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Abstract of the Dissertation 

Improving the accuracy of Amber force field for biomolecular simulation 

by 

Chuan Tian 

Doctor of Philosophy 

in 

Chemistry 

Stony Brook University 

2019 

 

 

Molecular dynamics (MD) simulations have become increasingly popular in studying the 

motions and functions of biomolecules. The accuracy of the simulation, however, is highly 

determined by the classical force field (FF), a set of functions with adjustable parameters to 

compute the potential energies from atomic positions. The relatively simple terms in most of the 

current force fields are computationally advantageous which enable the simulation of biologically 

important macromolecules at biologically relevant timescale. However, the overall quality of the 

FF, including our previously published ff99SB and ff14SB, is limited by the assumptions that were 

made years ago. (1) An overly symmetric φ/ψ dihedral energy map arises from the uncoupled 

cosine functions used to model these two degrees of freedom in the protein backbone. (2) The 

model does not show sufficient dependence of the backbone energetics on the amino acids, 

probably because the parameters developed for the simple amino acid Ala were applied to all other 

amino acids without checking the quality of the transferability. (3) The fixed partial charges were 

trained for aqueous solution, but the dihedral parameters were all fit to gas-phase quantum 

mechanics (QM), thus the resulting dihedral parameters actually counteract the intended 

polarization effect and introduce significant internal inconsistency in the model.  

This dissertation seeks to overcome these limitations in FF. In ff19SB model, we have 

significantly improved the backbone profiles for all 20 amino acids. We fit coupled φ/ψ parameters 
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using 2D φ/ψ conformational scans for multiple amino acids, using as reference data the entire 2D 

QM energy surface. We address the polarization inconsistency during dihedral parameter fitting 

by using both QM and MM in solution. Finally, we examine possible dependency of the backbone 

fitting on side chain rotamer. To extensively validate ff19SB parameters, and to compare to results 

using other Amber models, we have performed a total of ~6 milliseconds MD simulations in 

explicit solvent with several different explicit water models. Our results show that after amino-

acid specific training against QM data with solvent polarization, ff19SB not only reproduces the 

differences in amino acid specific Protein Data Bank (PDB) Ramachandran maps better, but also 

shows significantly improved capability to differentiate amino acid dependent properties such as 

helical propensities. We also conclude that an inherent underestimation of helicity is present in 

ff14SB, which is (inexactly) compensated by an increase in helical content driven by the TIP3P 

bias toward overly compact structures. In summary, ff19SB, when combined with a more accurate 

water model such as OPC, should have better predictive power for modeling sequence-specific 

behavior, protein mutations, and also rational protein design. 

In addition, we have further investigated the potential source of errors in non-bonded 

parameters that can be improved in the long term. We quantified the magnitude of errors for the 

non-bonded terms including hydrogen bond, 1-4 scaling factor and partial charges. Our 

preliminary results show that there is still significant room for improvement on classical 

mechanical force field model. However, systematic refitting will be required to fundamentally 

improve force field. 
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Introduction 

 

 

 

 

 

 

“By ‘life’, we mean a thing that can nourish itself and grow and decay” 

--- Aristotle 

 

Understanding the underlying mechanisms that govern the biological process requires 

scrutiny at spatial and temporal resolutions that can be challenging for current experimental 

techniques. Over the past three decades, molecular dynamics (MD) simulation has evolved to 

become an indispensable tool for studying biological phenomena with atomic precision and at 

relevant timescales. Such simulations have served as a “computational microscope”, providing 

information previously unattainable by experiments. Today, MD simulations are having a 

profound impact on biology. For example, researchers have utilized MD simulations to capture the 

assembly of a whole virus inside host cells and tried to explain how virus cause diseases1. Insight 

provided by these findings could be particularly informative for biological studies. The MD results, 

however are strongly dependent on the accuracy of the computed energies and forces. More 

broadly, whether it is proteins in bio-systems or conjugated polymers in organic electronic 

materials, understanding of the functions of macromolecules requires detailed information about 

their structures and conformations in condensed phase. Molecular modelling using classical force 
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fields (FF) is an indispensable tool in obtaining information for large biomolecules and long 

timescales. However, significant limitations remain, and making the next step in FF accuracy 

requires unique combination of skills, including extensive experience in developing force fields, 

their applications and limitations, along with expertise on quantum mechanics calculations that 

can be used to improve FFs. 

The subject of this dissertation is to significantly improve the classical force field in Amber. 

In this chapter, first, however, the general concepts of proteins will be described. Then the quantum 

mechanics and classical mechanics that provide microscopic energetic information of molecules 

will be presented. The introduction will then be switched to force fields, recent developments of 

force fields and molecular dynamics. Finally, an outline of the dissertation will be included. 

 

 

 

 

 

 

1.1 Proteins 
 

Almost any property that characterizes a living organism can be influenced by proteins. 

Proteins store and transport various particles ranging from electrons to macromolecules. Some 

proteins control the electron flow in photosynthesis; some proteins control the passage of 

molecules across membranes; antibodies play important roles in immune system to defend against 

intruders; proteins also regulate gene expression via binding to nucleic acids; proteins are 

responsible for converting chemical energy into mechanical energy and control muscles; proteins 

are crucial for sight, hearing and other senses as well. Even though proteins have diverse biological 

function, their structures are relatively homogeneous. All proteins belong to the same type of linear 

polymers, made up from the same 20 building blocks, amino acids (Figure 1.1), but they differ in 

the polymeric sequence of amino acids. A single amino acid molecule may also be named a residue 

indicating a repeating unit of a polymer. Proteins can undergo condensation reactions, in which 

the amino acids lose one water molecule per reaction in order to attach to one another with a 

peptide bond. The chemical diversity of the amino acid and sequence is important to the functional 

diversity of proteins, but the highly flexible three-dimensional geometries are more determinant 

of the functions.  
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Figure 1.1 Chemical composition of single amino acid molecule with amino and carboxyl group. 

 

The allowable geometric space of proteins is highly determined by the chemical 

composition of polypeptide. There are three repeating torsion angles along the peptide backbone 

chain called φ, ψ and ω. Because of the delocalization of carbonyl π electrons and the nitrogen 

lone pair, the peptide bond ω has partial double-bond character and tends to be planar (0° or 180°). 

Thus the carbonyl oxygen, carbonyl carbon, and amide nitrogen/hydrogen that make up the peptide 

bond are coplanar, and thus the free rotation around this ω bond is limited. The φ (C-N-Cα-C) and 

ψ (N-Cα-C-N) in the basic repeating of backbone are σ bonds and free rotation is permitted 

provided there is no steric clash from the side chains. Interactions between side chain rotation 

(determined by χ dihedral angle) and backbone atoms such as steric conflicts, hydrogen bond 

formation will limit the free rotation of φ and ψ angles. Thus a protein is a polymer with rotatable 

covalent bonds (φ and ψ) alternating with rigid planar ones (ω). This combination greatly restricts 

the number of possible conformations that a polypeptide chain can adopt. The energy barriers to 

the free rotation of dihedral angles in molecules are fundamental in structural properties and can 

be either measured by experimental techniques such as NMR spectroscopy or computed by 

theoretical methods such as quantum mechanics or molecular mechanics. 
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1.2 Quantum mechanics 
 

In the early twentieth century, physicists found that the motions of small particles such as 

electrons and nuclei of atoms can be rigorously described by a set of rules/equations called 

quantum mechanics (QM). QM can be applied to a variety of problems in chemistry, for instance, 

to calculate thermodynamic properties such as heat capacity; to interpret molecular spectra and 

determine molecular properties such as molecular geometries, dipole moments, barrier to internal 

rotation, conformational energies, etc. Even though it is still difficult to apply QM calculations 

onto large biological molecules of interest, more and more researchers have begun to take 

advantage of QM to understand structures of biological molecules, enzyme-substrate binding, 

drug-protein binding and solvation of biomolecules.  

The QM rigorously applies to microscopic “particles” such as electrons. To describe the 

state of a QM system for instance a hydrogen atom, the existence of a function Ψ is postulated as 

state function or wave function. The wave function contains all possible information about the 

system. Since the state will change with time, Ψ is a function of time. For one-particle, one-

dimensional system, the future state of a system form its present state is defined as: 

−
ħ

𝑖

𝑑𝛹(𝑥,𝑡)

𝑑𝑡
= −

ħ2

2𝑚

𝑑2𝛹(𝑥,𝑡)

𝑑𝑥2
+ 𝑉(𝑥, 𝑡)𝛹(𝑥, 𝑡)      (1.1), 

where ħ is Planck’s constant divided by 2π, m is mass of particle, t is time, x is the coordinate of 

particle, V is the potential energy function of the system. Equation 1.1 is also called time-

dependent Schrödinger equation. The time-independent Schrödinger equation is often used to 

identify the energy of a system, following: 

−
ħ2

2𝑚

𝑑2𝜑(𝑥)

𝑑𝑥2
+ 𝑉(𝑥)𝜑(𝑥) =  𝐸𝜑(𝑥)        (1.2), 

For the one-particle system like hydrogen atom, the exact wave function is known. For 

helium and lithium that contain interacting particles, very accurate wave functions can be 

calculated by approximation methods such as variation theorem. For atoms of higher atomic 

number, one way to find an accurate wave function is by first applying Hartree-Fork method, and 

approximate electron correlation with Møller-Plesset (MP) perturbation theory, coupled cluster 

theory, etc. For polyatomic molecules (for example, biomolecules), even more crude calculations 

become necessary including density-functional method, semi-empirical method, etc. 
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1.3 Molecular mechanics 
 

Most of the biochemical problems to be tackled are unfortunately too large to be solved by 

quantum mechanics. As mentioned in Section 1.2, QM methods rigorously resolve electronic 

structures in a system, but the calculations become too expensive since a large number of particles 

need to be considered. Molecular mechanics (MM) is quite different from QM since it does not 

deal with an electronic Hamiltonian or wave function or an electron density. MM only applies to 

macroscopic particles, and only nuclear motions are considered. The energy of a system is merely 

computed as a set of functions of the nuclear positions. Therefore, MM is advantageously applied 

to perform calculations on systems containing significant number of atoms, for instance 

biopolymers. The cost of doing MM calculations scales as O(N2) where N is the number of atoms 

in the system. On the other hand, the simplest QM calculations formally scale as O(N3) or worse. 

The QM calculations in CCSD level scale as O(N7). The N is the number of particles including 

both nucleus and electron. More specifically, MM provides a reasonable trade-off between the 

wanted accuracy and the computer time. However, considering its missing description of physics, 

MM cannot be applied to questions that are highly related to molecule’s electronic distribution and 

quantum effect, such as enzyme reaction, charge transfer, etc. The practical use of MM relies on 

several assumptions. One of the most important is, the motion of macro biomolecules can be 

dominantly determined by nuclear motions that can be described by relatively simple and 

computationally efficient functions. In this regard, MM work reasonably well when functions such 

as Hooke's law are used to describe certain contribution to the total energy. 
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1.4 Force fields 
 

The MM method is sometimes called force field method because it relies almost entirely 

on classical mechanic force field (1.4) whose equation together with a set of empirical parameters 

can be used to calculate the energies and forces of molecules. 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐾𝑟(𝑟 − 𝑟𝑒𝑞)
2

𝑏𝑜𝑛𝑑𝑠 + ∑ 𝐾𝜃(𝜃 − 𝜃𝑒𝑞)
2

+ ∑
𝑉𝑛

2
[1 + cos(𝑛𝜙 −𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠𝑎𝑛𝑔𝑙𝑒𝑠

𝛾)] + ∑ 4𝜀 [(
𝜎

𝑅𝑖𝑗
)

12

− (
𝜎

𝑅𝑖𝑗
)

6

] + ∑
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑅𝑖𝑗
𝑖<𝑗𝑖<𝑗       (1.3) 

Force fields such as AMBER2, CHARMM3, OPLS4 have very similar functional forms, 

while the differences mostly come from specific parameters. In a canonical force field equation 

(1.3), the vibrational mode for a typical bond is represented by a bond stretching term. That is 

based on assumptions that bond cannot break in simulations. Thus this model cannot be applied to 

chemical reaction study where covalent bonds can break and form. A true bond-stretching potential 

is better expressed as Morse curve5.  But the Morse potential is not usually used in force field 

because of its inefficiency in computation. Simpler model like Hooke’s law formula is often used. 

This functional form is reasonable because it well approximates the Morse curve at the bottom of 

the potential. The reference bond length req is parameterized to fit values obtained by electron 

diffraction6 or X-ray data7. The forces between valent bonds are very strong and significant 

energies are required to cause a bond to deviate largely from its equilibrium value. This is reflected 

by the force constant (Kr) in a bond stretching term. Many of the Kr come from normal mode 

calculations, in which the Kr values vary to give the best fit to experimental frequencies7.  

The deviation of bond angle from its reference value is also described in harmonic 

potential. The development of bond angle parameters followed a similar route. Values of θeq come 

from experimental data, while normal mode calculations also play a large role in the choice of Kθ 

values7. These two bonded terms are often regarded as ‘hard’ degrees of freedom, since quite 

substantial energies are required to break them. Higher order terms like cubic or quartic terms are 

also used to model the Morse curve more accurately or used to treat certain molecules. 

Atoms can interact through space, usually described as non-bonded interactions. In force 

field, they are usually modeled as electrostatic and van der Waals (vdW) interactions. Electrostatic 

interactions result from electron distributions around atoms. In a simpler model however, the 

charges are restricted to nuclear centers, and are referred to partial charges. The polarization effect 
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is often neglected and the charge distribution is approximated with these discrete atom-centered 

partial charges. These fixed point charges can be derived from fitting to the QM electrostatic 

potential such as in RESP fitting8, or fitting to reproduce thermodynamics properties of 

experiments using Monte Carlo methods. The electrostatic interactions are calculated between 

pairs of point charges using Coulomb’s law (1.3) where Rij is the distance between two atoms and 

ε0 is the dielectric constant. The limitation of fixed-charge model is neglect of polarization. The 

polarization arises from changes in atomic charge distribution by an external field coming from 

local environment. Polarizable force fields such as AMOEBA9 and DRUDE10 explicitly consider 

the polarizability of molecules. Advances in polarization algorithms and computing hardware have 

significantly reduced the computational overhead of polarizable force fields with the accuracy and 

coverage improving in recent years11. One promising example is, the binding free energy between 

Mg2+ and H2PO4-, determined by AMOEBA, CHARMM fixed-charge force field, and QM with 

a mixed explicit/continuum solvent model, was −2.23, −41.0, and −3.3 kcal/mol, respectively, 

compared with the experimental value of −1.7 kcal/mol12. But there is need to further calibrate the 

underlying physics of polarizable models to improve modeling of for instance charge penetration 

and transfer, and the timescale and length scale of polarizable simulations are still highly 

dependent on advances of efficient algorithm and hardware. 

The vdW interaction is explicitly considered in a force field. It arises from a balance 

between attractive and repulsive forces. The attractive forces are long-range and dominant by 

London dispersive forces, arising from interactions between induced dipoles. In spite of its 

simplicity of only considering dipole-dipole interaction, this model gives quite reasonable results. 

The repulsive interactions arise from the Pauli principle, which prohibits any two electrons in a 

system from having the same set of quantum numbers. The best known vdW potential function 

(Lennard-Jones potential) contains an attractive part that varies as r6 and a repulsive part that varies 

as r12, the collision diameter σ is the separation for which energy is zero while the well depth ε 

determines the lowest energy. Since there is no strong theoretical reason of using the twelfth power 

term (just for the sake of computational efficiency), different powers such as values of 9, 10, 14 or 

even exponential function are also adopted in various models.  

Due to the simplicity, Lennard-Jones potential and Coulomb’s law are not accurate enough 

in modelling short-range interaction13. In practice, 1-4 (separated by three covalent bonds) scaling 

factor14 is used to scale the short-range interaction by certain amount to reduce the errors. In 
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addition, 1-4 scaling factor is also meant to compensate for dihedral potential where outer atoms 

are separated by three bonds, and the insufficiency of dihedral potential in modeling QM orbital 

effects. 

Most of variations in structure and relative energies come from the complex interplay 

between the torsional and non-bonded contributions. The energy barriers to the free rotation of 

dihedral angles is fundamental in structural properties. QM calculations suggested that these 

barriers resulted from the bonding/antibonding orbital effects, as rotation of the molecular orbitals 

results in phase changes of wave functions and change the rotational energies15. Since MM doesn’t 

have explicit orbitals, this rotational profile is usually described in a dihedral term of force field 

using truncated Fourier series expansion (1.4). In the dihedral term, φ is any 4-atom torsion angle 

(both backbone and side chain), Vn relates to the ‘barrier’ height, n is the multiplicity which gives 

the number of minimum or maximum in one period, γ (initial phase) determines where the torsion 

angle passes through the minimum. For instance, the rotation of partial double bond ω that results 

from pure quantum orbital effects is calibrated by summation of one-fold and two-fold cosine 

functions. In practice, considering the simplicity of force field model, these dihedral parameters 

are not only simply accounting for the missing orbital effects in a classical model, but also making 

up for all differences between QM and MM model. These differences include the missing rotation-

dependent polarization effects resulting from fixed-charge model, and the rotation-dependent 

errors in bond stretching, angle bending, and non-bonded interactions2c. This is also why dihedral 

parameter fitting is usually the last step in parametrization. As a result, the missing effects and 

errors from bonded and non-bonded terms are implicitly considered in the dihedral parameters. 

But since dihedral fitting was only done on a limited number of molecules, the parameters might 

not be transferable to dihedrals not explicitly included in training, or applied into dihedrals where 

the local environment nearby was changed.  

Since FFs were developed when parameters were trained using smaller molecules than 

those typically simulated, the concept of “atom types” was developed16, leading to many of the 

problems addressed below. These atom types typically reflect the element, hybridization and the 

nature of the functional group (e.g. hydroxyl vs. carbonyl oxygen). Atom types are used to assign 

vdW parameters, along with bonds, angles and dihedrals. While this assumption of broad 

transferability can work well, it becomes a serious weakness when atom types are used to select 

dihedral corrections. Dihedral terms are intended to be corrections on top of the energy profile for 
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the rest of the force field terms, in order to improve the match to training data. Because of the 

relatively few atom types, the same dihedral terms (defined using 4 consecutive atom types) occur 

frequently in a peptide sequence (for example, the amide in the protein backbone and in Gln/Asn 

side chains). In each case, the same dihedral parameters are often applied to segments that have 

different partial charges, since charges are assigned with much higher specificity than the atom 

types. A single dihedral term is unlikely to be an equally accurate correction in situations where 

the charge distribution is different, or when the neighboring functional groups vary. This overly 

broad application of atom types is a significant inconsistency and weakness in current models.  

The force field terms are implicitly coupled to some extent. For example when the bond 

angle decreases, the bonds stretches in order to reduce the interaction between 1-3 atoms. Quantum 

calculations suggested that stretch-stretch, stretch-bend, bend-bend, stretch-torsion and bend-

bend-torsion were important17. For instance, in MM2/MM3 force field18, a cross-term is used to 

model stretching of two bonds adjoining an angle. Also in CHARMM force field19, a ‘Urey-

Bradley’ cross-term is there to compensate for angle bending by a harmonic function of the 

distance between the 1-3 atoms.   

 

 

 

 

 

 

1.5 Recent development of force fields 
 

The three major families of biomolecular force fields are AMBER, CHARMM and OPLS 

(briefly summarized in Figure 1.2). The history of AMBER force field for biomolecules can be 

traced back to over 30 years ago4a, 7, 14. The development of a molecular mechanics force field is 

timely, given the recent advances in the understanding of biomolecular interactions. Weiner et al.7 

have developed a force field that reasonably reproduce structures, energies, and vibrational 

frequencies of model systems. For reasons of computational efficiency, that force field used a 

united atom (spherical) representation of CH, CH2 and CH3 groups. Because of this approximation, 

compromises have to be made which lead in some cases to less than optimum fits with experiment. 

The following calculations have also suggested that when one is examining small energy 

differences, a spherical representation of CH groups leads to poorer agreement with experiment 
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than an all atom representation14. Simulations of NMR relaxation of methyl group rotations should 

benefit from an explicit treatment of all hydrogen atoms, and such a representation also makes 

comparisons to observed vibrational spectra much more straightforward.  

The first generation all-atom force field associated with AMBER software20 was developed 

by Weiner et al.7, 14. That was developed in the era before one could study big molecules in explicit 

solvent. As computer power grew, Cornell et al.21 developed the second generation force field 

(denoted as ff94) for simulations in explicit solvent. In ff94, infrared spectroscopy and crystal 

structure geometry data were used for bond stretching and angle bending parameters. Different 

from OPLS charges which were derived empirically using liquid properties as a guide, QM 

calculations were used in ff94 to derive electrostatic potential (ESP). Specifically, ESP is 

calculated at a large number of grid points around the molecule at the QM level. At each grid point, 

the electrostatic interaction energy, between a molecular electronic and nuclear charge distribution 

and an external charge placed at grid point in the neighboring space around the molecule will be 

computed and is equivalent to electrostatic potential when the external charge is chosen to be 

positive unit charge22. 

Although the ab initio derived charges fluctuate significantly with small basis sets, after 

one reaches a basis set of 6-31G* quality, the ESP is close to convergent with respect to 

improvements in the basis set21. A 6-31G* based ESP-fit charge model is capable of giving an 

excellent reproduction of condensed-phase properties such as liquid enthalpies and densities23. But 

the 6-31G* standard ESP charges are less than ideal. First, the variation is considerable when 

charges are generated using different conformations of a molecule8. Second, the charges on buried 

atoms (such as sp3 carbons for butane) are underdetermined and often assume large values for 

nonpolar atoms. Thus, a restrained ESP-fit (RESP) was proposed8. In RESP model, hyperbolic 

restraints were added on charges of non-hydrogen atoms (such as buried carbons) to reduce their 

resulted charges without impacting the fit. New vdW parameters such as the ones for sp3 carbon 

were optimized to reproduce liquid properties and the remaining vdW parameters such as sp2 and 

sp3 N and sp2 O were retained from OPLS model4a. Monte Carlo simulations with adjustable σ 

and ε parameters were carried out to reproduce the densities and enthalpies of vaporization. 

Dihedral parameters such as backbone dihedral parameters φ (C-N-Cα-C) and ψ (N-Cα-C-N) were 

fit against accessible gas-phase minimum QM energies24 of a set of glycine and alanine dipeptide 

conformations at that time, and side chain parameters were trained based on side chain analogues. 
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The overall hypothesis of FF training include (1) fitting RESP charges against QM, (2) fitting vdW 

parameters against liquid properties and (3) adjusting conformational energies with dihedral terms 

against small peptide QM data, and seem justified to reproduce experimental conformational 

energies for limited set of molecules better than models prior to 1990s. 

 

 

Figure 1.2 Thirty years of development of protein force fields. A selected number of protein force 

fields from AMBER, CHARMM and OPLS families are listed. 

 

Because of limited computational resources at the time, dihedral parameters were fit to a 

small number of low energy conformations of glycine and alanine dipeptides. A possible limitation 

of using dipeptides is that their gas-phase energy surfaces do not have a local minimum in the α-

helical region, which occurs with high frequency in protein structures2b. In ff9625 and ff992d, φ and 

ψ backbone parameters were fit to better reproduce QM energies of alanine dipeptides and 

tetrapeptides. The use of tetrapeptides is advantageous over dipeptides because tetrapeptides can 

form an intermolecular hydrogen bond and have a local helical minimum in gas-phase. Because 

gas-phase QM is the reference energy in fitting, the use of gas-phase minima of tetrapeptide 

provides training data in helical region and in turn makes the model more accurate in secondary 

structure prediction. However, limitations in ff99 are that φ and ψ parameters were fit to reproduce 

relative energies for alanine with the existence of φ’ (C-N-Cα-Cβ) and ψ’ (Cβ-Cα-C-N) parameters 

retained from ff94 (Figure 1.3). And the new fitted φ and ψ parameters were applied to glycine 
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and proline afterward. Thus, it makes no physical meaning when these new φ and ψ parameters 

were applied to glycine where there were no φ’ and ψ’ dihedrals (missing Cβ atom). This problem 

was carefully re-considered in ff99SB2b. While using glycine tetrapeptides in fitting φ and ψ 

parameters, a set of alanine tetrapeptides were used to fit φ’ and ψ’. These φ’ and ψ’ parameters 

were then applied to the rest of amino acids containing Cβ. The pair-wise relative energies were 

used in fitting instead of absolute energies with arbitrarily zeroing the energy of one conformation 

as in ff992d. Both ff99 and ff99SB uses QM data (LMP2/cc-pVTZ) at high level of accuracy as 

reference for dihedral fitting. The modification of ff99SB achieved a good balance between 

secondary structures and became widely used26. 

A different approach was taken by Duan et al.27 who introduced a more extensive 

modification of ff94/ff99 (called ff03), in which a fundamentally different concept to derivation 

of partial atomic charges was used. Instead of relying on the HF/6-31G* approach to provide 

aqueous-phase charges, a low-dielectric continuum model corresponding to an organic solvent 

environment was included directly in the QM calculation of the dihedral parameters and 

electrostatic potential (from which the charges are obtained). Because of these differences, ff03 

should be considered a distinct force field model rather than extension of previous Amber force 

fields. Ff03 behaves very similarly to ff99SB in short peptides such as Ala3 and Gly3, but it may 

still be slightly over stabilizing α-helices comparing to ff99SB (see Table II and Figure 3 in ff99SB 

paper2b). Considering that in Ala dihedral fitting, φ’ and ψ’ dihedral parameters were trained 

against Ala peptides with the presence of φ and ψ dihedral parameters previously trained against 

Gly peptides. The dependence in training might prevent from an ideal match to the target data. 

 

 

Figure 1.3 The definition of φ(C-N-Cα-C), ψ(N-Cα-C-N), φ’(C-N-Cα-Cβ) and ψ’(Cβ-Cα-C-N) in 

Amber residue. 
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Figure 1.4 Ala dipeptide Ramachandran energy (kcal/mol) surfaces calculated in (left) QM in gas-

phase and (B) QM in solution. The values beyond color bar range are depicted in dark red. Solid 

contours indicate integer energy values in kcal/mol, whereas dashed contours indicate half-integer 

energies. 

 

Soon after ff99SB, an extensive data set on in-solution scalar coupling of short peptides 

provided good opportunity to validate the force field parameters28. Several studies noted room for 

improvements in ff99SB and have suggested that helical structures are not stable enough in 

ff99SB29. Since ff99SB dihedral parameters were trained against gas-phase QM energies (at the 

time when condensed-phase QM data was not widely available), the problems of reproducing 

condensed-phase properties (such as helical propensity in solution) might exist due to the lack of 

polarization effect in fixed-charge force field. Some force fields including ff99SB were compared 

against these NMR data and the inaccuracy in reproducing these condensed-phase data were 

noted26a, 29a. Taking advantage of these experimental data, a single dihedral term was adjusted to 

reproduce the fraction of helix measured in solution resulting with later variation of ff99SB 

(ff99SB*)29b. The φ/ψ dihedral parameters were calibrated to reproduce protein chemical shifts 

resulting with ff99SBnmr30. Recently, an array of small empirical perturbations to φ’ and ψ’ 

(ff14SB) were designed2c to better reproduce scalar coupling data in order to overcome the 

problem of using gas-phase minima as training set as in ff99SB. 

In addition to helical bias in ff99SB, the rotamer preference was also found to be less 

accurate when comparing to data from rotamer library31. The four residues (I, L, D, N) whose 

rotamer distributions of simulations differed most from PDB were re-parameterized. The χ1 and/or 

χ2 side chain parameters were refit against high-level gas-phase QM data (MP2/aug-cc-pVTZ), 

and improvements in reproducing NMR data were noted. In a revised force field32, charges were 

refitted on charged residues (K, R, D, E) against QM data. These new charges together with the 
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ILDN side chain parameters resulted in even better improvements in reproducing experimental 

data such as helical propensity32. A more systematic side chain parameter reworking was 

performed in ff14SB2c. Multi-dimensional conformational scan was performed following with 

high-level QM calculations to develop specific side chain parameters for each amino acid 

separately. Ff14SB achieves significant improvement on QM reproduction most of the residues 

comparing to ff99SB. Moreover, better agreements with side chain scalar coupling data were also 

noted comparing to both ff99SB and ff99SB_ILDN2c. 

CHARMM is another widely used force field for simulating biomolecules. The first 

generation is the united-atom CHARMM1933. To further improve the accuracy, an all-atom model 

for proteins was developed as CHARMM2219. In contrast to CHARMM19, all atoms were treated 

explicitly in CHARMM22 force field. The functional form in CHARMM is different from 

AMBER as it includes a Urey-Bradley 1-3 non-bonded cross term to compensate for the bond 

stretching and angle bending potential. The CHARMM22 force field is more transferable than 

CHARMM19 since more atom types (55 in CHARMM22 vs. 29 in CHARMM19) were introduced 

for proteins and parametrization was done with broader conformational space and better ab initio 

QM data available19.  

