of folding of larger 
ß-sheet structures (and therefore the earliest stages of protein folding in general). In the 
study of Trpzip2 presented here, the computational model used was verified via 
comparison of calculated thermodynamic parameters from well-converged data with 
experimental thermodynamic parameters. Although multiple pathways were observed, 
the key feature of hairpin formation was cross-strand hydrophobic pairing. This type of 
contact not only stabilized the folded hairpin, but helped keep the individual strands of 
the hairpin in relatively close contact in the unfolded state. It seems that in Trpzip2, 
backbone hydrogen bond formation appears largely dependent on formation of the 
nearest hydrophobic contact pair. Also important was the turn region, which appeared 
turn- like even in the unfolded state and likely serves in conjunction with cross-strand 
hydrophobic pairing to reduce the conformational search of bringing the two strands of 
the hairpin together.  

The next simplest ß-sheet system after the ß-hairpin is the three stranded ß-sheet; 
in this case DPDP was studied. In studying ß-sheets one is able to examine the concept of 
folding cooperativity parallel to strand direction; i.e. how easy is it to add strands to an 
extant ß-hairpin. Just as the formation of the first helical hydrogen bond is the nucleation 
step for formation of an a-helix, the formation of a ß-hairpin may be the nucleation step 
for ß-sheet formation. Since the formation of extended ß-sheet- like structures (such as in 
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amyloid fibrils) is a hallmark of protein misfolding diseases (such as Alzheimer’s), study 
of cooperativity in ß-sheet formation may give insight into the earliest phases of 
formation of these structures. Again, the computational model was verified against 
experimental data; in this case the lower limit of folding cooperativity was reproduced 
when studied in a manner analogous to the experiment. However, after verifying that the 
model could reproduce experimental observables a more in-depth analysis was performed 
that was able to calculate the actual cooperativity of strand formation, which was found 
to be significantly higher than the experimental estimate. This indicates that once two 
strands of a ß-sheet form a hairpin, the addition of further strands is essentially a downhill 
process. This is in agreement with observations from experiments on both DPDP and a 
related 4-stranded ß-sheet, and has important implications for the formation of amyloid 
fibrils and other extended ß-sheet structures. The exact cause of this cooperativity is 
unclear, but may arise from the fact that once one hairpin is formed, the entropy cost of 
fixing the central strand has already been paid, so all that remains is to add the remaining 
strand.  

In addition to cooperativity, DPDP provided an opportunity to study the 
underlying forces of hairpin stability. In Trpzip2, both the turn and cross-strand 
hydrophobic contacts were observed to contribute to stability. DPDP has two component 
hairpins, of which the C-terminal hairpin was observed to be the more stable of the two. 
Several mutations of DPDP were made to assess both turn and side chain contributions to 
individual hairpin (as well as overall) stability. The two most stabilizing mutations 
involved moving a hydrophobic residue to the center strand, improving hydrophobic 
contacts, and optimization of the N-terminal turn region. Addition of a salt bridge to the 
N-terminal hairpin was not found to have any affect on stability. The dual studies of 
Trpzip2 and DPDP ultimately give a larger picture of ß-sheet systems; the turn region and 
hydrophobic contacts are important for both folding and stability, with backbone 
hydrogen bonds serving largely to stabilize folded structures rather than driving anything. 
In particular, persistent hydrogen bond formation seems dependent upon adjacent 
hydrophobic pairing, although more study needs to be done to confirm this general result. 

Since the computational studies of Trpzip2 and DPDP were done using a 
generalized Born (GB) implicit solvent model (GBHCT, which was known to have 
certain deficiencies), it then made sense to perform an in-depth analysis of the accuracy 
and precision of the GB model. Although these deficiencies were largely accounted for 
by using a force field specifically designed for and tested on ß-type systems in implicit 
solvent, it was desirable to quantify errors in the solvent model for future studies. In this 
way it may be possible to avoid adjusting force field parameters to correct for solvent 
model inadequacies, as this approach may not be extensible to other systems (for example 
the correction force field used for Trpzip2 and DPDP is likely not transferable to a-
helical systems).  

The performance of the GB model and two others was assessed by comparison to 
another implicit model based on the Poisson equation (PE) and the TIP3P explicit solvent 
model (via use of thermodynamic integration calculations). In terms of reproducing 
explicit solvent results, the implicit model based on PE was found to perform the best, 
whereas the GB models all showed deficiencies. In particular, certain GB models were 
found to have a bias towards forming a-helical structures. It should be noted here that the 
errors of the GBHCT model (used in the Trpzip2 and DPDP studies) for ß-hairpins were 



 

 91 

significantly less than those for a-helices. Attempts to correct the GB model by fitting to 
results from PE showed little overall improvement. The results suggest that the ability of 
GB implicit models to provide quantitative data may be limited, and that uncorrected 
simulations will only provide qualitative results.  

Though the work that has been presented here encompasses several years of 
study, it exposes but a mere fraction of the secrets that the field of structural biology has 
to yield. Advances in computational power and techniques will no doubt increase our 
knowledge by leaps and bounds in the coming years. Just as the work done by countless 
others has made this work possible, it is hoped that this work will someday provide the 
foundation for a greater understanding of protein folding and solvation. 
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