However, the weakness in reproducing QM energy surface and poor sampling in secondary 

structure such as π helices were noted34, and a novel strategy of introducing a grid-based correction 

map was presented resulting with CHARMM22/CMAP force field35. The grid-based correction, 

CMAP, allowed accurate reproduction of φ/ψ QM energy surface. But it is desirable for a force 

field to reproduce condensed-phase properties, and rigorous reproduction of gas-phase QM data 

wouldn’t always ensure satisfactory reproduction of condensed-phase properties (lack of 

polarization in force field). Thus it is important to overcome this gap. Best et al.3c tried to solve 

this problem by an iterative empirical perturbation on CMAP values to reproduce condensed-phase 

measurements such as residual dipolar coupling, scalar coupling and chemical shifts 

(CHARMM36/CMAP). The propensity to over stabilize helices in C22/CMAP is corrected and 

more reasonable results for the fraction helix are obtained. The agreement with side chain NMR 

data for χ1 is improved comparing to C22/CMAP, and fine tuning of χ2, χ3 and χ4 torsion potential 

left room for future development3c. It also highlighted the importance of considering a range of 

experimental data measured in condensed-phase.  



 

15 

 

The OPLS force field followed a similar philosophy with AMBER and CHARMM 

throughout the course of its development. As in united-atom model OPLS_UA36 and all-atom 

model OPLS_AA4b force field, bonded parameters (bond stretching, angle bending) were retained 

from AMBER7, 14, and non-bonded parameters were derived in conjunction with Monte Carlo 

simulations by computing thermodynamic and structural properties of 34 organic liquids, and 

torsion parameters were derived from ab initio calculations for more than 50 organic molecules 

and ions4. As computer became more powerful, higher level QM calculations were performed in 

parametrization, larger systems like tetrapeptides and broader conformational space were 

employed. In OPLS_AA/L37, a modification on OPLS_AA, local MP2 theory with basis set cc-

pVTZ were used to calculate QM energies of dipeptides. To overcome the limitations of using gas-

phase local minima as training, a weighting scheme were introduced to prioritize reproduction of 

the most important parts of QM energy surface. But it has been argued that the reproduction of 

condensed-phase properties is still under-explain37. As the computer get advanced, the resources 

permit higher level investigations and further improvements. In OPLS-AA/M38, higher accuracy 

QM methods (B2PLYP-D3BJ/aug-cc-pVTZ) were used to optimize both backbone and side chain 

dihedral parameters with peptide models, and NMR scalar coupling data were used to assess the 

quality of the new parameters. An overall improvements on both MD sampling and NMR data 

reproduction over the previous version of OPLS force fields were noted38. But since the canonical 

uncoupled cosine terms were still adopted in their training (unlike the 2D grid-based correction in 

CHARMM35a), a rigorous reproduction of QM surface is not guaranteed35, and this is an inherent 

limitation of uncoupled cosine terms. The χ1 and χ2 dihedral parameters in OPLS-AA/M was not 

equally treated during fitting39. The χ2 parameter was only fit if the QM/MM improvement is 

observed. For Glu and Gln, χ2 parameters were empirically adjusted to improve the fitting. 

A substantial number of studies have tried to compare different force fields and evaluate 

their accuracy against experimental data over years29a, 40. Best and Hummer29a performed extensive 

simulations on Ala5 in explicit solvent with ff03*, ff99SB, CHARMM27, OPLS-AA/L and 

GROMOS force fields and compared to NMR J coupling data. They found that most force fields 

over stabilize α helices with quantitative results depending on the choice of Karplus relation and 

termini. Piana et al40a found that among ff99SB*_ILDN, ff03, CHARMM22* and CHARMM27, 

the free-energy surface and mechanism of folding of villin headpiece vary substantially even 

though the agreement with experiments are similarly good. Extensive validation of force fields 
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against experimental data were performed afterward by Lindarff-Larsen et al40c and Pande et al40b. 

Hundreds of NMR measurements on folded proteins and multiple force fields (AMBER, 

CHARMM and OPLS) were employed in both comparison. The results suggest that force fields 

have improved over time, while not perfect, provide an accurate description of many structural 

and dynamical properties of proteins. Robustelli et al40d tested force fields against both folded and 

unfolded proteins and found that none of the tested force fields simultaneously provided accurate 

descriptions of folded proteins and of the secondary structure propensities of disordered proteins. 

The force fields tested are state-of-the-art models in AMBER and CHARMM communities. 

 

 

 

 

 

 

1.6 Molecular dynamics 
 

The force field method is used not only for single energy calculations, geometries and 

vibrational frequencies, but also for molecular dynamics (MD) simulations. In MD, the motion of 

a particle is governed by Newton's second law: 

𝐹 = 𝑚𝑎 = 𝑚
𝑑2𝑥

𝑑𝑡2
          (1.4),  

where F is the force acting on the particle, m is its mass, and dt is the time step for integration; a 

is the acceleration, given by a = dv/dt = d2x/dt2, where v is the velocity. In MD, successive 

configurations of the system are generated by integrating Newton's laws of motions. The result is 

a trajectory that specifies how the positions and velocities of the particles in the system vary with 

time. There is no explicit rule of choosing the most appropriate time step. Too small time step will 

make the trajectory cover limited phase space and too big will cause instabilities in the integration 

algorithm. Such instabilities would lead to a violation of energy and could result in a simulation 

failure due to numerical overflow. The Verlet algorithm41 is typically used for integrating motion 

in MD simulation. The Verlet algorithm uses the positions and accelerations at time t, and the 

positions from the previous step r(t-dt) to calculate positions at t+dt, r(t+dt). Implementation of the 

Verlet algorithm is straightforward and the data storage is modest. A few variations on Verlet 
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algorithm have been developed such as leap-frog algorithm42 in which the verlet velocity is 

explicitly included. 

 

 

 

 

 

 

1.7 Outline 
 

This dissertation is mainly comprised of four chapters. Chapter 2 discusses the training and 

testing of amino-acid specific backbone dihedral parameters in ff19SB. The details of training 

including QM and MM calculations, CMAP fitting are elaborated. The extensive tests performed 

to systematically validate ff19SB were discussed in detail. The results were shown afterward with 

highlighting the improvements of ff19SB over previous force fields. In chapter 3, the physical 

cause of errors that were corrected by dihedral parameters in ff19SB are investigated. The 

investigation is on four aspects: model system, 1-4 empirical scaling factor, partial charges and 

MM solvation. Both methods and preliminary results are included. The last chapter 4 discusses the 

future directions of force field development and validation.  
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Chapter 2  

 

 

 

 

 

 

Develop amino-acid specific protein backbone 

dihedral parameters using quantum 

mechanics energy in solution 
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2.2 Introduction 
 

State-of-the-art computational methods have been able to complement experimental 

structural biology with information that is both interesting and difficult to obtain without 

computers. Recent simulation highlights are the time-resolved, atomic-detail folding of ubiquitin 

during a 1-millisecond MD simulation43, or the accurate reproduction of a large set of protein-

ligand binding affinities44. Moreover, simulations are typically used during the refinement of high 

resolution structures obtained using experimental data such as crystallography, NMR or cryo-

electron microscopy.  However, two significant caveats apply to the hypothetical power of 

simulations: (1) the energy function must provide an accurate model of the underlying physics of 

the system, and (2) the simulation must adequately sample the important regions of the resulting 

energy landscape. These problems are coupled, and improving the physics model typically gains 

accuracy at the expense of greater computational cost, reducing the conformational diversity that 

can be sampled. One of the main challenges in successfully employing simulations is the need to 

optimize this precision/accuracy compromise based on the requirements of each research project.  

All-atom molecular dynamics (MD) is likely the most widely used biomolecular simulation 

sampling method. These often employ simple classical energy functions (force fields, FFs) which 

usually have many adjustable parameters, most often obtained by fitting to data from experiments 

or QM. Most modern FFs have very similar functional forms, but differ significantly in choice of 

model systems and source of the training data. Although using even more complex models than 

those discussed here (such as including explicit polarizability45) may improve accuracy, these 

gains come at the cost of computational complexity and corresponding reduction in the sampling 

that is usually the limiting factor in the application of force fields. 

Many approximations are made in fitting FF parameters. The FFs used for simulation of 

biomolecules in water tend to be relatively simple, due to the large number of atom pair 

interactions that contribute to the overall forces. In this article we focus on the FFs associated with 

the Amber simulation package46, though others tend to be very similar. Amber FFs include 

harmonic terms for covalent structure, such as bond stretching and angle bending. The 

intramolecular and intermolecular nonbonded interactions are modeled as a Lennard-Jones 12-6 
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potential for vdW interactions, and a simple Coulomb term for electrostatics typically using fixed 

partial atomic charges obtained using QM-based electrostatic potentials on intact peptides. The 

final and crucially important component is the dihedral (torsion) correction terms, which modify 

the energy of the system as a function of rotation around bonds. These bond rotations control the 

flexibility of the biopolymer, and different corrections can alter barrier heights as well as the 

relative energies of various stable rotamers, directly influencing the sampled ensembles2b.  

The physical motivation for the dihedral corrections is that the rest of the FF is purely 

classical, and therefore lacks quantum orbital effects such as the increased energy barrier for 

rotation around a double bond. In practice, these corrections are used broadly to empirically 

optimize force fields during training, accounting for quantum effects as well as other weaknesses 

in the simple model, such as lack of conformation-dependent polarization that could impact 

electrostatic interaction profiles, or even to remedy lack of agreement with experiments. In Amber 

and most other atomistic FFs, the dihedral correction is modeled as a simple truncated Fourier 

series with amplitudes and phases that are parameters in the FF. These parameters are optimized 

at the last stage in order to improve the agreement between training data and MM properties 

calculated without the dihedral terms. Some FFs add one or more additional empirical adjustment 

steps to improve agreement with experiments. 

Importantly, these force fields rely on an implicit assumption that each term is independent, 

with no coupling between parameters for bonds, angles and dihedrals. This additivity assumption 

extends to the non-bonded pairs as well, and is a major source of efficiency in force field 

calculations. In reality, coupling exists to varying extents, and parameters for one component may 

depend on the conformations of other nearby functional groups. This is neglected in most current 

biomolecular force fields. Another important key assumption is transferability: that a FF trained 

on one set of molecules (typically small) will perform as well on different, perhaps much larger 

molecules. Transferability also applies to neglecting the coupling between parameters, since it is 

usually assumed that one set of parameters (for example, for rotation around a bond) will perform 

well for multiple conformations of neighboring groups. Since transferability is imperfect, one way 

to improve FF accuracy is to ensure that the training data more closely reflect the situations in 

which the parameters will be applied, and by implicitly accounting for any coupling with 

neighboring groups at least in a mean-field way. Choice of model systems is therefore crucial. 
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Enabled by greater computer power, this has led to a trend away from fitting against QM data for 

small organic compounds2d, 21 to that for larger peptides.  

An important example is the protein backbone φ and ψ dihedral parameters that can alter 

the energy profiles for these rotations, and thus influence secondary structure preferences and loop 

conformations. These have been frequently revised over the years based on observations of 

secondary structure biases in prior models47. While early FFs used capped single amino acids 

(dipeptides) to train the backbone, our ff99SB2b FF used tetrapeptides48, allowing φ and ψ 

parameters to be trained in a context of conformational diversity of neighboring amino acids in a 

longer peptide. The improvement was significant, and ff99SB has been widely adopted.  

Since that time, widespread use of ff99SB exposed weakness in some amino acid side chain 

dihedral parameters32, probably because they were carried over from ff99 which trained them 

against a limited set of energy minima for simple organic compounds2d. In ff14SB2c, we performed 

complete refitting of all side chain parameters using QM data for capped amino acids. An 

important update was the use of multidimensional QM conformational grid scans for every side 

chain, rather than fitting each rotatable bond separately. Likewise, fitting was done using both α 

and β peptide backbone contexts. Though it stopped short of explicit dihedral parameter coupling, 

this approach allowed implicit inclusion of coupling of rotational profiles to neighboring groups 

in a mean-field way, by fitting parameters for each bond rotational energy profile in the context of 

multiple conformations of neighboring groups, as was done for the backbone in ff99SB. ff14SB 

was a notable improvement; for example, a recent study49 of the ability of protein MD to reproduce 

high resolution experimental crystal data concluded that ff14SB performed best among all force 

fields tested, including several older Amber variants and even the empirically tuned CHARMM 

C3650.  

In addition to the weaknesses in side chain dihedral parameters, some studies also noted 

weaknesses in ff99SB backbone preferences. Several groups focused on empirically adjusting the 

ff99SB backbone parameters via comparison to experimental data such as NMR scalar couplings 

for very short peptides3c, 29b, or amino acid helical propensities29b, 32. Similar to these other groups, 

we also included in ff14SB a small empirical adjustment to ff99SB (using TIP3P water2c) to 

improve agreement with NMR data for short alanine peptides. Empirical corrections can improve 

performance on training data but also can be problematic when extrapolated too far. The relative 

scarceness of experimental data compared to the number of parameters in the FF leaves the 
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empirical fitting problem severely under constrained. Also, the common target of NMR J coupling 

data is sensitive to the choice of Karplus parameters51, they are not equally sensitive to variations 

in φ and ψ, and the χ2 values typically used to score performance29a can be highly sensitive to small 

details in the energy landscape yet relatively insensitive to the large differences that are observed 

between force fields52. Fitting backbone parameters to helical propensities is also challenging; it 

was shown that updating side chain dihedral parameters had a substantial impact on the backbone 

helical tendencies of some amino acids32, perhaps because side chain positioning details may play 

a role in helicity by shielding backbone hydrogen bonds47b, or due to side chain parameter changes 

modulating side chain entropy changes, which may influence helix formation53. Thus it is possible 

to erroneously adjust one part of the model (such as the backbone) to improve agreement with 

experiment, instead of fixing the more fundamental source of the error (e.g., the side chain rotamer 

energies). Designing or implicitly accepting cancellation of error can lead to models with 

unphysical and unwanted dependence between components, where one part cannot easily be 

improved (or even used) without exposing the compensating weakness in another. 

Another major challenge to empirical fitting against experiment is deconvolution of the 

solvent model from the solute FF, each of which may contribute inaccuracies that lead to deviation 

from experiment. This is complicated further when empirical adjustment creates dependence 

between solute and solvent models. Shell et al. showed that the best results for predicting small 

protein structures were obtained using the ff96 force field with the GB-OBC implicit solvent 

model, despite each having well-established deficiencies54. The CHARMM C223a FF was trained 

using TIP3P water, and backbone refitting was needed to use a different water model55. ff14ipq56 

was developed with extensive training to TIP4P-Ew57 in the initial stages56, requiring refitting in 

ff15ipq58 to enable use with SPC/Eb water59. Moreover, weaknesses are apparent in studies of 

systems that sample diverse ensembles such as the unfolded states of proteins, or simulations of 

intrinsically disordered proteins (IDPs). This may well arise because of the vast number of nearly 

degenerate states, and the need for much higher accuracy than what is sufficient for simulating 

proteins in stable native basins. Currently, the challenge to FFs seems too great; for example, a 

recent study of IDPs found that the simulated ensembles depended dramatically on FF, but much 

less so on peptide sequence60. Piana et al. showed that the unfolded ensembles in their successful 

protein folding simulations were much more compact than expected from experiments61. Palazzesi 

compared simulations to NMR data, again finding generally poor agreement regardless of FF 
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used62. In these and other cases, simulated ensembles are generally too compact. Several groups 

attempted to address the problem empirically by re-training backbone parameters against PDB coil 

libraries, and flattening energy landscapes63. Robustelli et al. carried out extensive refitting to 

improve the ability of ff99SB to model IDPs while retaining the ability to simulate folded 

proteins.40d 

More recent IDP work has implicated overly weak water-protein interactions51, 64, 

consistent with other studies showing that protein-protein association in water is too favorable 

regardless of force field tested65. Best et al developed the ff03w model, empirically increasing the 

water-protein dispersion interaction.51 Piana et al. developed the TIP4P-D water model, with 50% 

larger dispersion energies64b, further adjusted later40d. Both adjustments resulted in improved 

match to IDP experimental data such as Rg values inferred from SAXS and FRET. Recently, the 

Amber team’s new OPC 4-point explicit water model was shown to better reproduce liquid water 

properties than most other models.66 It also results in much less compact ensembles for IDPs.67 

Such studies demonstrating that newer water models improve IDP behavior again highlight the 

dangers in empirically adjusting specific protein FF parameters to fix what may just be a symptom 

of a different problem. This weakens transferability, and emphasizes the value of independent 

development and validation of solute and solvent models. 

Despite the issues described above, current force fields clearly are good enough to have 

enabled many excellent biophysical simulation studies. In terms of simulating global structure of 

proteins of various sequences, protein force fields have improved with time40b. Current force fields 

typically result in stable simulations of folded proteins, with many reports of good match to 

experimental solution NMR observables such as NOEs, RDCs and S2 order parameters. More 

challenging are studies that attempt to predict structure from sequence68. A particularly impressive 

achievement was the successful brute-force folding of ubiquitin in MD simulations43, 69. We 

reported accurate folding via MD for 16 out of 17 diverse proteins up to 100 amino acids long70.  

Despite these successes, a growing number of studies have suggested that even after the recent 

updates to backbone and side chain parameters, as well as water models, the models still have 

significant limitations in protein simulations. There is a mounting consensus that current force 

fields do not accurately reproduce differences between backbone preferences of different amino 

acids. This is especially apparent in studies where the quantitative relative energies of basins are 

important, such as analysis of the effect of point mutations, or studies of flexible systems with 
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many nearly isoenergetic minima. Pande et al. suggested 6 of 19 amino acids were outliers vs. 

NMR and should be re-optimized40b. Best32 et al. and later, we reported71 that Amber does not 

accurately reproduce experimental72 amino acid specific behavior such as helical propensities, 

shown in Figure 2.1 for ff14SB used with TIP3P. Correlation is generally poor, with most amino 

acids having similar helicity in simulation. In principle, nonbonded interactions should account for 

the impact of the side chain on backbone energetics (hereafter denoted “sequence dependence”), 

but weaknesses in the nonbonded function may limit the accuracy in modeling the short-range 

interactions that are responsible for backbone-side chain coupling. 

 

 

Figure 2.1 Helical propensities in ff14SB+TIP3P (Y) vs experiment72 (X) for amino acids (1 letter 

codes). Values on the X-axis represent the data based on NMR and the reported standard 

deviations.72 Values on Y-axis represent the helical propensities fit against the combined trajectory 

(3.2 μs * 12), with error bars calculated via bootstrapping analysis (see Methods: Bootstrapping 

analysis on helical propensity). Black lines represent perfect agreement. Linear regression (red 

line) was performed against the data points, with R2 and slope quantifying the goodness of fit. 

 

Importantly, alanine is an outlier in having its helicity significantly under predicted (below 

the diagonal line). This is concerning since alanine is used as the model system in all recent Amber 

protein force fields for fitting of backbone dihedral parameters that also are applied to the other 

amino acids (except Gly). CHARMM also uses the same alanine-based backbone map for all 
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amino acids except Pro and Gly. The data clearly show that empirical correction of all amino acids 

using alanine helicity as a target would introduce a significant overall positive helical bias for the 

remaining amino acids.  

β-branched amino acids are not modeled correctly. Experimentally, steric clash 

between β-branched side chains and the backbone carbonyl reduces helical propensity72-73. 

Troublingly, simulations in ff14SB show that β-branched Ile, Val and Thr all have higher or similar 

helical propensity than Ala, the reverse of the experimental trend (Figure 2.1). In high resolution 

structures of folded proteins, the same trend of backbone-side chain coupling is apparent74, where 

the helical basin is narrower in valine than alanine, along with a broader, flatter region at high ψ 

values corresponding to polyproline 2 (ppII) and β conformations as compared to alanine (Figure 

2.2). It is challenging for force fields to reproduce these differences, and the alanine and valine 

MD Ramachandran landscapes are similar using ff14SB (see Results). These observations are 

further corroborated by solution NMR data; higher HN-Hα scalar couplings for Val dipeptide than 

Ala dipeptide suggest more structures along the β-ppII transition for valine than for alanine28, again 

not reproduced in the MD data (see Results). The situation is similar for CHARMM C36, where 

errors vs. NMR remained large for valine even though the force field was empirically adjusted to 

obtain a good fit for alanine45. Taken together, the results suggest that alanine may not be an ideal 

model for training other amino acids, in contrast to the central assumption in >20 years of Amber 

and CHARMM FF development.  

 

 

Figure 2.2 Ramachandran sampling in PDB shown for Ala (left) and Val (right) (using data from 

Lovell et al.74) Each contour line represents a doubling in population. Density is also shown as 

grids filled with light (no density) to dark (maximum density). Side histograms on each subplot 

represent independent distributions on φ and ψ. 
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We previously developed empirical backbone corrections for some amino acids in order to 

improve residue-specific helical propensities71. Alternatively, Best et al. found that empirically 

enforcing the alanine backbone partial charges on all amino acids also resulted in improvement for 

charged amino acids32, but this also may have been successful because it eliminated an 

inconsistency between using atom-specific partial charges and atom-type based dihedral 

parameters. Other recent work (for example, RSFF63a, 75 and ff99IDPs/ff14IDPs63b, 76) used PDB 

φ/ψ distributions to develop amino-acid specific empirical backbone parameters. However, in 

addition to the general problems with empirical fitting discussed above, these crystal data have 

significant limitations that prevent them from being used as an accurate source of thermodynamic 

training data (such as inconsistent and cryogenic temperatures, crystal packing effects, limited or 

noisy data outside low-energy basins, etc.). As a specific example, although the achiral glycine 

should have a fully symmetric φ/ψ energy profile, PDB-based distributions show significantly 

enhanced incidence of glycine in the positive φ region74, which would be reflected erroneously in 

force fields fit to these statistical distributions.  

Going beyond empirical adjustment requires insight into the physical weaknesses in the 

model. What is the source of this unsatisfactory sequence dependence, despite good reproduction 

of QM side chain rotational energy profile data2c in ff14SB? Speculation leads to several 

reasonable possibilities, including, but not limited to, lack of charge polarization of the backbone 

from the side chain (or weaknesses in the charge model overall), the inability of the current 

functional form to reproduce strong interactions between backbone and bulky side chains, or 

inaccurate empirical nonbonded scaling factors. Certainly using uncoupled cosine terms for 

backbone dihedrals limits the accuracy attainable even with ideal QM training data or extensive 

empirical adjustment.  The relative orientation of the two adjacent amides depends on both ϕ and 

ψ of the intervening amino acid, thus independent cosine terms may be insufficient at correcting 

the interaction energy or lack of polarization between these groups. 

In this work, we revisit the ff14SB protein backbone description with an aim to improve 

the performance for amino-acid specific behavior discussed above. We hypothesize that several 

specific weaknesses in the ff99SB strategy may be dominant factors limiting accuracy. (1) Fitting 

only alanine data, and only at the gas-phase minima, poorly constrained the resulting energy 

landscape for many biologically relevant conformations77, or at locations of the slightly shifted 
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φ/ψ minima sampled by other amino acids74. (2) The φ/ψ landscape is overly symmetric, arising 

from neglect of coupling in the simple cosine functional form. (3) Dihedral parameters are shared 

too broadly due to assignment by simple atom typing that does not discriminate amino acids. (4) 

Polarization was treated inconsistently in ff99SB and ff14SB, dating back to the original ff94 

model. “Pre-polarized” Amber MM partial charges7, 14 intended for aqueous solution simulations2a, 

8 are used while fitting dihedral parameters against gas-phase QM data, thus forcing the rotational 

energy profiles back towards the gas phase profiles and thereby counteracting the intended effect 

of better modeling charge polarization.  

We describe here modifications to the protein backbone parameters that at least partially 

address these issues. We continue our previous philosophy for the Amber “SB” (Stony Brook) 

force fields, assuming that physics-based force field development can provide excellent models 

with good transferability beyond their training data. Different approaches also have merit, such as 

in CHARMM, where physics-based training is followed by iterative rounds of empirical 

adjustments that improve match to experimental data50, 78. The a99SB-disp model40d derives from 

our ff99SB, followed by extensive empirical refitting of torsion parameters, nonbonded pair 

interactions, atomic partial charges and water dispersion energetics in order to improve agreement 

with experiments. Likewise, the recent “Force Balance” approach is a promising method to 

automate iterative improvement through iterative cycles of fitting and comparison to experiment79. 

These adjustments can significantly enhance agreement with experiment, but the complex 

mapping of experimental observables to individual force field terms can also lead to the 

introduction of fortuitous (and non-transferable) cancellation of error between the various force 

field components. We attempt here to overcome the ff14SB weaknesses discussed above by a more 

self-consistent reconsideration of the physics-based training of protein backbone energetics, 

developing improved backbone parameters based on fitting to a wider variety of high-level QM, 

and eliminating a series of inconsistencies in past fitting that are likely to have negatively impacted 

the resulting models.  

The first departure from ff14SB is that we fit coupled φ/ψ parameters using 2D φ/ψ 

conformational scans, followed by fitting the entire 2D QM energy surface. This will eliminate the 

problem of unconstrained energies outside the energy minima used to train ff99SB/ff14SB 

backbone parameters. This also explicitly accounts for coupling between these correction terms. 

As shown in Results, the correction profile needed to match the ff14SB MM to QM for the ψ 
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rotation differs depending on the value of φ. In other words, in ff99SB/ff14SB, it is not possible 

to use a 1D correction profile to accurately reproduce QM energy profiles for ψ at all values of φ. 

This 2D “CMAP” approach was pioneered in the CHARMM force field80, and extended here. The 

CMAP approach was also used for backbone fitting in RSFF2+CMAP75b, but in that case the free 

energy surface derived from PDB statistics was used as the fitting target, rather than QM data as 

we use here. Previously, the “CMAP” approach was employed by other Amber force fields as well. 

In ff99IDPs/ff14IDPs63b, 76, the 2D energy profile was fitted against statistical data from PDB coil 

library. In ff12SB-cMAP71, only the minimum region in CMAP such as α basin and β basin were 

corrected by fitting to helical propensities and β strand population in MD. 

The second difference from ff14SB is that we address the polarization inconsistency 

during dihedral parameter fitting. While fitting the entire gas phase surface using CMAPs would 

ensure sampling of energies for regions populated in solution, a significant problem arises during 

dihedral fitting when comparing in vacuo energies between QM and MM. The MM partial charges 

in most non-polarizable Amber models are traditionally fit to HF-level QM, which results in partial 

charges larger than expected in the gas phase, intending to mimic the higher dipoles induced in 

aqueous solution and avoid the need to explicitly include polarization in the FF calculation2a, 8. 

However, using these “pre-polarized” charges to compare to higher level QM providing gas phase 

conformation energies during dihedral fitting introduces error, and enforcing a match results in 

dihedral parameters that (at least partially) cancel out the effect of charge polarization. The ff03 

Amber model addressed this by fitting new charges to QM calculations in low-dielectric organic 

solvent81, but the subsequent protocol for backbone dihedral fitting (also in organic solvent) 

resulted in erroneous double-counting of solvation effects82. The recent “ipq” force fields56, 58  

addressed polarization inconsistency by using two independent charge sets, one for MD, fit to QM 

calculations that included a specific explicit water model83 that was used in MD simulations, while 

a second set of gas-phase partial charges was used during fitting dihedrals corrections to gas-phase 

QM rotational energy profiles. Our approach differs; we train backbone dihedrals using the same 

pre-polarized MM charges as used in MD, but using continuum aqueous solvation rather than gas-

phase energies, and with reference QM data also in aqueous implicit solvent to resolve the 

gas/aqueous phase inconsistency (following precedent in RNA parameter fitting82, 84). An 

additional benefit is that the resulting dihedral parameters also can absorb conformation dependent 
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changes in solute polarization that are not reproduced in a fixed-charge model85 (also absent in the 

“ipq” models since dihedral fitting is done in the gas phase56, 58).  

More accurate reproduction of the QM training surfaces and resolving polarization 

inconsistencies allow us to undertake the third difference from ff14SB, that of exploring amino-

acid specific correction maps. Amber already used separate parameters for proline and glycine, 

and finer differentiation is a reasonable next step. In our experience, optimizing amino-acid 

specific backbone parameters using simple uncoupled cosine terms (as done by other groups58, 63a) 

is unlikely to result in significant improvement for ff14SB since these are not able to accurately 

reproduce the QM training data even for a single amino acid (see Results). For example, despite 

fitting sets of uncoupled cosine parameters for several groups of amino acids, simulations using 

the ff15ipq58 force field show reduced accuracy for β-branched amino acids58. 

Alanine and valine (together with other β-branched isoleucine and threonine) are 

conformational outliers, justifying separate CMAP treatment. Alanine is very helical, whereas 

valine has a very flat φ distribution according to PDB φ/ψ distributions (Figure 2.2). Many 

residues exhibit conformational preferences between those of alanine and valine. Leucine is likely 

a better model for most amino acids (since all but Ala and Gly include a γ-carbon). We therefore 

used the CMAP fit to Leu for several other amino acids, including those with aromatic rings (Phe, 

Trp, Tyr) and nonpolar but non-β branched side chains (Met) and the three protonation states of 

His (His+, Hisδ, Hisε). Polar or charged side chains (Ser, Cys, Thr, Asp-, Asp, Asn, Glu-, Glu, Gln, 

Arg+, Lys+) all received individual CMAPs, Pro received its own CMAP and the β-branched Ile 

used the CMAP fit to the similar Val. Other force fields also fit different parameters for different 

amino acids. For example in Amber fb1586, full scanning over φ/ψ and χ1/χ2 dihedrals were 

performed for each amino acid, then the 4D φ/ψ/χ1/χ2 grid was mapped onto 2D φ/ψ grid by 

searching for lowest energy side chain conformation at each φ/ψ. Then, uncoupled (1D) cosine 

functions were used for each dihedral φ, ψ, χ1 and χ2, with all phases and amplitudes fit 

simultaneously. Here, we fit 2D CMAPs to φ/ψ energy maps using a single rotamer for each amino 

acid, in order to avoid transferring errors in the χ energy profiles into the φ/ψ correction, as could 

happen if the φ/ψ grid points also vary in χ values. 

Finally, we examine possible dependence of the backbone CMAP on side chain rotamer. 

In ff99SB and ff14SB backbone training (also CHARMM50), the coupling between backbone and 

rotamer was avoided by using the ff94 approach of Ala as a model for all other amino acids, thus 
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ignoring any possible backbone-sidechain coupling correction. To account for rotamer dependency 

in RSFF2+CMAP75b, the 2-dimensional ϕ/ψ CMAP was supplemented by the use of  additional  

two-dimensional free energy surfaces including ϕ/χ1 and ψ/χ1. Here, we find that the 2D CMAPs 

that we fit to QM data in solution, in combination with the high-quality side chain energy profiles 

from ff14SB, result in a model that is reasonably transferable to side chain rotamers not included 

in the training data. 

Extensive MD simulations (a total of ~6 milliseconds in explicit water) were performed to 

validate the performance of the ff19SB model. We show below that ff19SB, using amino-acid 

specific training against QM data with solvent polarization, reproduces the amino-acid differences 

in Ramachandran maps much better than ff14SB or other older Amber models. For example, the 

reproduction of amino-acid specific helical propensity is significantly improved with ff19SB. We 

also show that the QM-based ff19SB is in reasonable agreement with experiments when combined 

with an accurate solvent model, while ff14SB performs poorly with the same solvent model and 

relies on cancellation of error with the less accurate TIP3P model in order to reproduce properties 

such as the helical content a Baldwin-type peptide. We conclude that an inherent underestimation 

of helicity is present in ff14SB, which is (inexactly) compensated by an increase in helical content 

driven that is likely driven by the TIP3P bias40d, 64a, 87 toward overly compact structures. The 

improvements in modeling helicity with ff19SB do not appear to result in less accurate 

performance on β systems. With ff19SB, the overall excellent performance of ff14SB and ff99SB 

in NMR order parameter reproduction is also generally maintained with even smaller RMSD 

values relative to experimental structures. Future work will examine the performance of ff19SB 

on IDP model systems. 

 

 

 

 

 

 

2.3 Methods  
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2.3.1 Structure preparation & simulations 

Unless noted otherwise, all crystal and NMR structures were downloaded from the PDB88 

at www.rcsb.org. Alternate structures including fully extended and fully helical used to initiate 

independent were built via the LEaP module of AmberTools in the Amber v16 software46. Helical 

and extended conformations are defined as (φ, ψ) = (-60°, -45°) and (φ, ψ) = (-180°, -180°) In 

explicit solvent MD simulations, TIP3P89, OPC66, OPC390, TIP4P-Ew57, SPC/Eb
59 and fb391 

solvent models were used to solvate systems as noted. A truncated octahedron periodic box was 

used for all simulations. Implicit solvent MD simulations with GBneck2 parameter set92 of the 

GBneck solvent model93 and ff14SB2c were performed to generate additional initial structures. 

ff14SB2c, ff15ipq58, fb1586 and ff19SB were used for explicit solvent MD simulations as noted. 

System-specific details are discussed below with additional details in Table 2.1.  

 

Table 2.1 Systems used for validation of the ff19SB force field. Independent runs represent MD 

runs starting from random initial velocity and different initial conformation. Force field + solvent 

model combinations included ff14SB+GBneck2, ff14SB+TIP3P, ff14SB+TIP4P-Ew, 

ff14SB+OPC, ff19SB+GBneck2, ff19SB+TIP3P, ff14SB+TIP4P-Ew, ff19SB+OPC, 

ff19SB+OPC3, ff15ipq+SPC/Eb and fb15+fb3. 

Peptide 

PDBID/Sequence 

Octahedron 

box size 

(Å) 

Number of 

water 

molecules 

Simulation details 

(MD length * independent 

runs * force fields * 

sequences) 

Ace-X-Nme 36.0±0.1 997 
800 ns * 2 * 4 * 20 

(ff14SB/ff19SB+TIP3P/OPC) 

+H3N-A5-COOH 36.2±0.1 995 
800 ns * 2 * 4 * 1 

(ff14SB/ff19SB+TIP3P/OPC) 

Ace-A4XA4-NH2 

 
56.2±0.1 3989 

3.2 μs * 12 * 4 * 21 

(ff14SB/ff19SB+TIP3P/OPC) 

Ace-A4XA4-NH2 56.2±0.1 3989 

3.2 μs * 12 * 5 * 12 

(ff14SB/ff19SB+TIP4p-Ew, 

ff19SB+OPC3, 

ff15ipq+SPC/Eb, fb15+fb3) 

Ace-A4XA4-NH2 -- -- 2 μs * 12 * 1 * 21 
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 (ff14SB+GBneck2) 

Ace-A9XA9-NH2 

 
-- -- 

2 μs * 12 * 1 * 21 

(ff14SB+GBneck2) 

Ace-GGG(KAAAA)3K-NH2 60.6±0.1 4978 

3.2 μs * 10 * 3 * 1 

(ff14SB+TIP3P/OPC, 

ff19SB+OPC) 

CLN025, 2RVD, 

+H3N-YDPETGTWY-COO- 
64.0±0.1 5989 

7.2 μs * 8 * 3 * 1 

(ff14SB+TIP3P/OPC, 

ff19SB+OPC) 

GB3, 1P7E, 56-residue 57.6±0.0 3944 

200 ns * 4 * 3 * 1 

(ff14SB+TIP3P/OPC, 

ff19SB+OPC) 

Ubiquitin, 1UBQ, 76-residue 62.1±0.0 4923 

200 ns * 4 * 3 * 1 

(ff14SB+TIP3P/OPC, 

ff19SB+OPC) 

Lysozyme, 6LYT, 129-residue 66.4±0.0 5870 

200 ns * 4 * 3 * 1 

(ff14SB+TIP3P/OPC, 

ff19SB+OPC) 

 

Dipeptides 

Acetyl and N-methyl capped dipeptides of the natural amino-acids (Ace-X-Nme) were 

used for force field training and testing. In training, 16 amino acids (including two protonation 

states of Asp and Glu, but excluding Ile, Trp, Tyr, Phe, Met and His) were fully scanned in 

backbone dihedral space using implicit solvation (see Structure preparation & simulations and 

Geometry scanning). In testing, helical and extended conformations for all natural amino acids 

(including two protonation states each for Glu and Asp side chains, and three protonation states 

for His side chain) were used as initial structures in 800ns MD simulations. The number of explicit 

water molecules was equalized across all dipeptide systems and solvent models (Table 2.1).This 

was achieved by adjusting the value of buffer distance until desired number of water molecules 

was obtained. Four combinations including ff14SB2c+TIP3P89, ff14SB2c+OPC66, ff19SB+TIP3P89 

and ff19SB+OPC66 were tested for dipeptides. 
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Ala5 

Ala5 with a free N- and protonated C-terminus was used in simulation, corresponding to 

pH=2 used in the NMR studies28 (see Parameter derivation for protonated C-terminal Ala). Both 

helical and extended conformations were used as initial structures for 800ns MD simulation. The 

number of water molecules was equalized across all runs (Table 2.1). Four combinations including 

ff14SB2c+TIP3P89, ff14SB2c+OPC66, ff19SB+TIP3P89 and ff19SB+OPC66 were tested for Ala5. 

 

A4XA4 and A9XA9 peptides 

Acetyl and NH2 capped polypeptides (matching pH=7 in NMR72) of the 20 natural amino-

acids (A4XA4: Ace-A4XA4-NH2 where X denotes the amino acid tested) were used to test amino-

acid specific helical propensities. Two independent runs of 800 ns each starting from the helical 

and extended conformations were initially performed with ff14SB2c+GBneck292, and cluster 

analysis (see Cluster analysis) was carried out on the combined trajectory. Cluster centroids from 

the top four clusters, together with helical and extended conformations were then selected as initial 

structures for MD simulations in explicit solvent. Each of these six initial structures seeded 2 

independent runs each with different initial velocity assignment (using ig=-1 in Amber). Therefore, 

a total of 12 initial states were simulated for 3.2 μs each, in each explicit solvent (~4000 water 

molecules for both OPC and TIP3P runs, see Table 2.1, for each one of the 20 peptide sequences, 

for a total of 768 μs for each force field + solvent model combination. Helical propensities were 

calculated using eight FF+water combinations including ff14SB2c+TIP3P89, ff14SB2c+TIP4P-

Ew57, ff14SB2c+OPC66, ff19SB+TIP3P89, ff19SB+TIP4P-Ew57, ff19SB+OPC390, ff19SB+OPC66, 

ff15ipq58+SPC/Eb
59

 and fb1586+fb394. 

Acetyl and NH2 capped polypeptides of the 20 natural amino-acids in a longer peptide 

(A9XA9: Ace-A9XA9-NH2 where X denotes the amino acid tested) were used to test the 

sensitivity of the helical propensities to chain length. Two independent runs, starting from helical 

and extended conformations, were initially performed for 800 ns with ff14SB+GBneck2, and 

cluster analysis (see Cluster analysis) was carried out on the combined trajectory. Cluster 

centroids from the top four clusters were then selected as initial structures for additional MD 

simulations in GBneck2. Each of these six initial structures seeded 2 independent runs with 

different initial velocity assignment (using ig=-1 in Amber). Therefore, a total number of 12 initial 
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states were simulated in ff14SB2c+GBneck292 for each one of the 20 Ace-A9XA9-NH2 systems, 

and each simulation was 2 μs long, for a total of 480 μs. These A9XA9 results were compared to 

data from A4XA4 (also in ff14SB+GBneck2) by extending the 800ns simulations described above 

to 2 μs. 

 

K19 helical peptide 

Consistent with our previous work2c, 95, the sequence of Ace-GGG(KAAAA)3K-NH2 was 

chosen to validate parameter quality in folding helices. Since it was unfeasible to run long 

simulations starting from fully extended conformations that require very large numbers of water 

molecules to solvate, a fully extended conformation was not selected for explicit solvent 

simulations. For instance, 12000 water molecules would be needed to solvate a fully extended 

conformation of K19 with 8 Å buffer. Instead, several semi-extended initial conformations were 

generated. Two independent runs starting from helical and extended conformations were run for 

800 ns with ff14SB2c+GBneck292, and clustering analysis (see Cluster analysis) was performed 

on the combined trajectory. The cluster centroids (Figure 2.3) from the top 1st and 2nd were 

disregarded because both were partially helical with 2.7 Å and 4.4 Å RMSD (backbone C, N, CA 

atoms) referenced to a fully helical conformation. Therefore, the centroids from top 3rd (c2), 4th 

,(3), 5th (c4) and 6th (c5) clusters were selected as semi-extended. Both semi-extended and helical 

conformations are immersed in explicit water. The number of water molecules was equalized 

across all runs (Table 2.1). Each initial structure was used for 2 independent runs with random 

initial velocity assignment (ig=-1 in Amber). Therefore, a total of 10 initial states were simulated 

with each force field + explicit solvent combination, and each simulation was 3.2 μs. Three 

combinations including ff14SB2c+TIP3P89, ff14SB2c+OPC66, and ff19SB+OPC66 were tested for 

K19. 
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Figure 2.3 Representative conformations (depicted in ribbon) of K19 including (A) fully helical 

conformation and cluster centroids from (B) top 1st (c0), (C) 2nd (c1), (D) 3rd (c2), (E) 4th (c3), (F) 

5th (c4) and (G) 6th (c5) clusters. Only (A), (D), (E), (F) and (G) were selected for K19 MD. 

 

CLN025 hairpin  

CLN025 (PDBID: 2RVD96, +H3N-YDPETGTWY-COO-) is an engineered fast-folding 

hairpin that is a thermally optimized variant of Chignolin97. The native conformation was chosen 

as the 5th conformation in the NMR ensemble96 since that conformation was closest to the average 

of the NMR ensemble. A fully extended conformation of the same sequence was also used, and 4 

independent runs (ig=-1 in Amber) were performed with an explicit solvent for both native and 

extended conformations. Each simulation was 7.2 μs long and the number of water molecules was 

equalized across all runs (Table 2.1). Three combinations including ff14SB2c+TIP3P89, 

ff14SB2c+OPC66, and ff19SB+OPC66 were tested for CLN025. A cutoff of 1.5 Å RMSD was 

chosen to delineate native from non-native structures because the highest population peak at low 

RMSD across all force field + solvent models ends near 1.5 Å (Figure 2.4).  
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Figure 2.4 Backbone RMSD histograms for the combined four extended (ext) and four native (nat) 

runs of CLN025 with ff14SB+TIP3P, ff14SB+OPC and ff19SB+OPC. Y-axis represents 

normalized population and X-axis represents the RMSD to the NMR structure (PDBID: 2RVD96). 

 

Folded proteins 

Three folded proteins were simulated for comparison to NMR-based backbone dynamics 

measurements. First was the third Igg-binding domain of protein G (GB3). The native structure 

was defined from a liquid crystal NMR structure (PDBID: 1P7E98). Second was Ubiquitin (Ubq), 

with the native structure defined from a crystal structure (PDBID: 1UBQ99). Third was hen egg 

white Lysozyme (HEWL), with the native structure defined from a crystal structure (PDBID: 

6LYT100). Four independent runs with random initial velocity assignment (ig=-1 in Amber) were 

performed for each system in explicit solvent. Each simulation was 200 ns long and the number of 

water molecules was equalized across runs for each system (Table 2.1). These folded proteins 

were tested using three combinations including ff14SB2c+TIP3P89, ff14SB2c+OPC66, and 

ff19SB+OPC66. 
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2.3.2 Geometry scanning  

Backbone geometry scans were performed to generate structures for parameter training. 

All scans were carried out via the LEaP module of AmberTools in Amber v16 software46, 101. All 

16 dipeptides (see Dipeptides) were 2D scanned on φ and ψ dihedrals over ranges of -180° to 165° 

with an interval of 15°. For glycine dipeptide, a finer grid scanning was performed in the beta 

region: -180° to -125° and 120° to 175° on φ and ψ dihedrals with an interval of 5° resulting with 

an additional 12*12 finer grid. This was done because the QM energy surface in beta region is 

highly sensitive to the structure/energy of the picked grid point and using 15° interval might 

unintentionally miss the structure/energy in the “actual” minimum. For proline dipeptide, 

structures were limited to -180° to 120° on φ in order to exclude structures with excessive ring 

strain. For dipeptides containing one or more heavy atom χ dihedrals (Val, Leu, Ash, Asp-, Asn, 

Glh, Glu-, Gln, Lys+, Arg+, but excepting Ser, Cys and Thr, see below; Ash and Glh are neutral 

Asp and Glu, respectively), χ dihedral values were initialized to the most populated rotamer for 

that amino acid, according to Lovell’s rotamer library74. 

 

2.3.3 Molecular mechanics (MM) optimization and energy 

calculations 

For Cys and Met, Lennard-Jones (LJ) parameters were taken from GAFF2 for sulfur and 

hydrogen (in -SH and -S-), and also incorporated into ff19SB. This was done to keep consistent 

with the most recent LJ parametrization on these atoms performed by Wang et al102.  

Unless otherwise noted, use of the term “GBSA” in this paper denotes the combination of 

GBneck2 (igb=8 in Amber) and SASA (gbsa=1 in Amber). 

Dipeptide structures were minimized with restraints after geometry scanning. MM 

optimization and energy calculations were performed with Amber v1646, 101 using ff14SB2c and 

GBneck292 implicit solvent model with the mbondi3 radii set92 for polar solvation and SASA-

based nonpolar solvation103. The default 0.005 kcal mol-1 Å-1 surface tension was adopted. 

Dipeptides taken from geometry scanning were minimized using ff14SB2c and GBSA 

including restraints on φ and ψ values with harmonic force constant of 1000 kcal mol-1 rad-2.  All 

χ dihedrals were relaxed during minimization without restraints, except Ser, Cys and Thr, for 
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which the χ2 dihedral (defined as CA-CB-OG-HG for Ser, CA-CB-SG-HG for Cys and CA-CB-

OG1-HG1 for Thr) was restrained (10 kcal mol-1 rad-2) to 165° to prevent the hydroxyl group (O-

H bond) from approaching too closely to the backbone amides during minimization. As we noted 

for ff14SB2c, this was done to avoid incorporating into the backbone dihedral parameters any 

difference between the quantum mechanical (QM) and MM models in the short-range potential 

between side chain and backbone. Our strategy assumes that the largest contribution to rotamer 

dependency is errors in the MM short-range nonbonded model, which may be present for backbone 

conformation using a rotamer with steric clashes or strong electrostatic interactions. If correction 

to these errors were to be incorporated into the backbone parameter for that φ/ψ grid point, it 

consequently would be applied for conformations sampling the same φ/ψ values but with different 

rotamers that lack these inaccurate interaction energies.  

We adopted the strategy of initializing all structures on the grid at the same rotamer 

conformation, then minimizing with backbone restraints to relax the rotamer to a local minimum. 

The rationale for using a single initial rotamer for the entire φ/ψ grid scan is to reduce the likelihood 

of transferring any errors in the ff14SB side chain rotamer energy profiles to the CMAP (which 

can occur if neighboring grid points also differ significantly in χ dihedral values). The same relaxed 

rotamer was used in the QM calculations (discussed below).  

Structures were minimized for a maximum of 10,000 cycles in ff14SB+GBSA with no 

cutoff on non-bonded interactions. Steepest descent was employed for the first 10 cycles in the 

minimization and conjugate gradient for the following cycles. Single point energies were 

calculated for the MM-optimized structures using ff14SB00+GBSA. ff14SB00 is defined as the 

original ff14SB2c force field with the amplitudes of dihedrals sharing the same central two atoms 

with φ and ψ (C-N-CA-C, C-N-CA-CB, N-CA-C-N, CB-CA-C-N, HA-CA-C=O) set to zero 

(Table 2.2). The convergence criterion for energy gradient is when the root-mean-square of the 

Cartesian elements of the gradient is less than 10-4 kcal mol-1 Å-1. 

 

Table 2.2 AMBER standard frcmod file for the modified ff14SB00. 

ff14SB00     

MASS     

SH 32.06 2.900   

S 32.06 2.900   
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HS 1.008 0.135   

     

DIHE     

H1-CX-C-O 1 0.000 0.0 -1 

H1-CX-C-O 1 0.000 0.0 -2 

H1-CX-C-O 1 0.000 180.0 3 

C-N-CX-C 1 0.000 0.0 -4 

C-N-CX-C 1 0.000 0.0 -3 

C-N-CX-C 1 0.000 0.0 -2 

C-N-CX-C 1 0.000 0.0 1 

N-CX-C-N 1 0.000 0.0 -4 

N-CX-C-N 1 0.000 180.0 -3 

N-CX-C-N 1 0.000 180.0 -2 

N-CX-C-N 1 0.000 180.0 1 

C8-CX-N-C 1 0.000 0.0 -4 

C8-CX-N-C 1 0.000 0.0 -3 

C8-CX-N-C 1 0.000 0.0 -2 

C8-CX-N-C 1 0.000 0.0 1 

CT-CX-N-C 1 0.000 0.0 -4 

CT-CX-N-C 1 0.000 0.0 -3 

CT-CX-N-C 1 0.000 0.0 -2 

CT-CX-N-C 1 0.000 0.0 1 

2C-CX-N-C 1 0.000 0.0 -4 

2C-CX-N-C 1 0.000 0.0 -3 

2C-CX-N-C 1 0.000 0.0 -2 

2C-CX-N-C 1 0.000 0.0 1 

3C-CX-N-C 1 0.000 0.0 -4 

3C-CX-N-C 1 0.000 0.0 -3 

3C-CX-N-C 1 0.000 0.0 -2 

3C-CX-N-C 1 0.000 0.0 1 
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N-C-CX-C8 1 0.000 0.0 -4 

N-C-CX-C8 1 0.000 0.0 -3 

N-C-CX-C8 1 0.000 0.0 -2 

N-C-CX-C8 1 0.000 0.0 1 

N-C-CX-CT 1 0.000 0.0 -4 

N-C-CX-CT 1 0.000 0.0 -3 

N-C-CX-CT 1 0.000 0.0 -2 

N-C-CX-CT 1 0.000 0.0 1 

N-C-CX-2C 1 0.000 0.0 -4 

N-C-CX-2C 1 0.000 0.0 -3 

N-C-CX-2C 1 0.000 0.0 -2 

N-C-CX-2C 1 0.000 0.0 1 

N-C-CX-3C 1 0.000 0.0 -4 

N-C-CX-3C 1 0.000 0.0 -3 

N-C-CX-3C 1 0.000 0.0 -2 

N-C-CX-3C 1 0.000 0.0 1 

     

NONB     

SH 1.9825 0.2824   

S 1.9825 0.2824   

HS 0.6112 0.0124   

 

2.3.4 CMAP fitting groups 

A total of 16 CMAPs were fit and then applied to the 20 natural amino acids with several 

having alternate protonation states (Table 2.3). Ala, Gly, Pro were fit separately because the 

allowable regions in Ramachandran plot according to PDB are notably different from each 

other.104 Ser, Cys and Thr were fit separately from others because of the proximity of the polar 

group to the backbone, and from each other because the polarity of their side chains is different 

(Ser vs. Cys) or the side chain β-branching structure is different (Ser vs. Thr). Val CMAP was fit 

and applied to both Val and Ile since Val and Ile are the only two amino acids having β-branched 
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non-polar side chain. Arg+, Lys+, Asp-, Ash, Asn, Glu-, Glh and Gln were fit separately because 

the charge state is different (Arg+ and Lys+ vs. Asp- and Glu-), the polarity of side chain is different 

(Arg+ vs. Lys+, Asp- vs. Ash vs. Asn, Glu- vs. Glh vs. Gln), or the length of side chain is different 

(Asp- vs. Glu-, Ash vs. Glh, Asn vs. Gln). Leu CMAP was fit and applied to long non-polar and 

non-charged side chains including amino acids with aromatic rings (Phe, Trp and Tyr), Met, Cys 

in disulfide bonds (Cyx) and Cys interacting with metal (Cym). Leu CMAP was also applied to 

the three protonation states of His (His+, Hisε, Hisδ).  

 

Table 2.3 Amino acid used to fit CMAP for each of the standard amino acids. 

Amino acid CMAP model 

Gly Gly 

Ala Ala 

Val, Ile Val 

Ser Ser 

Cys Cys 

Thr Thr 

Leu, Cyx, Cym, Met, Phe, Trp, 

Tyr, His+, Hisε, Hisδ 

Leu 

Asp- Asp- 

Ash Ash 

Asn Asn 

Glu- Glu- 

Glh Glh 

Gln Gln 

Arg+ Arg+ 

Lys+, Lyn Lys+ 

Pro Pro 
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2.3.5 CMAP fitting  

A CMAP is defined by a 24*24 grid that is evenly spaced (15°) in φ/ψ dihedral space, the 

same spacing as used in C22/CMAP3b, C363c, C36m3d and RSFF63a, 75 force fields. At each grid 

point, the energy Ucmap(φ, ψ)  corresponds to the following: 

𝑈𝑐𝑚𝑎𝑝(𝜑, 𝜓)  = 𝐸𝑄𝑀
𝑔𝑎𝑠

+ 𝐸𝑄𝑀
𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝐸𝑄𝑀

𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 − (𝐸𝑀𝑀
𝑓𝑓14𝑆𝐵00

+ 𝐸𝑀𝑀
𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛)  (2.1), 

where 𝐸𝑄𝑀
𝑔𝑎𝑠

 represents gas-phase QM energy, 𝐸𝑄𝑀
𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

represents the contribution from 

solute-solvent polarization from QM solvation and 𝐸𝑄𝑀
𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 represents the remaining specific 

solvation effects in QM. 𝐸𝑀𝑀
𝑓𝑓14𝑆𝐵00

 represents MM energy calculated in ff14SB00 (Table 2.2) 

using pre-polarized charges, and 𝐸𝑀𝑀
𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 represents MM solvation energy calculated in GBSA. 

In practice, 𝐸𝑄𝑀
𝑔𝑎𝑠

, 𝐸𝑄𝑀
𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

 and 𝐸𝑄𝑀
𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 cannot be separated since the solute electron density 

is evaluated self-consistently with the solvent polarization represented in a reaction field.  

In Amber, the bicubic spline function is fit once against the 24*24 grid values of the 

CMAP, and is later used to interpolate MM energy at any arbitrary φ/ψ dihedral. The bicubic spline 

function for each residue is as following: 

𝑈𝑐𝑚𝑎𝑝(𝜑, 𝜓) =  ∑ ∑ 𝑎𝑖𝑗𝜙𝑖𝜓𝑗3
𝑗=0

3
𝑖=0         (2.2), 

where φ and ψ are dihedral values in radians, and aij are the coefficients of the bicubic 

spline function that are solved from a set of linear equations derived from values at the four corners 

of the grid cell. The resulting CMAP forces are calculated by the chain rule and added to the total 

forces105. The CMAPs are intended to be used as direct replacement for the old cosine-based 

dihedral terms in ff14SB.  

The CMAP code was originally implemented in AMBER with the support of CHAMBER 

module105. The LEaP module reads the ff19SB frmod file and locates the CMAP section. Then, 

one type of CMAP will be assigned to each protein residue based on matching residue names listed 

in the frcmod CMAP_RESLIST with those in the molecule. The information of each residue-based 

CMAP (index, grid values, etc) together with the atom indices referring to five backbone atoms 

(C, N, CA, C, N) of the corresponded residue are written into the Amber topology file. The atom 

indices are linked to residue-based CMAP parameters by CMAP index. The MD engine (pmemd, 

sander) reads the topology file and fits bicubic spline functions for each CMAP, and calculates 

CMAP forces for each residue based on the listed five atoms and the bicubic function of the 

indexed CMAP. 
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2.3.6 QM energies in solution 

To calculate 𝐸𝑄𝑀
𝑔𝑎𝑠

+ 𝐸𝑄𝑀
𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝐸𝑄𝑀

𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 (Equation 2.1), we used the SMD solvent 

model that includes both polar and nonpolar solvation components106. The polar component uses 

the integral-equation-formalism polarizable continuum model (IEFPCM)107, where the solute 

cavity is defined through superposition of atom-centered spheres with reparametrized  “intrinsic 

radii”.  The non-polar component is a product of the solvent-accessible surface area (SASA) and 

the surface tension, which is a function of several element-specific parameters. These empirical 

parameters for effective radii and surface tension were iteratively optimized to reproduce 2346 

solvation free energies of both neutral solutes and ions106. In the original work106, the authors 

concluded that among various QM theories used in their parameter fitting, the DFT method M05-

2X108 yielded the best performance. Taking these results into consideration, particularly 

performance for amides, we selected the hybrid functional M05-2X with basis set 6-311G** 

together with SMD to compute the total solvation energy in QM. In the original paper106, 6-

31+G** was shown to have smaller mean unsigned error in aqueous solvation free energy for all 

tested molecules, including four amides, compared to other basis sets such as MIDI!6D, 6-31G* 

and cc-pVTZ. The diffuse functions in 6-31+G**, however, cause convergence issues in some of 

our calculations where the geometries are far from equilibrium. Instead, we use the comparable 6-

311G** basis set. We also tested whether M05-2X/6-311G** is accurate in calculating 

conformational energies of Ala dipeptide in gas-phase.  

Nine conformations of Ala dipeptide were chosen with φ dihedral to be -150°, -60°, and 

60°, and ψ dihedral to be 60°, -45° and 150°. QM calculations were performed with Gaussian 091. 

First, geometry optimization was performed on the nine conformations at B3LYP/6-31G* level of 

theory with φ/ψ restraints. Then, single point energies were calculated at levels of theory including 

HF/6-31G*, MP2/6-311++G**, B3LYP/6-31G*, wB97XD/6-311G**, M05-2X/6-311G**, 

B3LYP/Aug-cc-pVTZ, B3LYP/Def2QZVP, M06-2X/cc-pVTZ, MP2/cc-pVTZ, MP2/Aug-cc-

pVTZ and MP2/cc-pVQZ. The average REE was calculated for each of the methods against 

MP2/cc-pVQZ and plotted in Figure 2.5.  

The calculated average relative energy error (see 2.3.18 Average relative energy error 

(REE) calculation) against MP2/cc-pVQZ for nine conformations of Ala dipeptide is ~0.35 

kcal/mol, very close to MP2/cc-pVTZ level of accuracy (average REE = 0.2 kcal/mol). Based on 
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our results, M05-2X/6-311G** is reasonably accurate relative to MP2/cc-pVQZ at reproducing 

relative energy of Ala dipeptides in gas phase (Figure 2.5), and errors are likely comparable to 

those arising from other sources such as the spacing of the grid scan and fundamental inaccuracies 

in the MM treatment. 

 

 

Figure 2.5 The average relative energy error (REE) of nine Ala dipeptide conformations versus 

CPU hours per conformation for various QM theory and basis set combinations. The MP2/cc-

pVQZ energy was used as reference for error calculations. 

 

2.3.7 QM optimization and energy calculations 

QM calculations were performed with Gaussian 09109. Geometry optimizations and single 

point energy calculations were performed on the 16 dipeptides at the M05-2X/6-311G**/SMD 

level of theory108. Grimme’s dispersion correction with the original D3 damping function110 was 

used to correct for long-range dispersion. The solvation environment was represented as a self-
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consistent reaction field, with exterior dielectric set to default 78.3553,  using SMD106 with 

consideration of both polar and nonpolar solvation energy components.  

Very tight optimization convergence criterion was used to generate data for fitting. To 

maintain the structure on the φ/ψ grid, one of the dihedrals sharing the same central two atoms 

with φ, and one dihedral sharing the central two atoms with ψ were restrained to the values from 

the structures taken from the last step of MM optimization. In order to avoid inclusion of errors in 

the χ energy profiles into the QM-MM energy difference used for CMAP fitting, we also restrained 

one of the dihedrals for each χ dihedral to the value from the last step of MM optimization (see 

Molecular mechanics (MM) optimization and energy calculations) (details on restrained 

dihedrals provided in Table 2.4). 

 

Table 2.4 Dihedrals to be restrained during QM optimization. 

Amino acid Dihedrals in atom name 

Gly C-N-CA-C, N-CA-C-N 

Ala C-N-CA-C, N-CA-C-N 

Val C-N-CA-C, N-CA-C-N, N-CA-CB-CG1 

Ser 
C-N-CA-C, N-CA-C-N, N-CA-CB-OG, 

CA-CB-OG-HG 

Cys 
C-N-CA-C, N-CA-C-N, N-CA-CB-SG, 

CA-CB-SG-HG 

Thr 
C-N-CA-C, N-CA-C-N, N-CA-CB-OG1, 

CA-CB-OG1-HG1 

Leu, 
C-N-CA-C, N-CA-C-N, N-CA-CB-CG, 

CA-CB-CG1-CD1 

Asp- 
C-N-CA-C, N-CA-C-N, N-CA-CB-CG. 

CA-CB-CG-OD1 

Ash 
C-N-CA-C, N-CA-C-N, N-CA-CB-CG. 

CA-CB-CG-OD2, CB-CG-OD2-HD2 

Asn 
C-N-CA-C, N-CA-C-N, N-CA-CB-CG. 

CA-CB-CG-OD1 

Glu- C-N-CA-C, N-CA-C-N, N-CA-CB-CG. 
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CA-CB-CG-CD, CB-CG-CD-OE1 

Glh 
C-N-CA-C, N-CA-C-N, N-CA-CB-CG. 

CA-CB-CG-CD, CB-CG-CD-OE1 

Gln 
C-N-CA-C, N-CA-C-N, N-CA-CB-CG. 

CA-CB-CG-CD, CB-CG-CD-OE1 

Arg+ 

C-N-CA-C, N-CA-C-N, N-CA-CB-CG. 

CA-CB-CG-CD, CB-CG-CD-NE, 

CG-CD-NE-CZ 

Lys+ 

C-N-CA-C, N-CA-C-N, N-CA-CB-CG. 

CA-CB-CG-CD, CB-CG-CD-CE, 

CG-CD-CE-NZ 

Pro 
C-N-CA-C, N-CA-C-N, N-CA-CB-CG. 

CA-CB-CG-CD 

 

For glycine dipeptide, QM optimization and energy calculations were done on both 24*24 

coarse grid with 15° interval (same as other amino acids) and 12*12 sub-grid with 5° interval 

(specific to glycine). In the region with fine grid data, the QM energies of coarse grid points were 

replaced with lowest energy in the surrounding fine grid points (within 10° from the coarse grid). 

This was only done for QM energy calculations on Gly. MM calculations on Gly were performed 

the same as other amino acids, and the 24*24 grids were used to obtain the CMAPs. 

 

2.3.8 Parameter derivation for protonated C-terminal Ala 

Following the original RESP method for peptide partial charge assignment2d, 8, new charges 

were trained for Ala with acetylated N-terminus and protonated C-terminus. Helical and extended 

conformations were used for RESP fitting. The partial charges on all atoms except the –COOH 

group were restrained to the charges from ff942a; –COOH group charges were refit via RESP. QM 

calculation was performed with Gaussian 09109.  HF/6-31G* was used for geometry optimization. 

MK111 population analysis was performed on the optimized geometry. Antechamber, espgen and 

residuegen as implemented in Amber v16101 were used in RESP fitting.  

The resulting atomic charges are listed in Table 2.5. The –COOH functional group in the 

protonated C-terminal Ala was assigned the same atom types as –COOH in side chains of Alh or 
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Glh, thus sharing existing bonds, angles, dihedral and LJ parameters. When simulating a system 

with a protonated (uncapped) C-terminal Ala in ff19SB, the ff14SB parameters were applied to 

the C-terminal residue without application of a CMAP due to lack of C-terminal amide.   

 

Table 2.5 Partial charges for protonated C-terminal Ala. 

Atom name Atom type Partial charge 

N N -0.4157 

H H 0.2179 

CA CX 0.0337 

HA H1 0.0823 

CB CT -0.1825 

HB1 HC 0.0603 

HB2 HC 0.0603 

HB3 HC 0.0603 

C C 0.6717 

OX1 O2 -0.5303 

OX2 O2 -0.6122 

HX HO 0.5001 

 

2.3.9 MD simulations  

The following methods were used for all MD simulations unless otherwise noted. Bonds 

to hydrogen atoms were constrained with the SHAKE algorithm112 using a geometrical tolerance 

of 0.000001Å. The direct space non-bonded interaction cutoff was 10.0 Å for explicit solvent 

simulations and 9999.0 (no cutoff) for implicit solvent simulation. Long-range electrostatic 

interactions in explicit solvent were calculated via the particle mesh Ewald (PME) approach113.  

There were a total of 9 steps of equilibration in both implicit and explicit simulations. For 

explicit solvent simulation, initially energy minimization was performed for up to 10000 cycles. 

All atoms except water and H atoms used positional restraints with force constant 100 kcal mol-1 

rad-2. Steepest descent was applied for the first 10 cycles and conjugate gradient was applied for 

the following cycles in the minimization. The same restraints were maintained as the system was 

heated in NVT starting from a low temperature of 100 K and reaching 298 K over 1 ns of 
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simulation time. Langevin coupling (ntt=3 in Amber) was applied to maintain constant 

temperature, with a coupling constant of 1.0 (gamma_ln=1.0 in Amber). Next, Langevin dynamics 

in NPT was performed for 1ns to equilibrium the box density/pressure. A strong pressure coupling 

of 0.1 ps to the barostat was used in order to quickly equilibrate the box to the final density and 

pressure. NPT simulation with lowered restraints 10.0 kcal mol-1 rad-2 was run for 1 ns with weaker 

pressure coupling (0.5 ps). The system was then minimized again with restraints acting on 

backbone atoms. All backbone C and N atoms were restrained with force constant 10.0 kcal mol-1 

rad-2 so that the side chains were free to relax. Three 1ns NPT simulation with lowered restraint 

force constants of 10.0 kcal mol-1 rad-2, 1.0 kcal mol-1 rad-2 and restraints 0.1 kcal mol-1 rad-2 on 

backbone C and N atoms were consecutively performed. Finally, 1ns NPT unrestrained simulation 

was performed prior to production runs. For implicit solvent simulation, the protocol was same 

except that no periodicity and pressure coupling were applied, and PME was off during the entire 

equilibration (ntb=0, igb =8 in AMBER). The exterior dielectric was 78.5. 

For production runs, the time step was increased to 4 fs using the hydrogen-mass 

repartitioning method implemented as described previously114, and explicit solvent simulations 

were changed to the NVT ensemble (ntb=1, ntp=0 in Amber). 

 

2.3.10 Cluster analysis  

Unless noted otherwise, cluster analysis was performed on the combined trajectories 

starting from helical and extended conformations. The hierarchical agglomerative (bottom-up) 

approach was used with average linkage (defined by RMSD of C, N and CA atoms) to generate a 

maximum of 10 clusters using default settings in Cpptraj115. This was performed to divide the 

trajectory into 10 clusters without setting a threshold on how similar the structures are to each 

other within a cluster. The representative structures extracted from these clusters were used as 

initial conformations in independent MD runs to check convergence.  

 

2.3.11 RMSD calculations 

Unless otherwise noted, all RMSD calculations were done on backbone C, N and CA atoms 

via Cpptraj115. In all cases, terminal residues and capping groups on termini were neglected.  
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2.3.12 Helical propensity  

Following the Best et al.29b protocol of implementing Lifson-Roig model116 for computing 

helical propensities, we explored the helical propensities of each amino acid in the context of the 

sequence Ace-A4XA4-NH2 to compare to experimental data72. This model measures the 

equilibrium properties of coil-to-helix transitions: three states are defined: coil, start/end of the 

helix, and within a helix. Their relative weights are 1, vi and wi, respectively. The start/end of the 

helix is defined when residue i is in the helical region but either of its two adjacent residues is not 

in the helical region. The residue within a helix is defined when residue i and its two adjacent 

residues are all in the helical region. Everything else is considered to be random coil within the 

model. A residue is considered helical if inside the α region using the basin definition in Table 

2.6. The sensitivity to this definition was tested by calculating helical propensity with a wider 

range definition (Table 2.6 and Figure 2.6). 

 

Table 2.6 The definition of φ/ψ range for α, wider-α, β and ppII conformations used in this work. 

 φ range ψ range 

α (-90°: -30°) (-77°: -17°)   

wider-α (-100°: -20°) (-90°: 0°) 

β (-175°: -115°) (105°: 165°) 

ppII (-105°: -30°) (90°: 150°) 
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Figure 2.6 Correlation between helical propensity w from simulations with wider alpha range and 

standard alpha range (defined in Table 2.6) for (A) ff14SB+TIP3P, (B) ff14SB+OPC, (C) 

ff19SB+TIP3P and (D) ff19SB+OPC.  

 

Following Best et al.29b, the partition function for the blocked peptide of length N (N=9) is 

defined as: 

𝑍 = (0 0 1) ∏ 𝑀𝑖  (0 0 1)𝑇𝑁
𝑖=1 , where 𝑀𝑖 = |

𝑤𝑖 𝑣𝑖 0
0 0 1
𝑣𝑖 𝑣𝑖 1

|     (2.3), 

The log-likelihood that residue i will be assigned a helical propensity parameter wi is given 

by:  

𝑙𝑛(𝐿)  = ∑ 𝑁𝑤,𝑖𝑙𝑛(𝑤𝑖)𝑖 + ∑ 𝑁𝑣,𝑖𝑙𝑛(𝑣𝑖)𝑖  − 𝑁𝑘𝑙𝑛(𝑍)      (2.4), 

where vi and wi are the parameters for fitting, Nk is the total number of frames in the 

simulation, Nw,i and Nv,i are the total number of times in the simulation that residue i is within a 

helix and start/end of a helix, respectively. More specifically, Nw,i is incremented if residue i is 
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within a helix and Nv,i is incremented if residue i is start/end of a helix. The subscript i indicates 

the amino acid (Ala, Val, Leu, etc). The model parameters (v and w), and their distributions, were 

optimized by performing genetic algorithm following the protocol of Perez et al.71 to maximize 

the objective function, ln(L), which maximized the likeliness of residue i being assigned to specific 

v and w. Mutation and crossover moves were performed to change ln(wi) and ln(vi), with a rate of 

0.3 and 0.7 respectively. A total of 1000 genetic optimization cycles were performed to yield 

specific v and w for residue i. vala and wala were initially evaluated for all Ala in the capped A4AA4 

peptide, then vi and wi for X were evaluated in capped A4XA4 peptide with v and w parameters for 

Ala being fixed to the values of previously optimized vala  and wala. 

Histidine was excluded because the imidazole protonation state (δ, ε or both) is difficult to 

assign, and the reported experimental scales for 20 natural amino acids vary the most for His, with 

it being the least helical from one experimental scale but almost in the middle of the helicity from 

another 72, 117 For instance, Pace and Scholtz117 summarized a helical propensity scale based on 

NMR measurements of helix propensity from 11 systems, including both proteins and short 

peptides, at different pH values and temperatures. All helical propensities were reported in ΔΔG 

relative to Ala (0 kcal/mol, the most helical) and normalized by setting Gly=1 kcal/mol, the least 

helical. In that report, His exhibits a value of 0.61±0.11 (error bar calculated from 13 reported 

measurements) averaged across systems and protonation states (estimated based on experimental 

pH). Specifically, for neutral His, the helical propensity is 0.56±0.07 (uncertainty calculated from 

seven reported measurements), and for the protonated His+, the helical propensity is 0.66±0.10 

(uncertainty calculated from six reported measurements). This value is much lower (closer to Ala, 

meaning more helical) than several other amino acids including Asn, Thr, Cys and Asp. However, 

according to the NMR data72 (reported as helical propensity w instead of ΔΔG), His is the least 

helical along with Gly (see Table 2.7). These NMR data are generally consistent with Pace and 

Scholtz117 except for His (Figure 2.7). Due to these uncertainties, we decided to remove His from 

the helical propensity comparisons in Figure 2.25. The helical propensity data (from both NMR 

and MD) of all including His are provided in Table 2.7 and Table 2.8. 

 

Table 2.7 Helical propensities of 20 standard amino acids from NMR experiments72, 

ff14SB+TIP3P, ff14SB+OPC, ff19SB+TIP3P and ff19SB+OPC. Error bars for calculated helical 

propensities were estimated via bootstrapping analysis. 

Residue NMR72 ff14SB+TIP3P ff14SB+OPC ff19SB+TIP3P ff19SB+OPC 
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Ala 1.39±0.01 1.04±0.02 0.71±0.03 2.13±0.03 1.43±0.02 

Leu 1.15±0.10 1.58±0.14 0.61±0.07 2.26±0.18 1.56±0.13 

Glu- 1.00±0.07 2.39±0.18 1.28±0.20 1.57±0.16 1.32±0.12 

Met 0.90±0.03 0.86±0.05 0.46±0.07 1.35±0.10 0.87±0.05 

Ile 0.81±0.03 1.54±0.15 0.76±0.11 2.57±0.25 1.14±0.16 

Arg+ 0.80±0.04 0.82±0.07 0.28±0.05 1.25±0.14 0.75±0.07 

Gln 0.72±0.03 1.03±0.09 0.56±0.11 2.10±0.16 1.09±0.10 

Trp 0.64±0.07 1.15±0.12 0.51±0.09 1.92±0.14 0.93±0.12 

Lys+ 0.60±0.04 0.53±0.04 0.24±0.04 1.10±0.10 0.56±0.04 

Asp- 0.54±0.03 1.71±0.11 1.09±0.11 1.44±0.12 1.13±0.08 

Val 0.53±0.03 0.79±0.06 0.53±0.07 0.99±0.07 0.64±0.06 

Ser 0.51±0.03 0.64±0.05 0.44±0.06 0.25±0.03 0.20±0.02 

Phe 0.50±0.04 0.75±0.06 0.42±0.07 1.44±0.14 0.82±0.07 

Tyr 0.50±0.04 0.63±0.04 0.38±0.09 0.94±0.10 0.72±0.08 

Asn 0.43±0.04 0.89±0.07 0.49±0.08 0.51±0.04 0.42±0.04 

Thr 0.40±0.02 1.04±0.11 0.37±0.06 0.34±0.03 0.17±0.02 

Cys 0.36±0.01 0.77±0.05 0.64±0.10 0.09±0.01 0.08±0.01 

Gly 0.22±0.02 0.21±0.01 0.17±0.02 0.18±0.01 0.17±0.02 

Pro 0.05±0.01 0.02±0.02 0.01±0.01 0.01±0.01 0.01±0.01 

Hisδ 0.20±0.02 0.72±0.05 0.31±0.05 1.20±0.08 0.74±0.07 

Hisε 0.20±0.02 1.15±0.08 0.94±0.10 1.01±0.08 1.04±0.12 

His+ 0.20±0.02 0.26±0.04 0.11±0.02 0.81±0.09 0.33±0.05 

 

Table 2.8 Helical propensities of 12 amino acids for NMR experiment72, ff14SB+TIP4P-Ew, 

ff19SB+TIP4P-Ew, ff19SB+OPC3, ff15ipq+SPC/Eb and fb15+fb3. Error bars for calculated 

helical propensities were estimated via bootstrapping analysis. 

 NMR72 
ff14SB+TI

P4P-Ew 

ff19SB+TI

P4P-Ew 

ff19SB+O

PC3 

ff15ipq+SP

C/Eb 
fb15+fb3 

Ala 1.39±0.00 0.84±0.01 1.58±0.01 1.94±0.01 1.25±0.01 0.81±0.01 

Leu 1.15±0.10 1.15±0.10 1.97±0.10 1.79±0.10 0.70±0.10 1.27±0.10 

Glu- 1.00±0.07 1.53±0.07 1.42±0.06 1.70±0.07 0.20±0.07 1.65±0.07 
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Ile 0.81±0.03 1.20±0.03 1.82±0.03 2.13±0.03 0.35±0.03 0.63±0.03 

Arg+ 0.80±0.04 0.42±0.04 0.73±0.04 0.94±0.04 0.16±0.04 0.76±0.04 

Gln 0.72±0.03 0.55±0.03 1.49±0.03 1.85±0.02 0.48±0.03 1.60±0.03 

Trp 0.64±0.07 0.83±0.07 1.15±0.07 1.38±0.06 0.66±0.07 0.39±0.07 

Lys+ 0.60±0.04 0.12±0.04 0.75±0.04 1.08±0.04 0.10±0.04 0.39±0.04 

Val 0.53±0.03 0.45±0.03 0.93±0.03 0.92±0.02 0.16±0.03 0.82±0.03 

Phe 0.50±0.04 0.61±0.04 1.20±0.04 1.35±0.04 0.35±0.04 0.64±0.04 

Asn 0.43±0.04 0.46±0.04 0.39±0.04 0.57±0.04 0.30±0.04 0.43±0.04 

Gly 0.22±0.02 0.23±0.02 0.16±0.03 0.17±0.01 0.64±0.02 0.37±0.02 

 

 

Figure 2.7 Correlation of helical propensity between two experimental data sets. Helix scale 172 

was reported in helical propensity parameter w and helix scale 2117 was reported in ΔΔG (kcal/mol) 

relative to Ala (Ala=0 kcal/mol and Gly=1kcal/mol). The helical propensity parameter data were 

further converted by applying -RTln(w) and normalized here by forcing Ala to be zero and Gly to 

be one so that we can have a consistent comparison between two scales. Orange dots represent the 

normalized values. Amino acids are represented with one letter codes. Linear regression (red line) 

was performed against the data points, with R2 and slope quantifying the goodness of fit. 

 

2.3.13 Bootstrapping analysis on helical propensity 

In order to quantify the uncertainty of the computed w, bootstrapping analysis was 

performed for each system. When the sample size is insufficient for straightforward statistical 
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inference, bootstrapping provides a way to account for the distortions caused by a specific sample 

that may not be fully representative of the population. First, a combined trajectory from 12 

independent runs of each A4XA4 (3.2 μs for each run) was used to fit the v and w for that X. 

Second, the combined trajectory was split into 10 segments with same length. Third, 50 times of 

resampling with replacement were done on the 10 sub-trajectories. This step generated 50 

trajectories with the same length of the initially combined one (3.2 μs * 12) but with some segments 

repeated. 50x resampling has been suggested to lead to reasonable standard error estimates118. 

Lastly, we fit the v and w parameters with each of the 50 trajectories respectively and calculated 

the standard deviation of the 50 resulting w values for each amino acid. According to the 

distribution of the sampled w parameters (Figure 2.8), all amino acids have a high peak and a 

narrow range on w which suggests good quality sampling and precise estimates of helical 

propensity. 

  

 

Figure 2.8 Distribution of sampled helical propensity w from bootstrapping for all amino acids in 

ff19SB+OPC. 
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2.3.14 NMR scalar coupling calculations 

Following Best et al.29a and our previous work26a, scalar couplings were calculated from 

simulations using Karplus relations119 and the “Orig parameters”120 also adopted by Graf et al.28. 

To quantify the discrepancy between experimental scalar couplings and those calculated from 

simulation, χ2 error was defined in Best et al.’s work29a and also here as: 

𝜒2 =  𝑁−1 ∑ (〈𝐽𝑗〉𝑠𝑖𝑚 − 𝐽𝑗,𝑒𝑥𝑝)2 𝜎𝑗
2⁄𝑁

𝑗=1        (2.5), 

where N is the total number of scalar coupling types, <Jj>sim is the averaged scalar coupling 

from the simulation for scalar coupling type j. Jj,exp is the NMR data for type j. σj is the estimated 

systematic error of the Karplus equation for type j adopted by both Best et al.’s work29a and our 

previous work26a. Precision of χ2 is estimated as half the difference of χ2 calculated from two 

simulations starting from either helical or extended conformation. For dipeptides, Table 2.9 lists 

3JHNHA data and an estimated systematic error of 0.91 was used in the χ2 calculation26a, 29a. For Ala5, 

Table 2.10 lists all scalar coupling types and the corresponding systematic errors2c.  Since the 

NMR data121 were measured at pH=4.9, side chains for Arg, Lys and His were modeled in 

protonated state. For Glu and Asp, both deprotonated and protonated states were simulated, and 

the error was reported as a weighted average value. Constant pH simulations were performed to 

obtain the appropriate ratio of protonated state versus deprotonated state respectively.  

 

Table 2.9 NMR 3J(HNHA) values and calculated 3J(HNHA) values from MD simulation (with 

error bars calculated from independent runs) for 19 dipeptides. 

Residue 3J(HNHA) 

(NMR) 

3J(HNHA) 

(ff14SB+TIP3P) 

3J(HNHA) 

(ff14SB+OPC) 

3J(HNHA)  

(ff19SB+TIP3P) 

3J(HNHA)  

(ff19SB+OPC) 

Gly 5.85 6.41±0.01 6.35±0.01 6.07±0.01 6.01±0.01 

Ala 6.06 6.25±0.03 6.17±0.01 5.91±0.01 5.81±0.01 

Val 7.30 6.81±0.01 6.62±0.01 6.92±0.01 6.79±0.02 

Thr 7.35 6.69±0.01 6.71±0.03 7.11±0.02 7.15±0.04 

Ile 7.33 6.49±0.01 6.35±0.02 6.66±0.01 6.52±0.04 

Ser 7.02 6.56±0.02 6.52±0.01 6.29±0.01 6.22±0.02 

Cys 7.31 6.30±0.02 6.23±0.02 6.43±0.01 6.44±0.01 

Leu 6.88 6.65±0.02 6.59±0.01 6.63±0.01 6.52±0.01 

Phe 7.18 6.65±0.01 6.55±0.03 6.46±0.02 6.40±0.02 
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Trp 6.91 6.71±0.01 6.55±0.01 6.50±0.02 6.54±0.01 

Tyr 7.13 6.58±0.03 6.49±0.08 6.42±0.01 6.35±0.02 

Met 7.02 6.59±0.01 6.48±0.02 6.50±0.01 6.41±0.01 

Asp 6.93 6.68±0.02 6.62±0.01 7.55±0.01 7.43±0.01 

Asn 7.45 6.55±0.01 6.56±0.01 6.80±0.01 6.85±0.01 

Glu 6.63 6.65±0.01 6.58±0.02 6.10±0.03 5.98±0.02 

Gln 7.14 6.60±0.02 6.59±0.02 6.46±0.01 6.44±0.04 

Arg+ 6.85 6.62±0.03 6.57±0.02 6.46±0.01 6.48±0.02 

Lys+ 6.83 6.44±0.01 6.37±0.01 6.54±0.01 6.55±0.01 

His+ 7.89 6.63±0.05 6.71±0.00 6.55±0.03 6.76±0.04 

 

Table 2.10 Scalar coupling type, NMR measurements, the calculated scalar couplings with 

different force field + solvent model (with error bars), and the systematic error26a, 29a of Karplus 

equation/“Orig parameters” for Ala5 tetrapeptide. 

Scalar 

coupling 
NMR 

ff14SB+ 

TIP3P 

ff14SB+ 

OPC 

ff19SB+ 

TIP3P 

ff19SB+ 

OPC 

Systematic 

error (σ) 

3J(HNHA) 5.74 5.97±0.04 5.78±0.01 5.52±0.00 5.33±0.03 0.91 

3J(HAC) 1.86 1.95±0.19 1.66±0.08 2.01±0.01 1.93±0.05 0.38 

3J(HACB) 2.24 1.91±0.04 1.98±0.01 1.91±0.01 1.94±0.01 0.39 

1J(NCA) 11.26 11.11±0.05 11.35±0.02 10.75±0.02 10.86±0.01 0.59 

2J(NCA) 8.55 8.30±0.01 8.45±0.03 8.15±0.01 8.33±0.01 0.50 

3J(HNCA) 0.68 0.49±0.01 0.46±0.01 0.53±0.00 0.50±0.01 0.10 

 

2.3.15 Constant pH simulation 

Constant pH simulations of 800 ns with TIP3P89 and OPC66 explicit solvent were 

performed on the capped dipeptide forms for the titratable residues Glu and Asp. Initially, these 

titratable residues were assigned to be protonated, and the state change was attempted every 100 

MD steps through Monte Carlo approach using a Generalized Born implicit solvent model 

(igb=2)122 which was the model used to parameterize the reference compounds in constant pH 

simulation123. Following published protocol, the intrinsic Born radii of carboxylate oxygen atoms 

were shrunk in order to reduce artifacts arising from including all four alternate hydrogen atom 
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positions in the GB descreening calculation.123 200 steps of solvent relaxation dynamics (in which 

the solute was held fixed) were performed before resuming simulation if any protonation states 

were changed123. The solvent pH value was set to 4.9 in agreement with the NMR experiment121. 

The rest of the input was retained from the standard MD protocol described above.  

These constant pH simulations have limitations, such as using an older GB model122 

(igb=2) for reference compound energy, and neglect of updating dihedral parameters when 

protonation state switches123. Therefore, the constant pH simulations were only used to estimate 

the percentage of protonation states for titratable residues, and the sampled ensembles were not 

used directly for χ2 analysis. The χ2 analysis was performed on the combination of protonated and 

deprotonated trajectories in explicit water, weighted by the ratio of protonated state versus 

deprotonated state.    

 

2.3.16 NMR order parameters 

The ability of a force field to model local dynamics accurately in well-folded proteins in 

solution was examined by comparing to NMR experimental backbone NH S2 order parameters for 

GB398, ubiquitin99 and lysozyme100. We adopted the model-free approach originally proposed by 

Lipari and Szabo124 and used iRED125 as implemented in Cpptraj. iRED is based on a covariance 

matrix analysis of inter-nuclear vector orientations, represented by spherical harmonics, extracted 

from MD simulations. For this analysis, we averaged iRED results calculated for windows of 

length five times the tumbling correlation time (τc), which was suggested to best reproduce the 

model-free S2 order parameters126. Thus, window sizes of 2 ns, 4 ns and 8 ns were used for GB3, 

ubiquitin and lysozyme respectively, in agreement with previous work30, 127. The uncertainties in 

the computed S2 were calculated by taking the standard deviation from four independent MD runs.  

 

2.3.17 Statistical analysis of PDB data 

To compare the φ/ψ distributions from simulation against PDB data, we used Lovell’s 

rotamer library74, 128 of 7957 high-resolution, quality-filtered protein chains to generate the PDB-

based φ/ψ distributions. Two filters were applied to select a portion of the original 7957 structures. 

Firstly, only residues in coil and turn as defined by DSSP129 were selected. Secondly, these residues 
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were eliminated if any of the backbone heavy atoms had B factors larger than 30. Biopython130 

was used to apply the two filters against 7957 PDB files.  

 

2.3.18 Average relative energy error (REE) calculation 

Unless otherwise noted, average REE between two sets of energies were calculated as 

following: 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝐸𝐸 =  
2

𝑁∗(𝑁−1)
∑ ∑ |(𝐸𝑖

𝑎 − 𝐸𝑗
𝑎) − (𝐸𝑖

𝑏 − 𝐸𝑗
𝑏)|𝑁

𝑗>𝑖
𝑁−1
𝑖     (2.6), 

where N is the number of conformations. 𝐸𝑖
𝑎 and 𝐸𝑗

𝑎 are energies calculated in method “a” 

(QM, MM, etc) of conformation i and j. 𝐸𝑖
𝑏 and 𝐸𝑗

𝑏 are energies calculated in method “b” (QM, 

MM, etc) of conformation i and j. 

 

 

 

 

 

 

2.4 Results and Discussion 

 

2.4.1 Backbone rotational energies in ff19SB compared to ff14SB 

Alanine and Glycine energetics. Backbone φ/ψ rotational energy profiles were analyzed 

for QM, ff19SB, ff14SB and CMAP (derived by subtracting ff14SB00 from QM energies on the 

2D grid, see Methods). Ala and Gly are discussed first because they are the simplest with no 

significant side chain degrees of freedom. We performed 2D backbone rotation scans for the 

capped Ala and Gly dipeptides, followed by restrained minimization and energy evaluation with 

implicit solvent for QM and MM. The CMAPs were derived by subtracting MM from QM energies 

on the 2D grid. The ff19SB energies were obtained by adding the CMAP-based bicubic function 

to ff14SB00 (see Methods: Molecular mechanics (MM) optimization and energy calculations 

and CMAP fitting). As shown in Figure 2.9, the ff19SB energy profiles are nearly identical to 

the QM reference data, which was anticipated based on the training method. However, significant 

differences between ff14SB and QM are apparent. In ff14SB, the overall energy profiles are highly 
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symmetric with little φ/ψ coupling, likely due to the lack of coupling between the ff14SB dihedral 

correction parameters. This coupling may arise from polarization changes as the amide dipoles 

become aligned in the helical conformation. The shape and location (the bin having lowest energy 

in the basin defined in Table 2.11) of the α basins from QM are poorly reproduced by ff14SB for 

both Ala and Gly. Importantly, the diagonal shape of the left- and right-handed α helical basins as 

observed in QM and ff19SB is poorly reproduced in ff14SB, which instead samples too deeply 

into negative φ for ψ < 0. In addition, for Ala, the C7
eq local minimum between ppII and αR in QM 

(Figure 2.9) is absent in ff14SB, but reproduced with ff19SB. For Gly, the QM energy barrier at 

φ = -120 / ψ = -60 is more accurate with ff19SB (Figure 2.10).  

 

 

Figure 2.9 Ala dipeptide Ramachandran energy (kcal/mol) surfaces calculated in (left) 

ff14SB+GBSA, (middle) QM+SMD and (right) ff19SB+GBSA. All energies were zeroed relative 

to the lowest energy in the ppII region (defined in Table 2.6). The values above the color bar range 

are depicted in dark red. Solid, labeled contours indicate integer energy values in kcal/mol, 

whereas dashed contours indicate half-integer energies. The bicubic spline interpolation 

implemented in Python was used to calculate values between grid points.  

 

 

Figure 2.10 Gly dipeptide Ramachandran energy (kcal/mol) surfaces calculated in (left) 

ff14SB+GBSA, (middle) QM+SMD and (right) ff19SB+GBSA. All energies were zeroed relative 
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to the lowest energy at ppII region (defined in Table 2.6). The values above the color bar range 

are depicted in dark red. Solid, labeled contours indicate integer energy values in kcal/mol, 

whereas dashed contours indicate half-integer energies. The bicubic spline interpolation 

implemented in Python was used to calculate values between grid points.  

 

Table 2.11 The location (φ, ψ) of α basins (αR and αL) for Ala and Gly dipeptide in QM+SMD, 

ff14SB+GBSA and ff19SB+GBSA. 

 ff14SB+GBSA QM+SMD ff19SB+GBSA 

Ala (-75,-15)/(60,15) (-75,-15) )/(60,45) (-75,-15) )/(60,45) 

Gly (-75,-15)/(75,0) (-75,-15) )/(75,15) (-75,-15) )/(75,15) 

 

Overall, the deviation of ff14SB from QM for Ala and Gly is notable despite the use of 

QM data for multiple conformations of Ala3 and Gly3 during training of ff14SB/ff99SB backbone 

parameters. This relative weakness in ff99SB/ff14SB is likely a result of the use of only gas-phase 

energy minima for training (thus lacking the compulsion to reproduce the entire basin shape, or 

even the locations of aqueous-phase minima), along with dihedral correction terms that lack φ/ψ 

coupling, resulting in an overly symmetric energy map. Use of the CMAP approach for ff19SB 

results in improved reproduction of the overall energy surfaces for both amino acids. 

We tested the impact of using QM in gas-phase as the target data. We fit an Ala dipeptide 

CMAP (same protocol as in CMAP fitting) against the entire surface of gas-phase QM energy 

instead of in solution QM (Figure S7A), and ff14SB00 was used as the MM model for CMAP 

fitting. The resulting energy surface, applied in solution (Figure S7C), has an unusual shape of 

the αR basin (extending much farther into ϕ<-120°) and the αL energy basin is unexpectedly deep. 

We conclude that fitting CMAPS using solution QM & MM calculations is important for good 

results here. 
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Figure 2.11 Ala dipeptide Ramachandran energy (kcal/mol) surfaces calculated in (A) QM in gas-

phase, (B) QM in SMD, (C) ff_gas+GBSA, and (D) ff19SB+GBSA. QM in gas-phase was 

calculated using the same QM method as in ff19SB training, but excluding SMD solvation.  The 

ff_gas model   was derived by following the CMAP fitting protocol but using gas-phase QM as 

reference data and ff14SB00 as MM in fitting CMAPgas. CMAPgas was trained by subtracting 

ff14SB00 from QM in gas-phase. All energies were zeroed referenced to the lowest energy at ppII 

region (defined in Table 2.6). The values beyond color bar range are depicted in dark red. Solid 

contours indicate integer energy values in kcal/mol, whereas dashed contours indicate half-integer 

energies. 

 

Amino acids with multiple side chain rotamers. The 2D CMAP training provides a 

“perfect” fit against the 2D reference QM data for Ala and Gly since no other significant rotational 

degrees of freedom are present. However, all other amino acids have longer side chains with 

additional degrees of freedom, and the situation becomes more complex since the energies (and 

their errors) depend on rotational degrees of freedom not sampled explicitly in the CMAP. While 

3D fitting might accommodate some amino acids such as Val or Ser, this rapidly becomes 

intractable. We first compare alanine and valine using the valine rotamer used in training, then 

evaluate the transferability of the Val CMAP to alternate Val rotamers. 
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Our strategy to improving rotamer dependence extends the approach to improving 

transferability in the side chain parameters we used when developing ff14SB, where we assumed 

that the largest contribution to poor transferability of dihedral parameters arises from including 

structures in the training set that expose inaccuracies in the MM short-range nonbonded model that 

depend on degrees of freedom outside those being trained. Therefore, rotamer dependency was 

addressed here by initializing all structures on each CMAP training ϕ/ψ grid at the same rotamer 

conformation, then locally relaxing the side chain conformations to relieve any 

backbone:sidechain steric clashes that were likely to be inaccurately modeled in MM. If 

corrections for training set structures with inaccurate backbone:rotamer MM energies were to be 

incorporated into the backbone parameter for that φ/ψ grid point, the CMAP would have poor 

transferability to structures with the same φ/ψ values but with alternate rotamers that lack these 

inaccurately modeled interactions (see Methods: Molecular mechanics (MM) optimization and 

energy calculations).  

Comparison of Alanine and Valine Energy Surfaces. For Val, we selected the trans 

rotamer for CMAP training (Figure 2.12 first row). As shown in Figure 2.12B and Figure 2.12B, 

the QM profiles are qualitatively different between Ala and Val. Val prefers a flatter β/ppII 

transition region with a U-shape, while Ala has a higher barrier, a stronger preference of ppII over 

β, and a lower transition barrier between αR and ppII. The C7
eq local minimum between ppII and 

αR observed in Ala is absent in Val. In addition, the elongated diagonal shape of the αR and αL 

basins in Ala (indicating strong φ/ψ coupling) is quite different from the narrow circular minimum 

in Val. The energy minimum at φ = 60 and ψ -150 in Ala is shifted upwards at φ = 70 and ψ = -60 

in Val. Importantly, these differences in the Ala/Val QM surfaces are reproduced poorly in ff14SB 

where the Ala and Val surfaces are generally too similar; both Ala and Val prefer ppII over β and 

have similar symmetric αR/αL basins (Figure 2.9A vs. Figure 2.12A).  
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Figure 2.12 Val dipeptide Ramachandran energy surfaces using the trans (t) rotamer, calculated 

in (A) ff14SB+GBSA, (B) QM+SMD and (C) ff19SB+GBSA, and using the gauche(-) (g-) 

rotamer, calculated in (D) ff14SB+GBSA, (E) QM+SMD and (F) ff19SB+GBSA. The trans 

rotamer was used for ff19SB training. All energies were zeroed relative to the lowest energy at 

ppII region (Table 2.6). The values beyond the color bar range are depicted in dark red. Solid, 

labeled contours indicate integer energy values in kcal/mol and dashed contours indicate half-

integer energies. The bicubic spline interpolation implemented in Python was used to calculate 

values between grid points.   

 

Transferability of ff19SB backbone parameters to different side chain rotamers 

We tested the ability of our approach to provide reasonable transferability of CMAPs 

between alternate rotamers using valine, for which the side chain rotamer is known to significantly 

influence backbone populations53, 74, 131. We switched the Val rotamer from trans to gauche(-), 

calculating QM and MM φ/ψ energies for gauche(-) conformations, but keeping the Ala-based 

ff14SB and trans-based Val ff19SB MM parameters (Figure 2.12, bottom row). Even though 

ff19SB was fit using the trans rotamer, it reasonably reproduces the changes in the Val QM data 

from trans to gauche(-). For example, moving from trans to gauche(-), the α basins become more 

diagonal, αL extends farther into the upper left quadrant, the barrier between ppII and β increases, 

and the minimum at (90°, -60°) disappears. As seen with the Ala/Val comparison, ff14SB poorly 

reproduces each of these changes, and the overall energy profiles are generally much too similar 

between the two rotamers, inconsistent with the QM results. Even though the α basin is stabilized 
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more and becomes wider from trans to gauche(-) for ff14SB, the energy profiles are still highly 

symmetric in both rotamers and the notable difference in the shape of α basins reflected by QM 

and ff19SB is poorly reproduced in ff14SB, along with a too-flat barrier between ppII and β. 

Furthermore, rather than the disappearance of the (90°, -60°) minimum as seen in QM and ff19SB, 

the two minima with positive φ values merge into a single minimum in the wrong location with 

ff14SB. Thus even though ff19SB was trained using a single rotamer for Val, it does a better job 

than ff14SB at reproducing the rotamer-dependent backbone profiles from the QM calculations. 

The results also demonstrate that the high quality match between QM and ff19SB is not simply 

the result of empirical fitting to an energy map with a single rotamer, but that the accurate 

reproduction of the QM profiles is maintained even when the map is qualitatively different for an 

alternate rotamer. To quantify the changes, we calculated average REE (see 2.3.18 Average 

relative energy error (REE) calculation) between QM and MM for trans and gauche(-) as a 

function of QM energy range above the minimum (Figure 2.16). For structures having QM energy 

within 7 kcal/mol above the minimum, the average REE for the training rotamer trans are 1.78 

kcal/mol and 0.03 kcal/mol for ff14SB and ff19SB respectively. The average REE for the test 

rotamer gauche(-) are 1.39 kcal/mol and 0.89 kcal/mol for ff14SB and ff19SB. Reasonable 

transferability is observed for other amino acids as well; examples include Ser and Glu. For Ser 

(Figure 2.13), ff19SB was trained against gauche(+), but is able to reproduce reasonable QM 

surfaces for both gauche(+) and gauche(-), such as the diagonal shape of αR and αL basin for both 

rotamers and the local minimum between ppII and αR for gauche(-). For structures having QM 

energy within 7 kcal/mol above the minimum, the average REE for gauche(+) are 1.80 kcal/mol 

and 0.06 kcal/mol for ff14SB and ff19SB. The average REE for gauche(-) are 1.98 kcal/mol and 

1.01 kcal/mol for ff14SB and ff19SB. For Glu (Figure 2.14), ff19SB was trained against rotamer 

mt-10 (using naming conventions from literature74) (gauche(-) for χ1, trans for χ2 and -10° for χ3) 

and reproduces reasonably the QM surfaces for both mt-10 and tt0 (trans for χ1, trans for χ2 and 

0° for χ3). In contrast, ff14SB merges the two minima into one at ϕ = 60° for mt-10, and poorly 

reproduces the barrier height at ϕ = -120° and ψ > 30° for tt-074. For structures having QM energy 

within 7 kcal/mol above the minimum, the average REE for mt-10 are 2.05 kcal/mol and 0.08 

kcal/mol for ff14SB and ff19SB. The average REE for tt10 are 1.82 kcal/mol and 0.72 kcal/mol 

for ff14SB and ff19SB. 
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The QM, ff14SB and ff19SB energy maps for all 16 amino acid dipeptides in the training 

set are shown in Figure 2.15. 

 

 

Figure 2.13. Ser dipeptide Ramachandran energy surfaces on gauche(+) rotamer calculated in (A) 

ff14SB+GBSA, (B) QM+SMD with no interpolation, (C) QM+SMD with bicubic interpolation 

and (D) ff19SB+GBSA, and on gauche(-) rotamer calculated in (E) ff14SB+GBSA, (F) QM+SMD 

with no interpolation, (G) QM+SMD with bicubic interpolation and (H) ff19SB+GBSA. All 

energies were zeroed referenced to the lowest energy at ppII region (Table 2.6). The values beyond 

color bar range are depicted in dark red. Solid contours indicate integer energy values in kcal/mol 

and dashed contours indicate half integer energies. 

 

 

Figure 2.14. Glu dipeptide Ramachandran energy surfaces on mt-10 rotamer calculated in (A) 

ff14SB+GBSA, (B) QM+SMD with no interpolation, (C) QM+SMD with bicubic interpolation 

and (D) ff19SB+GBSA, and on tt 0 rotamer calculated in (E) ff14SB+GBSA, (F) QM+SMD with 
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no interpolation, (G) QM+SMD with bicubic interpolation and (H) ff19SB+GBSA. All energies 

were zeroed referenced to the lowest energy at ppII region (Table 2.6). The values beyond color 

bar range are depicted in dark red. Solid contours indicate integer energy values in kcal/mol and 

dashed contours indicate half integer energies. 
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Figure 2.15. Ramachandran energy surfaces calculated for 16 training dipeptides, where the X 

and Y axes of each plot are φ and ψ, respectively. QM energy surfaces with no interpolation are 

shown in the 1st column; QM energy surfaces with bicubic spline interpolation implemented in 

Python are shown in the 2nd column; ff14SB+GBSA energy surfaces are shown in the 3rd column; 

ff19SB+GBSA energy surfaces are shown in the 4th column.  
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Figure 2.16. The average REE between QM and ff14SB, QM and ff19SB as a function of QM 

energy range above the minimum for (A) Gly dipeptide, (B) Ala dipeptide, (C) Val dipeptide in 

trans rotamer, (D) Val dipeptide in gauche(-) rotamer, (E) Ser dipeptide in gauche(+) rotamer, (F) 

Ser dipeptide in gauche(-) rotamer, (G) Glu dipeptide in mt-10 rotamer and (H) Glu dipeptide in 

tt10 rotamer. 

 

2.4.2 Amino-acid specific Ramachandran sampling from PDB is 

reproduced better with ff19SB 

As shown above, the CMAP procedure allows the MM 2D φ/ψ energy surfaces to 

quantitatively match the QM 2D training data. Furthermore, we showed that using CMAPs 

improves the ability of MM to reproduce changes in QM φ/ψ basin shapes and locations for 

different χ rotamers. An important question, though, is whether these QM-based training data for 
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dipeptides in solution provide good reference states for longer peptides in solution, or larger 

proteins with more complex structures and interactions. In order to explore the relevance of the 

differences seen between the ff19SB and ff14SB energy maps for different amino acids, we sought 

out high-quality PDB data74, 128 on each amino acid and compared them to dipeptide φ/ψ sampling 

in MD using ff19SB. As discussed above in the context of statistical potentials, such comparisons 

have significant flaws, largely arising from the imperfect assumption that the distribution of 

backbone conformations for an amino acid across different proteins in a crystal environment (at 

different and typically low temperatures) corresponds to the MD-sampled Boltzmann distribution 

for the unconstrained peptide in solution at room temperature. Here, we restrict the use of the PDB 

data to a comparison of qualitative differences between amino acids from the same data source, 

such as from PDB or MD simulations. We expect that comparison of general features such as 

simulation and crystallographic basin shapes could provide valuable feedback that is independent 

of the dipeptide QM training data. However, we avoid assessment of quantitative features such as 

basin energies, for the reasons discussed above.  

Distributions from the high resolution crystal structures104 (“PDB”), dipeptide MD in 

ff14SB+OPC and dipeptide MD in ff19SB+OPC are shown in Figure 2.17 for Ala, Val and Leu 

(with all amino acids shown in Figure 2.18). The OPC solvent model was selected for this test 

since this model was developed by optimizing the charge distribution to match QM data and vdW 

parameters to reproduce water density. Neither ff14SB nor ff19SB parameters were empirically 

adjusted with this model (ff14SB used TIP3P data in training). Because the dipeptide is fully 

exposed to the solvent, the results are more sensitive to the protein force field than to the solvent 

model; similar distributions are observed between ff14SB+OPC and ff14SB+TIP3P, and also 

between ff19SB+OPC and ff19SB+TIP3P (Figure 2.18) for each amino acid. However when 

comparing between force fields and PDB, as expected, the PDB distributions indicate that each of 

these amino acids samples unique features on the Ramachandran map. The ff14SB approach is 

clearly overly simplistic; when the same uncoupled Ala-based parameters are applied to all three 

amino acids, the peptides exhibit very similar φ/ψ sampling during MD, with the only apparent 

difference being slight changes to the population of the β basin (Figure 2.17). This result is 

consistent with the ff14SB potential energy maps (Figure 2.9 and Figure 2.12) where only subtle 

differences in β basins are observed between Ala and Val. The ff14SB population maps also lack 

the diagonal shape of the α basin that is seen in the PDB data (and was also apparent in the 
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dipeptide QM data discussed above). In contrast, using amino-acid specific training against QM 

data with solvent polarization, the differences in Ramachandran maps are reproduced much better 

with ff19SB CMAPs. For instance in PDB, Val and Leu both have a flatter β-ppII transition region 

than Ala, with Val preferring greater population in this transition region. Compared to Ala, Leu 

has a broader diagonal α basin extending into the positive ψ region; these differences are 

reproduced more faithfully with ff19SB than ff14SB. The relative insensitivity of ff14SB 

backbone sampling to amino acid identity also explains its poor ability in modeling sequence 

dependence as discussed in the Introduction. Overall, given the fact that PDB data was not used in 

ff19SB training, this agreement between ff19SB and PDB shows a remarkable improvement in 

reproducing sequence-dependent behavior obtained using physics-based training, and highlights 

that these trends can be recapitulated without problematic empirical fitting against PDB data. 
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Figure 2.17 Ramachandran sampling shown for Ala, Val and Leu in dipeptide simulations with 

OPC water and ff14SB (A)-(C), in PDB (by Lovell et al.74, 128) (D)-(F), in dipeptide simulation 

with OPC water and ff19SB (G)-(I). Each contour line represents a doubling in population. Density 

is also shown as grids filled with light (no density) to dark (maximum density). Side histograms 

on each subplot represent independent distributions on φ and ψ. The box was defined in Table 2.6 

α, β and ppII. The MD simulations were run at 300K for a total of ~10 μs for all data shown. 
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Figure 2.18 Ramachandran sampling maps, where the X and Y axes of each plot are ϕ and ψ, 

respectively, from ff14SB+TIP3P (1st column), ff14SB+OPC (2nd column), ff19SB+TIP3P (3rd 

column) and ff19SB+OPC (4th column) simulation for 24 dipeptides including alternate 

protonation states for Asp, Glu and His. The distributions were used for χ2 analysis. Each contour 

line represents a doubling in population. Density is also shown as grids filled with white (no 

density) to purple (maximum density). 

 

2.4.3 Improved reproduction of NMR 3J(HNHA) scalar couplings on 

blocked dipeptides 

Another way to examine the ability of ff19SB to improve amino-acid specific behavior in 

solution is through quantitative comparison against NMR data probing backbone dihedrals, which 

have been reported121 for each of the amino acids in a dipeptide form (except Pro which lacks HN). 

As explained (Methods: CMAP fitting groups), a total of 16 CMAPS were fit and then applied 

to 20 natural amino acids (also including alternate side chain protonation states) in ff19SB. We 

compared the performance of ff19SB and ff14SB by simulating blocked dipeptide systems 

(Methods: Structure preparation & simulations) in both OPC and TIP3P solvent models. We 

then calculated the 3J(HNHA) from each MD trajectory based on the Karplus equation119  and 

“Orig” parameter set120 and quantified the agreement by calculating the χ2 error following Best et 

al29a and us26a. The χ2 error was also used as an empirical target in ff14SB backbone training2c. The 

χ2 value quantifies the agreement between experimental and MD ensemble average J value(s), also 

taking into account the uncertainty of the theoretical model being used. In theory, smaller χ2 errors 

correspond to better agreement between MD and experiment. However, χ2 values below one only 

indicate that the error is smaller than the uncertainty of the model and do not necessarily indicate 

continued improvement vs. experiment. Further details of the calculations and precision estimates 

are provided in Methods (Methods: NMR scalar coupling calculations). 

The calculated 3J(HNHA) values for each amino acid, using four different combinations of 

FF (ff14SB and ff19SB) and water model (OPC and TIP3P), are provided in Table 2.9, with the 

χ2 errors for OPC shown in Figure 2.19 and TIP3P shown in Figure 2.20. Though we observed 

differences among force fields for the Ramachandran sampling maps, the χ2 errors and actual 

3J(HNHA) values appear relatively insensitive to force field. For a given force field, neither 

Ramachandran sampling maps nor the χ2 errors and actual 3J(HNHA) values are sensitive to 

solvent model. For instance, for either ff14SB or ff19SB, the average χ2 errors are similar and 
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mostly below 0.5 for both OPC and TIP3P (Figure 2.19 and Figure 2.20). In this respect, the 

performance of ff19SB is not significantly improved over ff14SB for dipeptide NMR data, as 

ff14SB already showed reasonable behavior with few amino acids having errors larger than 1.0 

(His+ and Cys) for both solvent models. In addition, the histograms of χ2 errors are similar 

regardless of the force field and solvent model (Figure 2.21). Together with the fact that 3J(HNHA) 

in the Karplus calculation is sensitive only to the φ dihedral, this test seems insufficient to examine 

the specificity of parameters for different amino acids and the quality of parameters across the full 

Ramachandran space. However, this is a good indicator that the QM fitting is reasonable and 

ff19SB introduced no spurious outliers.  

 

Figure 2.19  χ2 errors in reproducing NMR 3J(HNHA) coupling data for all non-Pro amino acids 

(using single letter codes on X axis), with data for ff14SB+OPC (red) and ff19SB+OPC (blue). 

The MD simulations were run at 300K for a total of ~60 μs for all data shown. 
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Figure 2.20 χ2 errors in reproducing NMR 3J(HNHA) coupling data for all non-Pro amino acids 

(using single letter codes on X axis), with data for ff14SB+OPC (red) and ff19SB+OPC (blue). 

The MD simulations were run at 300K for a total of ~60 μs for all data shown. 

 

 

Figure 2.21 Histogram on χ2 errors for all non-Pro amino acids with data for (A) ff14SB+TIP3P, 

(B) ff14SB+OPC, (C) ff19SB+TIP3P and (D) ff19SB+OPC. 
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As shown in Figure 2.19, ff19SB+OPC gave a slightly larger error for Glu, but since the 

pH used in the NMR experiment (4.9) was close to the Glu side chain pKa (~ 4.25), a simulation 

using either a protonated or deprotonated state of Glu may not adequately model the experimental 

ensemble. To address this ambiguity, we ran constant pH simulation (pH=4.9) on Glu dipeptide 

(Methods: Constant pH simulation), and obtained the carboxyl group protonated state ratio for 

each force field + solvent model combinations (Table 2.12). Next, we performed regular MD for 

both protonated and deprotonated Glu. The combined trajectory weighted by protonation state 

ratio (Methods: Constant pH simulation) was used so that our calculated χ2 more accurately 

reflected the protonation states in the experiment. 

 

Table 2.12 Averaged side chain protonation state ratio of Glu and Asp dipeptide from constant pH 

simulation using ff14SB+TIP3P, ff14SB+OPC, ff19SB+TIP3P and ff19SB+OPC. Error bars were 

calculated from two independent runs starting from either helical or extended conformation. 

 Glu Asp 

ff14SB+TIP3P 0.48±0.01 0.17±0.01 

ff14SB+OPC 0.46±0.01 0.17±0.01 

ff19SB+TIP3P 0.46±0.01 0.22±0.01 

ff19SB+OPC 0.43±0.01 0.21±0.01 

 

For deprotonated Glu, the ppII region is the most populated in both ff14SB and ff19SB and 

the shape of energy basins are similar between ff14SB and ff19SB regardless of the solvent model 

(Figure 2.15). However, ff19SB samples the ppII basin extending farther towards ϕ > -60° than 

ff14SB. This subtle change causes the 3J(HNHA) to deviate significantly from experiment (χ2 = 

1.31±0.03). This shift, however, is much less pronounced in the protonated state MD with ff19SB 

(Figure 2.15), resulting in a much smaller χ2 error of 0.031±0.01. Overall, the χ2 value from the 

re-weighted population at pH 4.9 was calculated to be 0.50±0.03, indicating that the scalar 

coupling calculated with ff19SB is in reasonable agreement with experiment once the protonation 

state is taken into account. 

We also performed constant pH simulation at pH=4.9 for Asp, obtaining the side chain 

carboxyl protonation ratio for different force field + solvent model combinations (Table 2.12). 

The χ2 values from Asp simulation with deprotonated side chain and pH-weighted ensemble were 
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calculated to be 0.01±0.01 and 0.30±0.01, respectively, with both indicating reasonable agreement 

with experiment for ff19SB. In addition, for both Asp and Glu, in either ff14SB or ff19SB 

simulations, using TIP3P vs. OPC has little effect on the χ2 results with average χ2 errors all below 

0.5. 

In summary, both ff19SB and ff14SB provided reasonable results in reproducing NMR 

scalar coupling when using either OPC or TIP3P solvent, indicating that this test is relatively 

insensitive to the sampling differences that are apparent in the Ramachandran surfaces (Figure 

2.15). It is encouraging, however, that ff14SB includes an empirical adjustment to improve 

agreement with the same type of NMR data as used here, while the QM-trained ff19SB achieves 

similar or better accuracy without empirical adjustment.  

 

2.4.4 Accurate reproduction of Ala5 NMR scalar couplings is 

maintained in ff19SB 

We next tested ff19SB by simulating Ala5 in both OPC and TIP3P solvents, and compared 

to ff14SB. A total of six NMR scalar couplings have been measured on this peptide28. Following 

Best et al.29a and us2c, 26a previously, we calculated the scalar couplings from each MD trajectory 

as discussed above, and quantified the agreement between simulations and NMR by calculating 

the χ2 error (Methods: NMR scalar coupling calculations). The NMR data, calculated scalar 

couplings for ff14SB and ff19SB in both OPC and TIP3P water and the systematic error σ26a, 29a 

used in χ2 calculations are provided in Table 2.10, with the χ2 errors in OPC shown in Figure 2.22 

and TIP3P shown in Figure 2.23. Overall, the average χ2 errors are smaller than one regardless of 

force field and solvent model, indicating a reasonable reproduction of NMR data for ff14SB and 

ff19SB with both OPC and TIP3P. Specifically, ff19SB has smaller averaged χ2 compared to 

ff14SB for both OPC (0.77±0.03 vs. 0.93±0.10) and TIP3P (0.77±0.03 vs. 0.88±0.09) solvent 

model. The measurement of 3J(HNCA) is correlated with the ϕ dihedral as well as the ψ dihedral 

of the preceding amino acid28, 119; this is the only coupling we examined that depends on two 

dihedrals instead of one. This Karplus correlation has the smallest σ among all of these scalar 

coupling types, making it more sensitive to error than other scalar coupling types. Even though the 

χ2 value is large (Figure 2.22 and Figure 2.23), the difference between simulation and NMR in 
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actual 3J(HNCA) value is as small as 0.2 across all models, suggesting reasonable agreement 

between simulation and NMR across different models (Table 2.10). 

 

 

Figure 2.22 χ2 errors in reproducing six NMR scalar coupling data for Ala5, with data for 

ff14SB+OPC (red) and ff19SB+OPC (blue). The MD simulations were run at 300K for a total of 

~3 μs. 

 

 



 

84 

 

Figure 2.23 χ2 errors in reproducing multiple NMR scalar coupling data for Ala5, with data for 

ff14SB+TIP3P (red) and ff19SB+TIP3P (blue). The MD simulations were run at 300K for a total 

of ~3 μs. 

 

2.4.5 Amino-acid specific helical propensities are significantly 

improved in ff19SB 

Since the scalar coupling χ2 analysis presented above was relatively insensitive to the 

updated residue-specific parameters, additional tests were performed to further validate the new 

model. The 3J(HNHA) analysis is only sensitive to the distribution for φ; thus, we calculated 

amino-acid specific helical propensities to probe ψ dihedral sampling. We focus both on the 

absolute helical propensity in the force field as well as the ability to reproduce known differences 

between amino acids. We performed multiple MD simulations on model peptides with sequence 

Ace-A4XA4-NH2 with varying X, and fit helical propensity parameters w through Lifson-Roig116 

theory implemented in a genetic algorithm (Methods: Helical propensity). Different from having 

three substitutions in Best et al.’s system32, our model peptides only have a single substitution, as 

was done for the experimental system72, to avoid possible interaction between the substitutions 

across turns of helix. The sensitivity to the peptide length was tested by comparing propensities 

calculated using A4XA4 and A9XA9 in ff14SB + GBneck2; calculated helical propensities for all 

amino acids with ff14SB + GBneck2 are well correlated between A4XA4 and A9XA9 (Figure 

2.24), justifying the use of the shorter peptide in the more computationally expensive explicit 

solvent simulations.  
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Figure 2.24 Comparison of helical propensity w from simulations of A4XA4 and the longer A9XA9 

with ff14SB+GBneck2. The MD simulations were run at 300K for a total of ~1008 μs. 

 

We also calculated the sensitivity of the results to the exact definition of the helical region 

of overall φ/ψ space (defined in Table 2.6) using ff14SB and ff19SB, in both OPC and TIP3P. 

The calculated helical propensities for each force field and solvent model show little sensitivity to 

the α basin definition, especially for ff19SB+OPC (Figure 2.6).  

Helical propensities were calculated for A4XA4 with ff14SB and ff19SB, in TIP3P, TIP4P-

Ew57 and OPC, and also for ff19SB in OPC390. The results of the MD simulations are compared 

to values based on experiments72. Data for ff14SB+TIP3P, ff14SB+OPC, ff19SB+TIP3P and 

ff19SB+OPC are shown in Figure 2.25, with data for TIP4P-Ew and ff19SB+OPC3 in Figure 

2.26. Histidine was excluded from plots, see Methods: Helical propensity for details.  Numerical 

values are provided in Table 2.7 and Table 2.8. For TIP4P-Ew and ff19SB+OPC3 runs, a subset 

of 12 representative amino acids were selected due to the computational expense of the 

calculations. Ala, Leu, Ile, Gln and Trp were selected since helicities for these are significantly 

overestimated in ff19SB+TIP3P (Figure 2.25C). Charged amino acids Glu, Arg and Lys were 

selected as well. In addition, several amino acids having low (Gly and Asn) and medium (Val and 

Phe) experimental helical propensity were selected. 



 

86 

 

In general, ff14SB has difficulty reproducing the trend from NMR experiments regardless 

of solvent model. In TIP3P, Ala should be the most helical amino acid but is distinctly 

underestimated, while most other amino acids have significantly overestimated helical 

propensities, and the overall residue-specific correlation with NMR is poor at R2 = 0.38 (Figure 

2.25A). Although OPC is arguably a better water model66 than TIP3P, combining it with ff14SB 

produces worse results than in TIP3P (R2 = 0.27, Figure 2.25B), with helical propensities being 

underestimated for most amino acids. There is very little sequence dependence, with a slope of 

0.49. The amino acids with negatively charged side chains (Asp and Glu) are outliers in both 

solvent models for ff14SB. Results in TIP4P-Ew are similar, with R2 = 0.41 and somewhat lower 

overall helical propensities than in TIP3P (Figure 2.26). 

This poor correlation with experiment appears to be due to ff14SB rather than weaknesses 

in these solvent models; the correlation is significantly higher when comparing the helical 

propensities of ff14SB in 2 water models (OPC vs. TIP3P R2 =0.84 as shown in Figure 2.26, with 

TIP3P giving higher helical propensities). These results suggest that the ff14SB force field would 

be unable to reliably model quantitative changes to secondary structure or protein stability due to 

point mutations, despite its ability to successfully fold large proteins to near-native structures70. 

Protein folding tests are likely less sensitive to sequence-specific energetics since the overall fold 

can be maintained even when a large fraction of the protein sequence is varied132.  
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Figure 2.25 Correlation between helical propensities w from experiment72 and simulations using 

(A) ff14SB+TIP3P, (B) ff14SB+OPC, (C) ff19SB+TIP3P and (D) ff19SB+OPC. Amino acids are 

indicated using single letter codes. Values on the X-axis represent the data based on NMR72 and 

the reported standard deviations. Values on Y-axis represent the helical propensities fit against the 

combined trajectory (3.2 μs * 12), with error bars calculated via bootstrapping analysis. Black lines 

represent perfect agreement. Linear regression (red lines) was performed against the data points, 
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with R2 and slope quantifying the goodness of fit. The MD simulations were run at 300K for a 

total of ~3225 μs.  
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Figure 2.26 Correlation between helical propensities w from experiment and simulations using 

(A) ff14SB+TIP3P, (B) ff14SB+TIP4P-Ew, (C) ff14SB+OPC, (D) ff19SB+TIP3P, (E) 

ff19SB+TIP4P-Ew, (F) ff19SB+OPC, (G) ff15ipq+SPC/Eb, (H) fb15+fb3 and (I) ff19SB+OPC3 

Only 12 amino acids were calculated in TIP4P-Ew, ff15ipq+SPC/Eb, fb15+fb3 and ff19SB+OPC3, 

thus only these 12 were included in all plots for comparison. Amino acids are indicated using 

single letter codes. Values on Y-axis represent the fitted helical propensities from the original 

combined trajectories (3.2 μs * 12), with error bars calculated via bootstrapping analysis. Values 

on X-axis represent the reported NMR data and the standard deviation on these values. Linear 

regression was performed against the data points, with R2 and slope quantifying the goodness of 

fit. Black lines represent a perfect linear correlation. Red lines represent a best-fit line via linear 

regression. The MD simulations in TIP4P-Ew, ff15ipq+SPC/Eb, fb15+fb3 and ff19SB+OPC3 

were run at 300K for a total of ~2304 μs. 

 

Ideally, the ff19SB residue-specific training against QM data should improve modeling of 

sequence-dependent behavior and give improved correlation to experimental residue-specific 

differences. Consistent with this expectation, we find that using ff19SB+TIP3P reproduces the 

experimental trend much better than ff14SB+TIP3P (R2 = 0.62 vs 0.38, respectively, Figure 2.25C 

vs. A). However for ff19SB+TIP3P we also observe substantially higher sensitivity to amino acid 

variation than in experiment (slope = 1.95, Figure 2.25C). The source of this high slope and 

amplified sensitivity may be weaknesses in TIP3P (see Introduction), in particular the bias 

favoring compact structures like helices. 

When ff19SB is combined with the better OPC water model (Figure 2.25D), the 

correlation between simulated and experimental helical propensities is further improved (R2 = 0.75 

vs. 0.62 in TIP3P) and the sensitivity to amino acid is also improved (slope = 1.27 vs. 1.95 in 

TIP3P). The sensitivity of the model still seems slightly overestimated, with slope modestly larger 

than unity. The remaining deviations from a perfect linear correlation may not be highly 

significant, since small disagreements also exist among various experimental measurements 

(Figure 2.7). In OPC, the helical propensity for Ala remains slightly too low with ff19SB, and Leu 

is similar to Ala within uncertainties (Table 2.7). Ser, Thr and Cys are all predicted to have helical 

propensity somewhat lower than experiment; all have short, polar side chains that could compete 

with backbone hydrogen bonding and reduce helical content. This will be investigated in more 

detail in the future. 

These results show that ff19SB has significantly improved capability to differentiate amino 

acid properties and thus should have better predictive power for modeling sequence-specific 
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behavior, protein mutations, and also rational protein design which requires quantitative sequence-

structure accuracy. 

In addition to ff14SB and ff19SB, we also considered several other recent Amber-related 

force fields in combination with their recommended water model. In ff15ipq58+SPC/Eb
59, Ala 

shows good agreement with experiment, but otherwise there is poor overall correlation and weak 

sensitivity among the remaining amino acids (R2 = 0.26 and slope = 0.52, Figure 2.26G). In 

fb1586+fb394, Ala helical propensity is much lower than NMR, and the overall correlation is also 

poor (R2 = 0.28 and slope = 0.74, Figure 2.26H). As with the TIP4P-Ew and ff19SB+OPC3 runs, 

12 representative amino acids were included for these Amber-related force fields tests. 

Best et al. reported helical propensity benchmarks for 20 amino acids, showing that the 

overall trend from experiments72 was poorly reproduced by two force field + water combinations 

(ff03w133+TIP4P/2005134 and ff99SB*29b+TIP3P89) with correlation coefficients R2 being 0.01 and 

0.22 respectively32. Therefore, they performed an empirical adjustment of a few amino acids, 

together with the updated parameters in the ILDN31 variants of ff99SB*, to better match helix-coil 

transition data. They refit partial charges of Cα and side chain atoms on charged amino acids (D, 

E, K, R) while forcing the charges on amide N, H, C, O to have same values as all the other 

residues. The helical propensities32 using these charge-refit residues were better correlated with 

experiment (R2 = 0.51 and slope = 0.68 for all amino acids, Figure 2.28) than the original ff03w 

and ff99SB*, but even with this empirical fitting the overall trend for the 20 amino acids is still 

notably worse than ff19SB+OPC (R2 = 0.75 and slope =1.27, Figure 2.28).  
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Figure 2.27 Correlation between helical propensities w from simulations. Amino acids are 

indicated using single letter codes. Values on Y-axis represent the fitted helical propensities from 

the original combined trajectories (3.2 μs * 12), with error bars calculated via bootstrapping 

analysis. Values on X-axis represent the reported NMR data and the standard deviation on these 

values. Linear regression was performed against the data points, with R2 and slope quantifying the 

goodness of fit. Black lines represent a perfect linear correlation. Red lines represent a best-fit line 

via linear regression. 
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Figure 2.28 Correlation between helical propensities w from experiment and simulations using 

(left) Best et al32, (right) ff19SB+OPC. Amino acids are indicated using single letter codes. Values 

on both X-axis and Y-axis represent the helical propensities normalized here by dividing by the 

Ala helical propensity, consistent with what was done by Best et al32. Linear regression was 

performed against the data points, with R2 and slope quantifying the goodness of fit. Black lines 

represent a perfect linear correlation. Red lines represent a best-fit line via linear regression. 

 

The helical propensity for Cys, Ser and Thr are notably low in ff19SB comparing to ff14SB 

regardless of solvent models (Figure 2.27). There are two possible reasons. (1) The solvation 

difference between QM and MM in ff19SB training lead to over-correction on backbone potential. 

(2) Because all these three amino acids have short polar side chain, the intra-molecular hydrogen 

bond between side chain and backbone amide group in adjacent residues might compete with 

hydrogen bond stabilizing α-helical structure. The first assumption is difficult to test, hence we 

focus on the second one. In order to investigate the correlation between these intra-molecular 

hydrogen bond with low helical propensity, we performed hydrogen bond analysis on the A4XA4 

data. The fraction of these intra-molecular hydrogen bond in MD simulations are provided in 

Table 2.13. The side chain of Cys (-SH group) doesn’t form any hydrogen bond with backbone 

probably because of so weak polarity of sulfur. The hydroxyl group (-OH) in both Ser and Thr can 

form hydrogen bond with amide groups in A4XA4 backbone for both TIP3P and OPC. Thr is 
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notably stronger than Ser in forming this type of intra-molecular hydrogen bond. The β-branched 

side chain structure in Thr makes it more rigid than Ser side chain and might form a hydrogen 

bond more easily with costing less entropic penalty.  

 

Table 2.13 The cumulated average fraction of intra-molecular hydrogen bond between side chain 

and all backbone amides in A4XA4 during MD simulations. The error bar is calculated as standard 

deviation across all 12 independent MD runs. 

hbond% Cys Ser Thr 

ff19SB+TIP3P 0.0% 18.9%±3.0% 40.8%±4.5% 

ff19SB+OPC 0.0% 9.8%±1.7% 17.7%±3.3% 

 

2.4.6 Evaluating helical content in the K19 peptide 

In order to assess the ability of ff19SB to model α-helices in more complex systems, we 

employed the Ala-rich Baldwin-type135 peptide K1995 that was previously simulated2c using 

ff14SB. Experimental measurements95 on K19 using NMR chemical shift deviations (CSDs) 

suggest that the fraction helix at 300 K of four central residues and two residues near the C-

terminus are ~0.38 and ~0.17, respectively (Figure 2.29). Simulations with ff14SB+TIP3P 

exhibited an average 0.30±0.05 (central four) and 0.19±0.03 (two near C terminus) fraction helix, 

in close agreement with our previously reported2c value of 0.30±0.05 and 0.20±0.04 using the same 

force field and solvent model. Both values are in good agreement with the experiment, likely 

reflecting the inclusion of K19 data generated using TIP3P in the empirical adjustment of ff14SB 

backbone parameters. 

In order to better separate the accuracy of the solute force field from that of the solvent 

model, we ask: does the good match come from a good modeling of protein and water separately, 

or from training-based error cancellation between the force field and solvent model? As shown in 

Figure 2.29, after substituting TIP3P with a better model for water (OPC), ff14SB MD resulted in 

significantly reduced helicity, with 0.08±0.02 (central four) and ~0.08±0.01 (two near C terminus) 

helical content for the 6 measured residues. Given OPC’s excellent agreement with water 

properties, the worsened agreement with experiment for K19 supports a fortuitous cancellation of 

error in the combination of ff14SB+TIP3P. Since overly weak solvent-solute dispersion in 

TIP3P87a, 87c may introduce a bias in favor of compact structures, it seems reasonable that this bias 
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may also enhance helical content to maintain hydrogen bonding in compact states. This hypothesis 

is supported by data in Figure 2.30, which shows an inverse correlation between helical content 

and radius of gyration of K19, indicating that more compact structures tend to be more helical, and 

also Figure 2.25, which shows a dramatic increase in helical propensities when combining ff19SB 

with TIP3P vs. OPC. We conclude that an inherent underestimation of helicity is present in ff14SB, 

which is (inexactly) compensated by an increase in helical content driven by the TIP3P bias toward 

overly compact structures. 

 

 

Figure 2.29 The fraction helix of each amino acid in K19 sampled in simulations using 

ff14SB+TIP3P (red), ff14SB+OPC (yellow) and ff19SB+OPC (blue). Uncertainties reflect the 

standard deviation of 10 independent runs. The black dots represent values reported in NMR 

experiments at 300 K95. The MD simulations were run at 300K for a total of ~96 μs. 
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Figure 2.30 Correlation between radius of gyration (Rg) and helix fraction (calculated via DSSP) 

on K19 for ff14SB+TIP3P (red), ff14SB+OPC (yellow) and ff19SB+OPC (blue). Each circle 

represents a cluster from cluster analysis of simulation, with marker size representing cluster size. 

Only top 10 clusters are shown here. The cluster analysis was done on the combined trajectories 

from all independent runs for a given force filed + solvent model. Different from Methods: 

Cluster analysis, a cutoff of 4 Å was used for clustering to ensure a fixed average distance between 

clusters. All the Rg and helix fraction shown in the plot were averaged over structures within the 

cluster. Both Rg and DSSP calculation were performed with Cpptraj in Amber v16 software101. 

Only backbone atoms C, N, CA were used for both calculations. 

 

Simulation of K19 with ff19SB+OPC resulted in modestly increased helical content vs. 

ff14SB+TIP3P, with 0.48±0.05 (central four) and ~0.29±0.01 (two near C terminus) average 

helicity. These values are also somewhat higher than those from experiment (~0.38 and ~0.17 

respectively), but the deviation in MD corresponds to an error of only 0.24 and 0.35 kcal/mol free 

energy, respectively. Furthermore, uncertainties were not reported for the NMR-based data for 

K19, and ff19SB+OPC is in quantitative agreement with experiment for helical propensities  for 

Lys and Ala that make up the majority of K19 (Figure 2.25). The simulations also agree with the 

trend from experiments, with the helical content falling off towards the C-terminus, with the two 

measured Ala in this region being less helical than the central four. Overall, we conclude that the 

QM-based ff19SB is in reasonable agreement with experiment when combined with an accurate 

solvent model, while ff14SB performs poorly with the same solvent model and relies on 
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cancellation of error with the less accurate TIP3P model in order to reproduce the helical content 

of this alanine-based peptide. 

 

2.4.7 β-hairpin stability  

We next tested whether the improvements in modeling helical content with ff19SB (and 

perhaps a slight overestimation of helical content) were obtained at the cost of less accurate 

performance on β systems. Following our previous work2c with ff14SB, we used CLN02596, an 

engineered fast-folding hairpin that is a thermally optimized variant of Chignolin96. CLN025 

contains four aromatic side chains, including three Tyr and one Trp. This system presents a 

challenge due to the relatively slow folding of β-sheets compared to the helical systems (though 

T-jump IR experiments97 estimate a 100-ns folding time for CLN025). Because of the 

computational cost in obtaining highly precise estimates of β hairpin population in MD simulations 

with explicit water, we limit our testing here to a qualitative view of whether ff19SB’s improved 

helical propensity prediction may compromise β stability. We again tested ff14SB with TIP3P and 

OPC, and ff19SB with OPC. 

We performed four MD runs, each of 7 μs in length, at 300K (each was) starting from the 

NMR structure, and four additional 7 μs runs starting from a fully extended structure (56 μs total 

for all ff+water combinations). As measured by backbone RMSD against the NMR structure 

(PDBID: 2RVD96), folding was reversible in every simulation using each of the three combinations 

of the force field + solvent model (Figure 2.31). The histogram of RMSD values shows that both 

ff14SB+TIP3P and ff19SB+OPC predominantly sample the NMR structure (Figure 2.4). The 

average fraction of native population (±standard deviation) across all MD runs for ff14SB+TIP3P, 

ff14SB+OPC and ff19SB+OPC are 0.75±0.23, 0.33±0.19 and 0.50±0.17, respectively, compared 

to the experimental estimate96 of 0.9 based on CD spectra. These populations suggest that 

ff14SB+TIP3P might stabilize the β-hairpin to a greater extent than the other combinations, but 

the differences are within the uncertainties of the populations. It is interesting that with ff14SB, 

MD in TIP3P appears to prefer more β-hairpin structure than with OPC. The same preference for 

the native structure in TIP3P was seen with K19, perhaps indicating that the weaker solute-solvent 

dispersion in TIP3P generally stabilizes compact structure (such as native folds) consistent with 

previous studies40d, 64a, 87, rather than a specific secondary helical bias such as the K19 stability 

increase discussed above. 
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Figure 2.31 Backbone RMSD to the NMR structure (PDBID: 2RVD96) vs. time for the four 

extended (ext) and four native (nat) runs of CLN025 with ff14SB+TIP3P, ff14SB+OPC and 

ff19SB+OPC. The MD simulations were run at 300K for a total of ~172 μs. 

 

2.4.8 High quality backbone dynamics vs. NMR is maintained with 

ff19SB 

NMR S2 order parameters reflect the internal protein dynamics that are helpful to validate 

MD trajectories. These internal motions need to be separated from global tumbling on time scale 

of pico to nanosecond. Therefore, a choice for the window size of the MD trajectory needs to be 

made over which S2 values are computed and averaged, which remains challenging125-126. As 

reported in our previous work, ff14SB+TIP3P maintained ff99SB’s overall good reproduction of 

NMR S2 order parameters.2c Here, we also evaluated the ability of ff19SB to recapitulate local 

dynamics in well-folded proteins. As shown in Figure 2.35, the NMR data were reasonably 

reproduced by the different force field + solvent model combinations, with average absolute 
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difference between NMR S2 and calculated S2 over all amino acids close to 0.04. The overall 

differences were not statistically significant, however, we note some instances where all three force 

field + solvent models deviate from experiment and also some instances where ff19SB results are 

in worse agreement with experiment than is ff14SB. These residues typically have overestimated 

flexibility in MD as compared to NMR for Gly (smaller S2 in MD). Examples include Gly14 in 

GB3, with S2 = 0.58 in ff19SB+OPC and S2 = 0.74 in NMR (Table 2.14), Gly10 in Ubiquitin with 

S2 = 0.54 in ff19SB+OPC and S2 = 0.73 in NMR (Table 2.15) and Ser85 in Lysozyme with S2 = 

0.55 in NMR and S2 = 0.75 in all three force field + solvent models (Table 2.16). Other outliers in 

Lysozyme are C-terminal residues (residues 126 to 129) that are overly flexible in all three force 

field + solvent model combinations (Table 2.16). Interestingly, ff19SB+OPC sample structures 

with even lower RMSD against native crystal structure than either ff14SB+TIP3P or ff14SB+OPC 

(Figure 2.32, Figure 2.33, Figure 2.34). 

 

Table 2.14 Order parameters of GB3 for NMR136, ff14SB+TIP3P, ff14SB+OPC and 

ff19SB+OPC. Error bars represent the uncertainties of MD simulation, calculated from four 

independent MD runs. 

Residue ID NMR ff14SB+TIP3P ff14SB+OPC ff19SB+OPC 

3 0.83 0.85±0.01 0.87±0.01 0.80±0.03 

4 0.86 0.9±0.01 0.9±0.01 0.89±0.01 

5 0.88 0.91±0.01 0.91±0.01 0.91±0.01 

6 0.87 0.9±0.01 0.9±0.01 0.9±0.01 

7 0.83 0.9±0.01 0.9±0.01 0.89±0.01 

8 0.85 0.89±0.01 0.88±0.01 0.9±0.01 

9 0.83 0.74±0.04 0.78±0.01 0.85±0.02 

10 0.8 0.81±0.01 0.81±0.01 0.83±0.02 

11 0.76 0.76±0.01 0.78±0.01 0.8±0.01 

12 0.66 0.7±0.02 0.7±0.02 0.61±0.01 

13 0.76 0.71±0.03 0.76±0.01 0.77±0.02 

14 0.74 0.68±0.03 0.66±0.03 0.65±0.04 

15 - - - - 

16 0.83 0.9±0.01 0.9±0.01 0.89±0.01 
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17 0.8 0.86±0.01 0.86±0.01 0.88±0.01 

18 0.85 0.89±0.01 0.89±0.01 0.9±0.01 

19 0.77 0.84±0.01 0.84±0.01 0.83±0.01 

20 0.76 0.86±0.01 0.85±0.04 0.81±0.01 

21 0.84 0.89±0.01 0.9±0.01 0.9±0.01 

22 0.87 0.86±0.01 0.87±0.01 0.86±0.0 

23 0.92 0.91±0.01 0.91±0.01 0.91±0.01 

24 0.81 0.88±0.01 0.87±0.01 0.88±0.01 

25 - - - - 

26 0.91 0.91±0.01 0.91±0.01 0.91±0.01 

27 - - - - 

28 0.89 0.92±0.01 0.91±0.01 0.92±0.01 

29 0.9 0.9±0.01 0.9±0.01 0.91±0.01 

30 0.89 0.92±0.01 0.9±0.02 0.92±0.01 

31 0.91 0.93±0.01 0.92±0.01 0.93±0.01 

32 0.88 0.91±0.01 0.9±0.01 0.91±0.01 

33 0.9 0.91±0.01 0.91±0.01 0.92±0.01 

34 0.91 0.92±0.01 0.92±0.01 0.92±0.01 

35 - - - - 

36 0.89 0.89±0.01 0.89±0.01 0.9±0.011 

37 0.83 0.82±0.01 0.81±0.01 0.84±0.01 

38 0.79 0.85±0.01 0.84±0.01 0.85±0.01 

39 0.84 0.83±0.01 0.83±0.01 0.82±0.01 

40 0.73 0.84±0.01 0.82±0.02 0.82±0.01 

41 0.5 0.66±0.02 0.67±0.03 0.56±0.04 

42 0.83 0.88±0.01 0.87±0.02 0.87±0.01 

43 0.86 0.88±0.01 0.88±0.01 0.88±0.01 

44 0.86 0.9±0.01 0.89±0.02 0.9±0.01 

45 0.82 0.89±0.01 0.88±0.01 0.89±0.01 

46 0.85 0.87±0.01 0.87±0.01 0.87±0.01 
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47 0.81 0.87±0.01 0.88±0.01 0.89±0.01 

48 0.75 0.88±0.01 0.88±0.01 0.89±0.01 

49 0.82 0.83±0.01 0.83±0.01 0.86±0.01 

50 0.88 0.88±0.01 0.88±0.01 0.88±0.01 

51 0.86 0.89±0.01 0.89±0.01 0.91±0.01 

52 0.87 0.92±0.01 0.92±0.01 0.92±0.01 

53 0.84 0.92±0.01 0.92±0.01 0.92±0.01 

54 0.89 0.91±0.01 0.91±0.01 0.91±0.01 

55 0.82 0.89±0.01 0.89±0.01 0.9±0.01 

56 0.85 0.88±0.01 0.86±0.03 0.88±0.01 

 

Table 2.15 Order parameters of Ubiquitin for NMR137, ff14SB+TIP3P, ff14SB+OPC and 

ff19SB+OPC. Error bars represent the uncertainties of MD simulation, calculated from four 

independent MD runs. 

Residue ID NMR ff14SB+TIP3P ff14SB+OPC ff19SB+OPC 

2 0.84 0.89±0.01 0.89±0.01 0.88±0.01 

3 0.88 0.91±0.01 0.91±0.01 0.9±0.02 

4 0.89 0.91±0.01 0.91±0.01 0.89±0.01 

5 0.82 0.91±0.0 0.91±0.01 0.9±0.01 

6 0.85 0.89±0.01 0.9±0.01 0.9±0.01 

7 0.86 0.81±0.02 0.86±0.01 0.81±0.01 

8 0.77 0.82±0.01 0.85±0.01 0.82±0.01 

9 0.73 0.76±0.02 0.77±0.01 0.71±0.01 

10 0.73 0.72±0.02 0.69±0.01 0.55±0.02 

11 0.71 0.68±0.02 0.73±0.04 0.68±0.05 

12 0.76 0.8±0.01 0.82±0.02 0.79±0.02 

13 0.84 0.83±0.01 0.86±0.01 0.82±0.02 

14 0.82 0.86±0.01 0.86±0.01 0.83±0.01 

15 0.82 0.9±0.01 0.91±0.01 0.89±0.01 

16 0.78 0.85±0.01 0.86±0.01 0.84±0.02 

17 0.88 0.89±0.01 0.9±0.01 0.89±0.01 
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18 0.86 0.88±0.01 0.9±0.01 0.87±0.01 

19 - - - - 

20 0.84 0.88±0.01 0.89±0.01 0.87±0.01 

21 0.9 0.9±0.01 0.91±0.01 0.86±0.02 

22 0.85 0.89±0.01 0.89±0.0 0.87±0.01 

23 - - - - 

24 - - - - 

25 - - - - 

26 0.85 0.91±0.01 0.92±0.01 0.92±0.01 

27 0.91 0.93±0.01 0.93±0.01 0.93±0.01 

28 0.9 0.92±0.01 0.92±0.01 0.92±0.01 

29 0.89 0.91±0.01 0.92±0.01 0.92±0.01 

30 0.88 0.91±0.01 0.91±0.01 0.92±0.01 

31 - - - - 

32 0.89 0.9±0.01 0.91±0.01 0.91±0.01 

33 0.85 0.78±0.01 0.77±0.01 0.85±0.01 

34 0.84 0.85±0.01 0.85±0.01 0.87±0.01 

35 0.87 0.87±0.01 0.88±0.01 0.88±0.01 

36 0.79 0.8±0.01 0.8±0.01 0.78±0.01 

37 - - - - 

38 - - - - 

39 0.85 0.88±0.01 0.89±0.01 0.89±0.01 

40 0.86 0.87±0.01 0.87±0.01 0.87±0.01 

41 0.85 0.84±0.01 0.84±0.01 0.83±0.01 

42 0.83 0.91±0.0 0.9±0.01 0.87±0.02 

43 0.82 0.88±0.01 0.89±0.01 0.87±0.02 

44 0.83 0.91±0.01 0.92±0.01 0.91±0.01 

45 0.87 0.92±0.01 0.92±0.01 0.91±0.01 

46 0.83 0.87±0.01 0.88±0.01 0.86±0.01 

47 0.82 0.84±0.01 0.84±0.01 0.82±0.01 
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48 0.84 0.79±0.01 0.76±0.01 0.79±0.02 

49 0.75 0.87±0.01 0.88±0.01 0.86±0.01 

50 0.83 0.86±0.01 0.87±0.01 0.85±0.02 

51 0.81 0.86±0.01 0.88±0.01 0.85±0.02 

52 0.8 0.87±0.01 0.88±0.01 0.87±0.02 

53 - - - - 

54 0.87 0.83±0.01 0.79±0.01 0.76±0.04 

55 0.87 0.89±0.01 0.89±0.01 0.85±0.01 

56 0.9 0.92±0.01 0.92±0.01 0.92±0.01 

57 0.87 0.9±0.01 0.91±0.01 0.91±0.01 

58 0.89 0.9±0.01 0.9±0.01 0.89±0.01 

59 0.86 0.86±0.01 0.86±0.01 0.87±0.01 

60 0.88 0.89±0.01 0.89±0.01 0.87±0.01 

61 0.85 0.89±0.01 0.89±0.01 0.88±0.01 

62 0.7 0.84±0.01 0.83±0.01 0.8±0.01 

63 0.82 0.89±0.01 0.89±0.01 0.88±0.01 

64 0.87 0.91±0.01 0.91±0.01 0.9±0.02 

65 0.87 0.86±0.01 0.87±0.01 0. 86±0.01 

66 0.83 0.88±0.01 0.88±0.01 0.86±0.04 

67 0.84 0.89±0.01 0.89±0.01 0.88±0.02 

68 0.87 0.89±0.01 0.9±0.01 0.88±0.01 

69 0.84 0.84±0.01 0.87±0.01 0.86±0.01 

70 0.91 0.89±0.01 0.9±0.01 0.88±0.01 

71 0.79 0.87±0.01 0.87±0.01 0.85±0.01 

72 - - - - 

73 0.56 0.64±0.06 0.65±0.02 0.75±0.07 

 

Table 2.16 Order parameters of Lysozyme for NMR138, ff14SB+TIP3P, ff14SB+OPC and 

ff19SB+OPC. Error bars represent the uncertainties of MD simulation, calculated from four 

independent MD runs. 

Residue ID NMR ff14SB+TIP3P ff14SB+OPC ff19SB+OPC 
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2 0.83 0.82±0.01 0.81±0.03 0.84±0.01 

3 0.83 0.84±0.01 0.83±0.01 0.86±0.01 

4 0.83 0.85±0.01 0.84±0.01 0.87±0.01 

5 0.85 0.87±0.01 0.88±0.01 0.89±0.01 

6 0.86 0.87±0.01 0.88±0.01 0.90±0.01 

7 0.88 0.88±0.01 0.88±0.01 0.88±0.01 

8 0.89 0.91±0.01 0.91±0.01 0.92±0.01 

9 0.93 0.91±0.01 0.92±0.01 0.92±0.01 

10 0.89 0.91±0.01 0.91±0.01 0.92±0.01 

11 0.89 0.91±0.01 0.91±0.01 0.91±0.01 

12 0.91 0.92±0.01 0.92±0.01 0.92±0.01 

13 0.92 0.91±0.01 0.91±0.01 0.92±0.01 

14 0.82 0.91±0.01 0.91±0.01 0.91±0.01 

15 0.84 0.88±0.01 0.87±0.01 0.87±0.01 

16 - - - - 

17 0.89 0.87±0.01 0.85±0.02 0.83±0.02 

18 0.86 0.84±0.01 0.84±0.01 0.78±0.01 

19 0.84 0.84±0.02 0.84±0.01 0.83±0.01 

20 0.85 0.89±0.01 0.88±0.01 0.87±0.01 

21 0.89 0.9±0.01 0.89±0.01 0.9±0.01 

22 0.99 0.86±0.01 0.86±0.01 0.86±0.01 

23 0.88 0.84±0.01 0.82±0.01 0.82±0.01 

24 0.89 0.88±0.01 0.86±0.02 0.9±0.01 

25 0.87 0.9±0.01 0.9±0.01 0.91±0.01 

26 0.91 0.91±0.01 0.9±0.01 0.92±0.01 

27 0.94 0.9±0.01 0.91±0.01 0.91±0.01 

28 0.87 0.9±0.01 0.9±0.01 0.9±0.01 

29 0.9 0.91±0.01 0.91±0.01 0.92±0.01 

30 - - - - 
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31 0.93 0.91±0.01 0.91±0.01 0.92±0.01 

32 0.94 0.91±0.01 0.91±0.01 0.92±0.01 

33 0.91 0.9±0.01 0.9±0.01 0.91±0.01 

34 0.92 0.88±0.01 0.88±0.01 0.91±0.0 

35 0.88 0.86±0.01 0.86±0.01 0.89±0.0 

36 0.86 0.85±0.01 0.85±0.01 0.81±0.01 

37 0.96 0.89±0.01 0.89±0.01 0.9±0.01 

38 0.9 0.91±0.01 0.91±0.01 0.89±0.01 

39 0.89 0.88±0.01 0.88±0.01 0.88±0.01 

40 0.91 0.9±0.01 0.9±0.01 0.91±0.01 

41 0.86 0.89±0.01 0.89±0.01 0.9±0.01 

42 0.87 0.87±0.01 0.88±0.01 0.88±0.01 

43 0.83 0.9±0.01 0.9±0.01 0.89±0.01 

44 0.83 0.88±0.01 0.88±0.01 0.86±0.01 

45 0.78 0.85±0.01 0.86±0.01 0.86±0.01 

46 0.83 0.81±0.01 0.81±0.01 0.75±0.01 

47 0.78 0.84±0.01 0.85±0.01 0.81±0.01 

48 0.77 0.81±0.01 0.82±0.01 0.75±0.01 

49 0.82 0.83±0.01 0.84±0.01 0.81±0.01 

50 - - - - 

51 0.89 0.89±0.01 0.9±0.01 0.9±0.01 

52 0.89 0.91±0.01 0.92±0.01 0.91±0.01 

53 0.87 0.92±0.01 0.92±0.01 0.92±0.01 

54 0.91 0.91±0.01 0.91±0.01 0.91±0.01 

55 0.94 0.92±0.01 0.92±0.01 0.92±0.01 

56 0.92 0.92±0.01 0.92±0.01 0.93±0.01 

57 0.94 0.91±0.01 0.91±0.01 0.92±0.01 

58 0.9 0.88±0.01 0.87±0.01 0.88±0.01 

59 0.91 0.9±0.01 0.9±0.01 0.89±0.01 

60 0.93 0.91±0.01 0.91±0.01 0.92±0.01 
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61 0.95 0.88±0.01 0.88±0.01 0.87±0.02 

62 0.85 0.84±0.01 0.87±0.01 0.86±0.01 

63 0.9 0.87±0.01 0.87±0.01 0.86±0.02 

64 0.91 0.88±0.01 0.87±0.02 0.86±0.01 

65 0.86 0.85±0.01 0.87±0.01 0.86±0.02 

66 0.89 0.85±0.01 0.82±0.07 0.86±0.01 

67 0.85 0.85±0.01 0.85±0.01 0.86±0.01 

68 0.78 0.72±0.02 0.77±0.01 0.81±0.04 

69 0.76 0.83±0.01 0.82±0.03 0.67±0.02 

70 - - - - 

71 0.72 0.76±0.03 0.77±0.04 0.77±0.03 

72 0.76 0.75±0.05 0.76±0.02 0.77±0.02 

73 0.88 0.75±0.02 0.76±0.03 0.77±0.05 

74 0.87 0.86±0.02 0.81±0.06 0.84±0.02 

75 0.94 0.91±0.01 0.87±0.06 0.91±0.01 

76 0.92 0.88±0.01 0.84±0.06 0.89±0.01 

77 0.9 0.9±0.01 0.89±0.01 0.9±0.01 

78 0.91 0.75±0.03 0.84±0.01 0.9±0.01 

79 - - - - 

80 0.91 0.9±0.01 0.9±0.01 0.91±0.01 

81 0.86 0.9±0.01 0.9±0.01 0.9±0.01 

82 0.88 0.89±0.01 0.89±0.01 0.89±0.01 

83 0.83 0.89±0.01 0.9±0.01 0.9±0.01 

84 0.83 0.9±0.01 0.91±0.01 0.9±0.01 

85 0.55 0.75±0.02 0.76±0.04 0.76±0.05 

86 0.8 0.86±0.01 0.88±0.01 0.86±0.01 

87 0.8 0.85±0.01 0.86±0.01 0.82±0.01 

88 0.8 0.88±0.01 0.88±0.01 0.88±0.01 

89 0.92 0.92±0.01 0.92±0.01 0.92±0.01 

90 0.91 0.92±0.01 0.92±0.01 0.92±0.01 
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91 0.85 0.91±0.01 0.91±0.01 0.91±0.01 

92 0.93 0.92±0.01 0.92±0.01 0.92±0.01 

93 0.93 0.92±0.01 0.92±0.01 0.92±0.01 

94 0.92 0.91±0.01 0.91±0.01 0.92±0.01 

95 0.92 0.92±0.01 0.92±0.01 0.92±0.01 

96 0.92 0.93±0.01 0.92±0.01 0.93±0.01 

97 0.94 0.9±0.01 0.9±0.01 0.91±0.01 

98 0.92 0.91±0.01 0.91±0.01 0.92±0.01 

99 - - - - 

100 0.89 0.87±0.02 0.88±0.01 0.87±0.01 

101 0.85 0.83±0.04 0.84±0.04 0.81±0.02 

102 0.72 0.75±0.04 0.75±0.02 0.68±0.01 

103 0.63 0.7±0.04 0.72±0.04 0.60±0.02 

104 0.81 0.77±0.07 0.82±0.02 0.79±0.02 

105 0.88 0.84±0.03 0.84±0.02 0.85±0.01 

106 0.96 0.88±0.01 0.88±0.01 0.9±0.01 

107 0.91 0.86±0.01 0.87±0.01 0.88±0.01 

108 0.84 0.84±0.01 0.84±0.01 0.88±0.01 

109 0.85 0.85±0.01 0.87±0.01 0.88±0.01 

110 - - - - 

111 0.84 0.83±0.02 0.83±0.02 0.86±0.01 

112 0.89 0.89±0.01 0.9±0.01 0.92±0.01 

113 0.89 0.83±0.01 0.83±0.01 0.87±0.0 

114 0.87 0.76±0.03 0.74±0.01 0.75±0.01 

115 0.79 0.77±0.01 0.77±0.02 0.77±0.02 

116 0.84 0.8±0.03 0.78±0.02 0.73±0.05 

117 0.81 0.61±0.10 0.65±0.07 0.75±0.06 

118 0.72 0.59±0.04 0.6±0.05 0.68±0.03 

119 0.8 0.76±0.04 0.75±0.02 0.76±0.04 

120 0.8 0.75±0.03 0.71±0.05 0.77±0.03 
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121 0.91 0.86±0.02 0.86±0.01 0.88±0.01 

122 0.92 0.88±0.01 0.87±0.02 0.89±0.01 

123 0.9 0.85±0.02 0.84±0.01 0.87±0.01 

124 0.9 0.86±0.01 0.85±0.01 0.87±0.01 

125 0.87 0.84±0.03 0.8±0.02 0.82±0.02 

126 0.82 0.68±0.09 0.69±0.02 0.75±0.01 

127 0.77 0.65±0.08 0.59±0.05 0.54±0.06 

128 0.76 0.61±0.13 0.59±0.06 0.65±0.1 

129 0.6 0.45±0.17 0.43±0.02 0.52±0.02 

 

 

Figure 2.32 Backbone RMSD against crystal structure versus time (left) and histogram on RMSD 

(right) for GB3 (PDBID: 1P7E) for (top) ff14SB+TIP3P, (middle) ff14SB+OPC and (bottom) 

ff19SB+OPC. Four independent runs starting from different initial velocities were performed. C, 

N and CA atoms were used for RMSD analysis. Four runs were combined in the histogram (right). 
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Figure 2.33 Backbone RMSD against crystal structure versus time (left) and histogram on RMSD 

(right) for Ubiquitin (PDBID: 1UBQ) for (top) ff14SB+TIP3P, (middle) ff14SB+OPC and 

(bottom) ff19SB+OPC. Four independent runs starting from different initial velocities were 

performed. C, N and CA atoms were used for RMSD analysis. Four runs were combined in the 

histogram (right). 
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Figure 2.34 Backbone RMSD against crystal structure versus time (left) and histogram on RMSD 

(right) for Lysozyme (PDBID: 6LYT) for (top) ff14SB+TIP3P, (middle) ff14SB+OPC and 

(bottom) ff19SB+OPC. Four independent runs starting from different initial velocities were 

performed. C, N and CA atoms were used for RMSD analysis. Four runs were combined in the 

histogram (right). 
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Figure 2.35 Per-residue order parameters (S2) from NMR compared to simulations using 

ff14SB+TIP3P (red), ff14SB+OPC (yellow) and ff19SB+OPC (blue) of (top) GB3136, (middle) 

Ubiquitin137 and (bottom) Lysozyme138. AD is the absolute difference between NMR and MD 

simulation. MAD is mean absolute difference over all residues. For each subplot, error bars 

represent the standard deviation from four independent runs. Some residues are missing 

experimental values as indicated in the original NMR papers136-138. The MD simulations were run 

at 300K for a total of ~1.8 μs. 
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In GB3, Gly14 was reported to have a high S2 (0.74) using NMR, likely due to its 

intermolecular hydrogen bond in a β-sheet secondary structure. However, Gly14 is similarly more 

flexible with ff19SB+OPC (0.65±0.04), ff14SB+TIP3P (0.68±0.03) and ff14SB+OPC 

(0.66±0.03). This may not reflect problems in ff19SB Gly parameters since this trend is reversed 

for Gly41 in the loop region connecting a β-strand to an α-helix. S2 from NMR is quite low for 

Gly41 (0.50) due to loop flexibility, and this flexibility is reproduced much better with 

ff19SB+OPC (0.56±0.04) than ff14SB+TIP3P (0.66±0.02) and ff14SB+OPC (0.67±0.03). 

In Ubiquitin, Gly10 flexibility is overestimated in ff19SB+OPC (0.55±0.02), but not in 

ff14SB+TIP3P (0.72±0.02) and ff14SB+OPC (0.69±0.01) compared to NMR (0.73). Except for 

the slightly worsened performance on Gly10, ff19SB+OPC yields the best overall agreement with 

NMR compared to ff14SB with either TIP3P or OPC solvent model. 

In Lysozyme, Ser85 lies in a loop region connecting two α helices, and is overly rigid with 

all three simulation models (~0.75 in MD vs 0.55 in NMR). However, Ser85  backbone (ϕ/ψ) and 

side chain (χ1/χ2) sampling in all three force field + solvent model combinations reproduces that 

seen in the crystal structure.  

In spite of subtle disagreements with NMR, we concluded that ff19SB generally 

maintained the overall performance of ff14SB and ff99SB in order parameter reproduction, with 

a few outliers that do not appear to follow any systematic trend that could be attributed to the 

CMAPs.  

 

 

 

 

 

 

2.5 Conclusion 

 

In the updated ff19SB (with the “SB” models indicating Stony Brook) protein force field 

presented here, we have developed new backbone dihedral parameters with amino-acid specific 

CMAP functions. We trained the parameters to match solution phase QM data using full 2D φ/ψ 

scans, instead of the gas-phase minima used for training uncoupled φ and ψ cosine terms in ff99SB. 

Use of energies calculated from QM in solution provides better consistency with the pre-polarized 

partial atomic charges used by the MM model, as compared to gas-phase energies that were used 
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previously. Fitting of dihedral corrections against QM in solution also allows the model to 

incorporate (to some extent) conformation-dependent polarization energy that is not present 

explicitly in a fixed-charge MM model such as the one used here.  

A total of 16 CMAPs were fit, with applicability to all amino acids using a grouping 

approach based on side chain size, branching and polarity. Leu was used as a general model for 

other amino acids, in contrast to Ala that has traditionally been used as a protein backbone model. 

We also investigated whether CMAP functions fit using a single side chain rotamer could remain 

accurate for other rotamer states, and found good transferability as measured by the ability of the 

model to reproduce rotamer-dependent differences in Ramachandran space QM energetics and 

PDB-based statistics. 

One possible weakness to our approach was the use of simple implicit water models during 

training, such as the GB model in the MM component. Older GB models exhibit secondary 

structure biases for longer peptides139, but here we have used our GBneck2 model92 that much 

more accurately reproduces secondary structure preferences. Furthermore, we have shown that the 

solvation energy of dipeptides (which we used here for the CMAP training in GB) is largely 

insensitive to specific GB model used140. Nevertheless, our use of GB during training could be a 

limitation, which is one reason we carried out extensive testing here using a variety of fully explicit 

water models.  

We performed a total of ~6 milliseconds MD simulations in explicit solvent to extensively 

validate ff19SB against experiments. The results show that our new FF more accurately reproduces 

amino-acid specific NMR properties such as scalar coupling and helical propensity, as well as 

structure and stability of a Baldwin-type helical peptide and a small hairpin. Folded proteins show 

good agreement with NMR S2 order parameters, and modestly improved RMSD values as 

compared to ff14SB.  

We make the important observation that the performance of the QM-based ff19SB model 

improves as the quality of the water model is improved (going from TIP3P to TIP4P-Ew to OPC), 

suggesting lack of fortuitous cancellation of error with a particular water model, and that the water 

model is likely the limiting factor in these comparisons of ff19SB to experiment. Currently, our 

best results are obtained using ff19SB with OPC water, and we recommend that combination. 

Biomolecular force fields such as ff19SB that are not tied to a specific water model through 

empirical adjustment will be in a stronger position to take advantage of future, better-quality water 
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models. In contrast, use of a better model for water does not lead to improved match with 

experiment for ff14SB, supporting that both a good water model and good protein force field are 

needed for an accurate simulation. We also conclude that weaker solute-solvent dispersion in 

TIP3P not only leads to overly compact unfolded states as has been reported previously, but also 

overstabilizes native helical and hairpin structures as compared to OPC.  

If water models can be sufficiently improved, there is in principle no need for specialized 

“IDP” force fields, as suggested in recent work40d by Robustelli et al. Our belief is that physics-

based protein FFs trained against short peptides should be quite capable of modeling IDPs and 

unfolded ensembles, which are more similar to the peptide training data than are folded proteins. 

Amber’s OPC 4-point water model not only better reproduces liquid water properties as compared 

to most other models66, but IDP simulations with OPC result in much less compact ensembles as 

compared to simulations using the same FFs in older water models.67 This provides additional 

evidence that the current problems with modeling IDPs are likely to be related to the water models, 

and further improvement of physics-based protein FFs is warranted, independent of water model 

development going on in parallel. While the studies here of flexible peptides using ff19SB+OPC 

are promising, future studies using this combination for IDPs will be carried out in the future. 
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Chapter 3  

 

 

 

 

 

 

Further investigate the physical cause of 

errors that are corrected by CMAP in ff19SB 

 

 

 

 

 

 

“All models are wrong, but some are useful” 

--- George Box 

 

3.1 Introduction 

 

As discussed in the previous two chapters, many approximations are made in fitting FF 

parameters. In ff19SB, we revisited several weaknesses that may be dominant factors limiting 

accuracy of classical AMBER force field. To overcome the weaknesses, we developed amino-acid 

specific protein backbone dihedral parameters by employing CMAP functions and utilized 

quantum mechanics energy in solution as reference data. This strategy overcomes the major issues 

in previous AMBER force field such as ff99SB2b and ff14SB2c as reflected by extensive test in 

MD simulations (Results and Discussion section in Chapter 2). However, the physical motivation 

behind dihedral corrections is that the rest of the FF is purely classical, and therefore lacks quantum 

effects such as the increased energy barrier for rotation around a double bond. In practice, these 
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corrections are used broadly to empirically optimize force fields during training, accounting for 

quantum effects as well as other weaknesses in the simple model, such as lack of conformation-

dependent polarization that could impact electrostatic interaction profiles, or even to remedy lack 

of agreement with experiments. The need for dihedral parameters such as CMAP could be reduced 

if the accuracy of the rest of the force field is greatly improved. The transferability of FF can be 

improved if dihedral parameters are not responsible for errors in the rest of the force field. 

Nonbonded interactions including electrostatics and van der Waals (vdW) interactions 

have well-understood physical origins (see Chapter 1). They are represented with simple 

functional forms in traditional force fields, for instance point charges for electrostatics and 

Lennard-Jones 12-6 functional for vdW for the sake of computational efficiency. Increasingly, 

these simple forms are shown to be insufficient to fully describe the underlying physics; hence it 

is impossible for their parameters to be both accurate and transferable. What is even worse, the 

error arisen from non-bonded terms might be unintentionally compensated by dihedral terms in 

practice. As computer power continues to grow and new hardware (such as GPU) to emerge, 

computing cost will become less an obstacle to more accurate modelling. Historical compromises 

must be revisited. It is thus crucial to understand the error of nonbonded interactions in classical 

model and provide insights for developing next generation force field with higher accuracy and 

transferability. 

A few examples related to nonbonded errors were already mentioned in Chapter 2. As 

shown in Figure 2.12 and Figure 2.16, the Val CMAP trained against trans rotamer gives near-

zero error for trans structures, but ~0.89 kcal/mol for gauche(-) ones (see 2.4.1 Backbone 

rotational energies in ff19SB compared to ff14SB). The transferability issue arises because of 

the well-established physical mechanism. For Val, some side chain rotamers clash with backbone 

carbonyl oxygen atoms in the helical conformation, reducing overall helical propensity. The error 

gets larger when the inaccurate MM short-range repulsion (from trans rotamer) is totally folded 

into the CMAP correction (because CMAP fitting is “perfect”), and the CMAP is applied to 

backbone of gauche(-) rotamer where the clash is not present. This is the main transferability issue 

of ff19SB. Due to the fact that Val has non-polar β-branched side chain, the short-range vdW 

interaction errors might be most likely the cause. Another example is Ser, theoretically, the 

disagreement between QM and MM in intramolecular hydrogen-bond (H-bond) can be perfectly 

corrected by CMAP for a particular rotamer, but the CMAP becomes imperfect when applied to 
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another rotamer Ser where the H-bond is not present. The physical problem will not be fixed if the 

non-bonded errors are corrected by dihedral terms. It is thus advantageous to know the physical 

reason behind the overall FF errors and this is conducive to understanding FF limitation and further 

improving the model.  

In this chapter, we investigate the fundamental source of errors that are most likely 

corrected in ff19SB with the use of amino-acid specific CMAP functions. We will prioritize the 

major FF issues by quantifying the magnitude of errors from various FF terms. The assumptions 

we made in the error investigation include: 1. The lack of hydrogen bond in training will worsen 

the transferability of CMAP parameters to large biomolecules. 2. Retaining the old empirical 1-4 

scaling factor might limit the accuracy of short-range interactions. 3. Retaining the old RESP 

charges8 especially for charged amino acids might cause problem in hydrogen bond formation. 4. 

Using GB model in CMAP training might only partially cancel out the solvation energy and leave 

the solvation energy in dihedral parameters. When the dihedral parameters are applied in MD that 

include models for solvation environment, the solvation energy is over-counted. The last one is 

aimed to test the assumption made in ff19SB training (making dihedral fitting and partial charge 

fitting consistent) and its effect on resulted ff19SB parameters, rather than identifying errors 

corrected by ff19SB.  

Certainly, the errors of force field can be attributed to other terms as well such as bonds, 

angles, improper dihedrals, etc. However, we believe that the non-bonded parameters are the most 

problematic and most important, because they are determinant in secondary structure prediction in 

MD simulation. Specifically, the 1-4 scaling factor is purely empirical and haven’t been 

systematically revisited for decades except a few but limited efforts141. The partial charges are also 

retained from models developed decades ago8. After the errors are quantified and prioritized, a 

systematic refitting of certain term such as dihedral is crucial for future force field development. 

Because dihedral potentials are often fit to make up the total energy profile, by improving other 

terms such as non-bonded, we can essentially improve dihedral potentials as well. In this manner, 

the force field can be fundamentally improved with more physically relevant terms and be more 

transferable.  
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3.2 Methods 
 

3.2.1 Geometry scanning and energy calculation on Ala tetrapeptide 

Acetyl and N-methyl capped tetrapeptide of alanine (Ace-Ala-Ala-Ala-Nme) was adopted. 

The first and second Ala were restrained onto α conformation (φ=-60° and ψ=-45°) or ppII 

conformation (φ=-60° and ψ=150°). For either α or ppII, backbone geometry scans were performed 

on the third Ala to generate multiple structures. The 2D scan was performed on φ and ψ dihedrals 

over ranges of -180° to 165° with an interval of 15°. All scans were carried out via the LEaP 

module of AmberTools in Amber v16 software101.  

Tetrapeptide structures were minimized after geometry scanning including restraints on φ 

and ψ values with harmonic force constant of 1000 kcal mol-1 rad-2. MM optimization and energy 

calculations were performed using ff14SB2c and GBneck292 implicit solvent model with the 

mbondi3 radii set92 for polar solvation and SASA-based nonpolar solvation (default 0.005 kcal 

mol-1 Å-1 surface tension was adopted)103. Structures were minimized for a maximum of 10,000 

cycles in ff14SB+GBSA with no cutoff on non-bonded interactions. Steepest descent was 

employed for the first 10 cycles in the minimization and conjugate gradient for the following 

cycles. Single point energies were calculated for the MM-optimized structures using ff14SB00 

(Table 2.2) + GBSA. The convergence criterion for energy gradient is when the root-mean-square 

of the Cartesian elements of the gradient is less than 10-4 kcal mol-1 Å-1.  

QM calculations were performed with Gaussian 09142. Geometry optimizations and single 

point energy calculations were performed at the M05-2X/6-311G**/SMD level of theory108. 

Grimme’s dispersion correction with the original D3 damping function was used to correct for 

long-range dispersion. This combination was adopted in ff19SB and is proved to be accurate (see 

accuracy for each QM methods in Figure 2.5). The solvation environment was represented as a 

self-consistent reaction field, with exterior dielectric set to default 78.3553, using SMD106 with 

consideration of both polar and nonpolar solvation energy components. Very tight optimization 

convergence criterion was used to generate data for fitting. To maintain the structure on the φ/ψ 

grid, we followed the protocol of “2.3.7 QM optimization and energy calculations”. The first 

and second Ala were also restrained to the values from the structures taken from the last step of 
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MM optimization throughout the QM calculations. Following “2.3.5 CMAP fitting”, a CMAP 

was then fit using the tetrapeptide data.  

 

3.2.2 1-4 scaling factor scanning  

Acetyl and N-methyl capped dipeptide of Val (Ace-Val-Nme) was used in the 1-4 scaling 

factor scanning. The conformations were generated following “2.3.2 Geometry scanning” and 

QM energies were calculated following “2.3.7 QM optimization and energy calculations”. For 

each conformation of the φ/ψ scanned grid, either in trans or gauche(-) rotamer, a series of MM 

calculations were performed with scanned values on 1-4 electrostatics (14scee) and 1-4 vdW 

(14scnb) over ranges of 0.6 to 3.0 with an interval of 0.2 (13 points in each dimension). In this 

manner, for each of the 576 conformations on the φ/ψ grid, a following up 13*13 MM calculations 

were performed. MM calculation is comprised of optimization and energy calculation. Geometry 

minimization was performed using GBSA and original ff14SB with restraints on φ and ψ dihedrals 

with harmonic force constant of 1000 kcal mol-1 rad-2. Energy calculation was performed using 

GBSA and modified ff14SB00 (with modification to 14 scee and 14 scnb). The original ff14SB00 

is defined in Table 2.2. The average relative energy error (REE) between QM and MM for each 

14scee and 14scnb combination is calculated as:  

𝑎𝑣𝑔𝑅𝐸𝐸 =  
2

𝑁(𝑁−1)
∑ ∑ |𝑄𝑀𝑖 − 𝑄𝑀𝑗 − (𝑀𝑀𝑖 − 𝑀𝑀𝑗)|𝑗≠𝑖𝑖      (3.1), 

where N is the number of conformations, QM is the QM+SMD energy and MM is 

ff14SB00+GBSA plus the 1-4 energy calculated using adjustable 14scee and 14scnb. 

 

3.2.3 Refitting of atomic partial charges 

The partial charges for acetyl and N-methyl capped dipeptide of Asp and Glu (Ace-X-

Nme) were refitted. We took the charges from Best et al32 derived by performing the following 

procedures. An approach similar to that adopted by Kollman and co-workers in deriving the 

original Amber ff94 charge set23 was used, except that the charges on the amide N, H, C, O were 

fixed to have the same (fixed) values as all the other residues, i.e., 0.4157e, 0.2719e, 0.5973e, and 

0.5679e, respectively. The RESP method8 was used to fit the charges to electrostatic potentials 

derived from amino acid dipeptides, with several conformations being used in the fit, selected to 

represent both α and β conformations. The backbone dihedral angles were set to φ=-165°, ψ=165° 
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for β conformation and φ=-60°, ψ=-45° for α conformation. For each backbone conformation, 

three sets of side-chain torsion angles were chosen, using the three most populated conformers 

from the rotamer library of Lovell et al.74, and energy minimized within the Amber ff99SB force 

field, with strong restraints keeping the side chain and backbone dihedral values close to the 

starting values. Conformations in which the side chain was hydrogen-bonded to the backbone were 

eliminated. An electrostatic potential was obtained at the HF/6-31G* level of theory for each of 

the previous optimized geometries using the Gaussian program suite142. A multiple conformation 

RESP fit was done over six conformations (three α and three β) for each residue with the previous 

charge constraints. 

 

3.2.4 MM solvation calculations 

 Two variants of implicit solvent GB models were tested including “GBOBC” model122, 143 

(igb =5 in Amber) and GBn model93 (igb=7 in Amber). Ala dipeptides taken from geometry 

scanning (2.3.2 Geometry scanning) were minimized using ff14SB and any selected GB model 

including restraints on φ and ψ values with harmonic force constant of 1000 kcal mol-1 rad-2. 

Poisson-Boltzmann (PB)144 model was also adopted for the same calculation. Two radii sets were 

adopted including mbondi3 (same to GBneck2) and Tan and Luo’s radii145. The same geometries 

were used and single point GB and PB energies were calculated with pbsa implemented in Amber 

v16101. 

Two explicit solvent models (TIP3P and OPC) were also employed. Thermodynamics 

integration (TI) was performed with pmemd implemented in Amber v16101 to obtain polar 

solvation free energy for each conformation on Ala dipeptide φ/ψ grid with both TIP3P and OPC 

solvent. All atomic partial charges on Ala dipeptide were turned off in state 0 and turned on in 

state 1. Each conformation was solvated with 496 TIP3P waters or OPC waters in TI calculations. 

The production runs for the gas-phase state (state 0) and in-solution state (state 1) were conducted. 

Hydrogen atoms were constrained using the SHAKE algorithm112. The temperature was set to 298 

K and no salt ions were included. Langevin dynamics was used to control temperature and the 

collision frequency was set to be 0.1 ps−1. Particle mesh Ewald method was used to calculate 

electrostatic energies146. The cutoff of non-bonded interactions was set to 8 Å. A time step of 2 fs 

was used. The φ and ψ dihedral values were restrained onto the grid with harmonic force constant 

of 100 kcal mol-1 rad-2 during TI. A total of 12 λ windows were employed with values set to 
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0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366 0.88495, 

0.95206 and 0.99078 following protocol from our previous TI studies147. Trapezoidal integration 

was used to obtain the free energy change between gas-phase and in-solution calculations.  

 

 

 

 

 

 

3.3 Results and Discussion 
 

We will investigate the possible errors that can be improved in long term force field 

development. First, the stability of hydrogen bond will be investigated by comparing energy 

surface of Ala dipeptide with tetrapeptide. This will also be helpful to understand the necessity of 

replacing tetrapeptide (ff99SB training model) with dipeptide (ff19SB training model) for 

backbone training. Second, the empirical 1-4 scaling factor will be examined by 1-4 grid scanning 

on Val dipeptide MM energies and identifying more optimal 1-4 scaling factors that yield better 

QM/MM agreement. Third, the accuracy of backbone partial charges on charged amino acids 

including Asp and Glu will be studied. The ff14SB and ff19SB helical propensity data will be used 

as reference and compared with new helical propensity calculated with updated partial charges 

and/or dihedral parameters. Lastly, we test whether the representation of MM solvation in ff19SB 

training will impact the eventual dihedral parameters. 

 

3.3.1 Comparing backbone rotational energies between Ala 

tetrapeptide and Ala dipeptide 

Choice of model systems is crucial in force field training. Enabled by greater computer 

power, this has led to fitting FF parameters against large peptides. The transferability gets 

improved this way since the training model more closely reflect the situations in which the 

parameters will be applied. The protein backbone φ and ψ dihedral parameters can alter the energy 

profiles for bond rotations, and thus influence secondary structure preferences and loop 

conformations. These have been frequently revised over the years based on observations of 

secondary structure biases in prior models47. While early FFs used capped single amino acids 
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(dipeptides) to train the backbone, our ff99SB2b FF used tetrapeptides, allowing φ and ψ 

parameters to be trained in a context of conformational diversity of neighboring amino acids in a 

longer peptide. The improvement was significant, and ff99SB has been widely adopted. Another 

reason of using tetrapeptide in ff99SB is gas-phase QM was used as reference data and tetrapeptide 

can form helices and thus have helical minimum. The barrier height from tetrapeptide in gas-phase 

hence becomes meaningful when adjusting dihedral parameters during fitting. In ff19SB, in-

solution QM was used and the energy surface of dipeptide has minimum in α-basin due to the 

aligned dipole being stabilized by interacting with solvent dipole (Figure 2.9). The dipeptide is 

also the largest peptide that enable entire φ/ψ dihedral scan and provide training structures in the 

full backbone dihedral space. Both of these make dipeptide amenable for dihedral fitting in ff19SB.  

However, switching from tetrapeptide to dipeptide, we are interested in knowing the 

sensitivity of force field to the training model, and retrospective about the advantage of using 

tetrapeptide back in 20062b. Our major concern with dipeptide is, even with in-solution QM data, 

if the energy surface is hypothetically not representative of dipeptide in big biomolecule form with 

neighboring contexts, the dihedral parameters derived from dipeptide will be poorly transferable 

to big biomolecules. Therefore, we designed two model systems to study the 2D energy surface of 

Ala in tetrapeptide (Ace-Ala-Ala-Ala-Nme) with two different context, with first and second Ala 

being in either ppII or α conformation. We compared the CMAP derived from the two tetrapeptides 

with dipeptide CMAP, and also tested whether dipeptide CMAP can be transferable to the two 

tetrapeptides. 2D backbone rotation scan was done for the third Ala in tetrapeptide form (Ace-Ala-

Ala-Ala-Nme), followed by restrained minimization and energy evaluation with implicit solvent 

for QM and MM. During scanning and optimization, both first and second Ala were restrained to 

either ppII or α conformation. This was designed on purpose so that the tetrapeptide can form a 

helical turn (by forming intermolecular H-bond) when both first and second Ala are adopting α 

conformations, while doesn’t form helical turn when both first and second are adopting ppII 

conformations. 

Backbone φ/ψ rotational energy profiles were analyzed for QM, MM and CMAP for the 

third Ala in tetrapeptide. The CMAPs were derived by subtracting total MM from total QM 

energies on the 2D grid (see 2.3.5 CMAP fitting). As shown in Figure 3.2, the QM energy profiles 

between dipeptide (Figure 3.2I) and tetrapeptide with ppII restraints (Figure 3.2A) are very 

similar at negative φ values, but quite different at αL basin. This is likely because the first and 
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second Ala (both in ppII conformations) form favorable short-range interactions with the backbone 

of third Ala in αL conformation (Figure 3.1), but the interaction doesn’t exist or is not strong when 

the third Ala has negative φ value. In dipeptide, this is not observed because of lack of neighboring 

chemical context. The QM energy profiles between dipeptide and tetrapeptide with α restraints 

(Figure 3.2E) are quite different in αR basin because tetrapeptide can form helical structure when 

the third Ala is also in α conformation and it is energetically more favorable than solvated 

dipeptide. In ff14SB+GBSA, the overall energy profiles are very similar between dipeptide 

(Figure 3.2F) and tetrapeptide with ppII restraints (Figure 3.2B). However, in tetrapeptide with 

ppII restraints, the QM energy in αR is higher than αL, and the trend is reversed in dipeptide QM 

(Figure 3.2A vs. Figure 3.2I). This is likely because of the first two Ala adopting ppII 

conformation and having medium-range interaction with the third Ala. In tetrapeptide with ppII 

restraints MM, the αR is lower than αL. The energy issue might arise from non-bonded interaction 

error or solvation error between QM and MM. The helical minimum is observed in MM for 

tetrapeptide with α restraints (Figure 3.2E). But the shape of α-basin is different from QM and is 

highly symmetric with little φ/ψ coupling, due to the uncoupled cosine terms in backbone dihedral 

modelling. In general, the shape and location from QM are poorly reproduced by ff14SB for Ala 

tetrapeptides with either ppII or α restraints.  

 

 

Figure 3.1 The structure of Ala tetrapeptide with first and second Ala in ppII and third Ala in αL. 

The distance between C=O on second Ala and N-H on NME is labeled. 
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Figure 3.2 The third Ala of Ala tetrapeptide (first and second being ppII conformation) 

Ramachandran energy (kcal/mol) surfaces calculated in (A) QM+SMD, (B) ff14SB+GBSA, (C) 

CMAP (the difference between A and B) and (D) ff19SB+GBSA. The third Ala of Ala tetrapeptide 

(first and second being α conformation) Ramachandran energy (kcal/mol) surfaces calculated in 

(E) QM+SMD, (F) ff14SB+GBSA, (G) CMAP (the difference between E and F) and (H) 

ff19SB+GBSA. Ala dipeptide Ramachandran energy (kcal/mol) surfaces calculated in (I) 

QM+SMD, (J) ff14SB+GBSA, (K) CMAP (ff19SB CMAP) and (L) ff19SB+GBSA. All energies 

were zeroed relative to the lowest energy in the ppII region (defined in Table 2.6). The values 

above the color bar range are depicted in dark red. Solid, labeled contours indicate integer energy 

values in kcal/mol, whereas dashed contours indicate half-integer energies. The bicubic spline 

interpolation implemented in Python was used to calculate values between grid points. 

 

The CMAP correction from dipeptide (Figure 3.2K) is overall similar to CMAP derived 

from tetrapeptide with α restraints (Figure 3.2G). Especially in α basin, the contours in both 

correction maps are very similar which indicate whether or not to include H-bond (whether 

dipeptide or tetrapeptide with α restraints) in training model has little effect on the resulted CMAP. 

In the CMAP derived from tetrapeptide with ppII restraints (Figure 3.2C), the αL basin is notably 

over-stabilized comparing to dipeptide CMAP. The interaction between amide N on the NME 

capping group and carbonyl oxygen on the second Ala is medium-range with distance around 3.5 

Å. There is a big disagreement between in-solution QM and MM energy for that region (αL region 
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in Figure 3.2A&B). It is likely because of the non-bonded errors in MM including vdW, 

electrostatics and maybe GB solvation. Therefore, using this model system in training is risky 

because the observed errors are highly dependent on the context of the structures, here as, ppII 

conformation for both first and second Ala. When the geometry of the first and second Ala 

changes, the discrepancy between QM and MM would become smaller in αL basin (such as when 

first and second Ala are in α) but might show up in other areas of the energy surface. The 

complicated characteristics of tetrapeptide makes it hard to be a ideal training model for CMAP 

training. 

We further calculated average REE (equation 3.1) between dipeptide CMAP and 

tetrapeptide CMAP with α restraints and ppII restraints. Since big discrepancy between CMAPs 

exist in the αL basin, we only considered energy surface at φ < 0°. For structures having negative 

φ values and having QM energy within 10 kcal/mol above the minimum, the average REE between 

dipeptide CMAP and tetrapeptide CMAP with α restraints is 0.78 kcal/mol, the difference between 

dipeptide CMAP and tetrapeptide CMAP with ppII restraints is 0.40 kcal/mol. 

Based on both energy surfaces and quantitative analysis, we conclude that the variation of 

CMAP to model systems (dipeptide and tetrapeptide) is seemingly low. Therefore, the 

transferability of Ala CMAP in ff19SB (derived from dipeptide) to tetrapeptide should be 

reasonably accurate in theory. The energy profile of ff19SB+GBSA on the two tetrapeptides were 

also calculated (Figure 3.2). They are qualitatively agreeing better with QM profiles than ff14SB. 

To quantify the agreement, we further calculated average REE between QM (with SMD) and MM 

(ff19SB+GBSA) for tetrapeptides with both α and ppII restraints as a function of QM energy range 

above the minimum (similar calculation in Figure 2.16). Based on results, the ff19SB model works 

reasonably well for both tetrapeptides with average REE below 0.8 kcal/mol even at high QM 

energies. The first peak in ff19SB tetrapeptide ppII profile (Figure 3.3 right) results from the 

arbitrarily low QM energies in αL region (see Figure 3.2A). These data provide rigorous test on 

transferability of ff19SB on molecules bigger (tetrapeptide) than training model (dipeptide), and 

can form actual secondary structure comparing to absence of secondary structure in training model. 

The agreement between QM and ff19SB proves that dipeptide serves as a reasonable model system 

when combined with the other assumptions made in ff19SB training such as including entire 

dihedral space of structures, use of “perfect” fitting function CMAP and employing in-solution 

QM data as reference. 
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Figure 3.3 The average REE between QM and ff14SB (blue), QM and ff19SB (orange) for 

tetrapeptide with α (left panel) and ppII (right panel) restraints as a function of QM energy range 

above the minimum. 

 

3.3.2 Improved reproduction of QM energy with ff14SB and modified 

1-4 scaling factor  

  The Val dipeptide was used to investigate 1-4 scaling factor due to its small size overall and β-

branched side chain. The scaling factor including 1-4 vdW and 1-4 electrostatics are used to 

empirically correct for short-range non-bonded interaction between atoms separated by three 

covalent bonds, and used to compensate for dihedral potential errors. As shown in Figure 3.4, the 

1-4 distance is strongly associated with dihedral angle. Thus the scaling of 1-4 non-bonded 

interaction could highly change the torsion potential. Due to the simplicity of Lennord-Jones 

potential and the use of fixed-point charges together with Coulomb's law, these 1-4 scaling factors 

are practically useful to weaken the short range interactions. However, both 1-4 vdW and 1-4 

electrostatics are empirically applied to any four consecutive heavy atoms regardless of the local 

chemical environment. The error of 1-4 scaling could vary as the bond rotates and local chemical 

environment changes, and the optimal value of 1-4 scaling factor has never been exhaustively 

tested on multiple conformations. 

 



 

126 

 

 

Figure 3.4 The Ramachandran map on 1-4 distance for Val dipeptide in trans rotamer (top row) 

and gauche(-) rotamer (bottom row). 

 

In order to investigate the errors of 1-4 scaling on multiple dipeptide conformations, we 

tested the optimal combination of 1-4 vdW and 1-4 electrostatics by performing two-dimensional 

1-4 scanning on the 576 Val dipeptides for both trans and gauche(-) rotamers. Val was chosen 

since it is β-branched and can form short-range intermolecular interactions between side chain and 

backbone. The error of MM against QM is quantified by the average relative energy error (REE) 

over structures that were scanned in full φ/ψ dihedral space. Only structures having QM energy 

within 10 kcal/mol above the minimum were included to avoid the artifacts of high energy 

structures on the error analysis. As shown in Figure 3.5, the optimal 1-4 scaling factors lie in a 

region that is higher than the by default value in Amber (2.0 for scnb and 1.2 for scee) for both 

trans and gauche(-) rotamer. Since the MM is defined as ff14SB00+adjustable scee&scnb and the 

backbone dihedral parameters of MM are in fact set to 0 in all the error calculation, the 

disagreement between QM and MM reflects isolated error in 1-4 scaling factor rather than the 

combined error of 1-4 scaling factor and dihedral parameters. The shift of the minimum in Figure 

3.5 to bigger values might indicate overestimated repulsion in short-range for ff14SB. The 
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minimum for trans rotamer is when scnb=2.8 and scee=1.6 and the minimum for gauche(-) 

rotamer is when scnb=2.8 and scee=1.4.  

 

   

Figure 3.5 The average REE of Val dipeptide between QM and MM in 2D scanning 1-4 scnb (X-

axis) and 1-4 scee (Y-axis) for (left) trans rotamer and (right) gauche(-) rotamer. Only structures 

having QM energy within 10 kcal/mol above the minimum were included in the error calculations. 

The average REE with the by default 14scee (1.2) and 14scnb (2.0) in Amber was labeled as golden 

star.  

 

We replaced the default values with the optimal ones (scnb=2.8 and scee=1.4) shown in 

and combined them with the original ff14SB00 to create the force field ff14SB00_new 

(ff14SB00+scee+scnb). We re-calculated average REE between QM (with SMD) and MM 

(ff14SB00_new+GBSA) for both trans and gauche(-) as a function of QM energy range above the 

minimum (similar calculation as used in Figure 2.16) shown in Figure 3.6. We compared 

ff14SB00_new with the original ff14SB00. As shown in Figure 3.6, the error is slightly smaller 

with ff14SB00_new in general, especially for trans rotamer at high QM energy (>5 kcal/mol). The 

energy profiles are very similar between ff14SB00 and ff14SB00_new for gauche(-) rotamer and 

subtle improvement is observed with the modified 1-4 scaling factors, likely because steric clash 

happens less frequently in φ/ψ dihedral space when gauche(-) is adopted. 
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Figure 3.6 The average REE between QM and ff14SB00, QM and ff14SB00_new (14scnb=2.8, 

14scee=1.4) as a function of QM energy range above the minimum for Val dipeptide in (left) trans 

rotamer and (right) gauche(-) rotamer. The blue curves are ff14SB00 and the green curves are 

ff14SB00_new. 

 

Due to the fact that Val dipeptide is such a small system with non-polar β-branched side 

chain, we expect the 1-4 vdW is more sensitive than 1-4 electrostatics to the overall potential 

energy. Based on our preliminary data, the difference between QM and MM is mildly dependent 

on the choice of empirical 1-4 scaling factors. Other short-range interactions such as 1-5 (between 

Cγ and carbon on amide carbonyl) and 1-6 (between Cγ and oxygen on amide carbonyl) 

interactions might also contribute to the discrepancy between QM and MM and need further 

investigation. Previous studies have shown that 1-4 scaling factor is sensitive to the conformational 

equilibrium between secondary structures141, and a reduced scaling factor might be beneficial for 

protein folding. However we provide contradictory results that exaggerated 1-4 scaling factors 

(14scnb=2.8, 14scee=1.4) can mildly improve the agreement between force field and QM energies 

(approximately by 0.25 kcal/mol). Our preliminary investigation on 1-4 scaling factor was done 

with small non-polar peptide (Val), and our proposed favorable modification to scaling factors 

may not be transferable to other amino acids having charged or polar side chains. Besides, further 

extensive MD simulations in polypeptides are also necessary to validate our findings. 
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3.3.3 Helical propensities worsen for charged amino acids with 

updated partial charges in ff14SB 

 In ff14SB, the backbone partial charges are different between non-charged amino acids 

(Gly, Ala, Val, Thr, etc) and charged amino acids (Asp, Glu, Arg, Lys and double-protonated His), 

and the backbone dihedral parameters are shared broadly among all of the amino acids. In this 

case, the same dihedral parameters are applied to segments (defined using four consecutive atom 

types) that have different partial charges. A single dihedral term is unlikely to be an equally 

accurate correction in situation where the charge distribution is different. The overly broad 

application of dihedrals is a significant inconsistency and weakness in current models. To 

overcome this, we can either differentiate dihedral parameters or make charge/dihedral consistent 

by equalizing the charge distribution. In ff19SB development, we are certain that diversified 

amino-acid specific backbone parameters are required to achieve better force field model (see 

Chapter 2). Thus, we employed amino-acid specific dihedral parameter (CMAP) to better model 

the backbone profiles of 20 amino acids. However, with employing CMAP and retaining old 

partial charges, the errors which the CMAP is actually correcting for might arise directly from the 

error of partial charges and the change of error of partial charges across amino acids. If the error 

of partial charge and the inconsistency between partial charge and dihedral in ff14SB is the source 

of error, then fixing partial charges in ff14SB might be more meaningful. Our assumption here is 

the backbone partial charges and backbone dihedral parameters should be both same across amino 

acids, and the amino-acid specific behavior is only modelled by side chain parameters and non-

bonded parameters. 

Based on our helical propensity results (2.4.5 Amino-acid specific helical propensities 

are significantly improved in ff19SB), we observed the overestimation of helical propensity for 

charged amino acid such as Asp and Glu in ff14SB and both are outliers relative to the rest of 

amino acids regardless of in TIP3P or OPC (Figure 2.25). The backbone charges of Asp and Glu 

are different from the non-polar amino acids because of the assumption made decades ago that 

charge distribution of charged side chain has notable and different effects on backbone charge 

distribution against non-charged ones. However, as mentioned, this assumption could be wrong, 

and it is okay having the same backbone charges for all amino acids and same backbone dihedral 

parameters for all amino acids. In addition, the H-bond stability is greatly affected by the 
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magnitude of backbone charges that model how strong the dipole moment of amide is. In ff19SB, 

instead of revising this assumption, we updated backbone dihedral parameters for each amino acid 

without changing backbone partial charges. The results show that Asp and Glu are no longer 

outliers and are well correlated with experimental data (Figure 2.25). We suspect there is error of 

cancellation and the charge errors in Asp/Glu are compensated by CMAP unintentionally. 

Best et al.32 revisited the charges and refit partial charges of Cα and side chain atoms on 

charged amino acids (D, E, K, R) while forcing the charges on amide N, H, C, O to have same 

values as all the other residues. They reported helical propensity benchmarks for 20 amino acids, 

showing that the overall trend from experiments72 was better reproduced by the new force field 

ff99SB*_ILDN_Q. The refitting of partial charges was performed with the old force field 

ff99SB*_ILDN31 in which several iterations of parameter tweaking was done to improve model 

matching to NMR chemical shifts and J-coupling data. In ff14SB, we systematically improved the 

side-chain parameters and the training is more rigorous. Therefore, we revisit same assumption as 

Best et al. years ago by examining the errors of backbone partial charges of the outliers Asp and 

Glu and their effects on helical propensity, but with the context of ff14SB.  

Following Best et al.’s protocol, we unset the backbone charges to the same ones as in Ala 

and refit side chain for Asp and Glu (see 3.2.3 Refitting of atomic partial charges). We combined 

the new charges of Asp and Glu with the original ff14SB and made a new force field ff14SB_Q. 

The helical propensity simulations were reran with ff14SB_Q+OPC and were compared against 

original ff14SB+OPC simulations. The OPC is used since it better models solvation than TIP3P. 

As shown in Figure 3.7, the helical propensity of Glu decreases with ff14SB_Q+OPC and agrees 

better with NMR data, while the helical propensity of Asp increases with ff14SB_Q+OPC and 

deviates more from the NMR data. The change of helical propensity with new charges indicate 

that the magnitude and distribution of partial charges are quite sensitive to the helical propensity. 

And the contradictory results (Asp vs. Glu) indicate that more consistent and rigorous charge 

refitting is necessary. Best et al’s 32 refitting is not consistent across amino acids in terms of 

dihedral fitting, etc, and in ours, both charges and dihedral parameters match Ala. But our training 

is still not rigorous due to lack of dihedral refitting with the updated partial charges.  

To improve the consistency of partial charges and dihedral parameters, we refit CMAP for 

Asp with new charges (same to ff14SB_Q) and created a new force field ff14SB_Q_CMAP 

following the protocol in 2.3.5 CMAP fitting. We simulated A4DA4 with the new force field and 
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fit helical propensity for Asp (Figure 3.7). There is no difference between ff14SB_Q_CMAP and 

ff19SB even though both partial charges and CMAP are different between the two force fields. 

Based on the improvements of Glu on helical propensity, we believe there is room for 

improvements on the old Amber partial charges (especially charged amino acids) that were 

developed decades ago8. The improvement of Asp is not significant. The interplay between partial 

charges and dihedral parameters on Asp could be more complicated than Glu because of the shorter 

Asp side chain and stronger electrostatic interactions. In the future, systematic refitting on 

backbone partial charges followed by backbone dihedral refitting is necessary to fundamentally 

improve the accuracy of the force field. 

 

         

Figure 3.7 Correlation between helical propensities w from experiment72 and simulations using 

(left) ff14SB+OPC (blue dots) and ff14SB_Q+OPC (orange stars), (right) ff19SB+OPC (blue 

dots) and ff14SB_Q_CMAP+OPC (green square). Amino acids are indicated using single letter 

codes. Values on the X-axis represent the data based on NMR72 and the reported standard 

deviations. Values on Y-axis represent the helical propensities fit against the combined trajectory 

(3.2 μs * 12, blue dots), with error bars calculated via bootstrapping analysis. No error bars are 

reported for ff14SB_Q+OPC and ff14SB_Q_CMAP+OPC data. Black lines represent perfect 

agreement. Linear regression (red lines) was performed against the data points (only blue dots), 

with R2 and slope quantifying the goodness of fit. 
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3.3.4 ff19SB training is insensitive to MM solvent model for dipeptide 

One possible weakness to our approach in ff19SB development was the use of simple 

implicit water models during training, such as the GB model in the MM component. Older GB 

models exhibit secondary structure biases for longer peptides139, but here we have used our 

GBneck2 model92 that much more accurately reproduces secondary structure preferences. 

Furthermore, we have shown that the solvation energy of dipeptides (which we used here for the 

CMAP training in GB) is largely insensitive to specific GB model used140. The assumption is 

reasonable in general. But our use of GB during training could still be a limitation, and it is one 

reason we carried out extensive testing with a variety of explicit water models. In this section, we 

revisited this assumption in ff19SB development, on using the combination of QM+SMD and 

GBneck2 + SASA for CMAP training. This assumption was made to address the inconsistency 

issue in dihedral fitting and partial charge fitting in the previous force fields. The GBSA model 

was used in MM calculation to cancel out the solvation energy in SMD. The cancelation is a must 

to avoid including solvation errors in the backbone parameters (see 2.3.3 Molecular mechanics 

(MM) optimization and energy calculations). However, there is no evidence to rigorously prove 

that the solvation energy is exactly cancelled out with our QM/MM combination in ff19SB training 

even though SMD and GB use similar theory (Onsager model148 and Born model149) in solvation 

calculation and are mathematically equivalent according to previous study150. More tests are 

required to show the variation of MM solvation and its sensitivity to CMAP. 

We performed additional calculations to explore the variation and sensitivity of the MM 

solvation model. We tested out several solvent models in MM by calculating solvation energies 

and comparing across them. The difference among them is quantified as well. As shown in Figure 

3.8, the energy profiles look highly similar across different solvent models including implicit and 

explicit models. The solvation energy in explicit solvent was obtained by doing TI calculations 

which is sufficiently rigorous and accurate. The relative energy errors are shown in Figure 3.10. 

The four implicit solvent models including GB models (GBOBC, GBn and GBneck2) and two PB 

models (PBb3 that use GBneck2 radii mbondi3, and PBtl that use Tan and Luo’s radii145) are quite 

similar to each other with average REE (see 3.2.4 MM solvation calculations) <=0.3 kcal/mol, 

Interestingly the difference between implicit solvent models and explicit solvent models (TIP3P 

and OPC) are ~0.45 kcal/mol. The system tested here is small dipeptide which is largely solvent 

exposed and does not form secondary structures such as helices and strands and hence insensitive 
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to the solvent model. The closest model to GBneck2 is PBb3 (0.15 kcal/mol). This is reasonable 

since GBneck2 and PBb3 calculations use same intrinsic radii (mbondi3) and GBneck2 was 

initially trained to partly reproduce PB parameters92.  

 

 

Figure 3.8 Ala dipeptide Ramachandran solvation energy (kcal/mol) surfaces calculated in (A) 

GBOBC, (B) GBn, (C) GBneck2, (D) PBb3 (mbondi3), (E) PBtl (Tan and Luo’s radii), (F) TIP3P 

and (G) OPC. All energies were zeroed relative to the energy in the ppII conformation (φ=-60° 

and ψ=150°). The values above the color bar range are depicted in dark red. Solid, labeled contours 

indicate integer energy values in kcal/mol, whereas dashed contours indicate half-integer energies. 

The bicubic spline interpolation implemented in Python was used to calculate values between grid 

points. 
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Figure 3.9 Ala dipeptide Ramachandran ff14SB energy + solvation energy (kcal/mol) surfaces 

calculated in (A) GBOBC, (B) GBn, (C) GBneck2, (D) PBb3 (mbondi3), (E) PBtl (Tan and Luo’s 

radii), (F) TIP3P and (G) OPC. All energies were zeroed relative to the energy in the ppII 

conformation (φ=-60° and ψ=150°). The values above the color bar range are depicted in dark red. 

Solid, labeled contours indicate integer energy values in kcal/mol, whereas dashed contours 

indicate half-integer energies. The bicubic spline interpolation implemented in Python was used 

to calculate values between grid points. 

 

 

Figure 3.10 Heat map of Ala dipeptide on relative solvation energy error (REE) (kcal/mol) among 

different solvent models for 576 conformations in full backbone dihedral space. 
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Given the high similarity among GB variants and PB variants, and between implicit solvent 

model and explicit solvent model, we believe the assumption made in ff19SB is still reasonable. 

The magnitude of MM solvation to the overall ff19SB training is below 0.4 kcal/mol, and even 

smaller (0.2 kcal/mol) when structures having ff14SB+GBneck2 energies higher than 10 kcal/mol 

are removed. This error is relatively small comparing to the uncertainties in the other parts of 

ff19SB training such as rotamer dependency and grouping of CMAP fitting. 

 

 

 

 

 

 

3.4 Conclusion 
 

In this chapter, we further investigate the physical cause of errors that are corrected by 

CMAP of ff19SB. Because dihedral parameters such as CMAP are fit to make up for the total QM 

energy profile, by improving other terms in the force field we could fundamentally improve the 

dihedral potential. The force field ff14SB was used as reference since ff14SB was also set as 

reference in ff19SB training. We explored several possibilities of source of error in ff14SB model 

without backbone dihedral terms, including hydrogen-bond, 1-4 scaling factor and partial charges. 

The backbone dihedral parameters were removed (ff14SB00, defined in Table 2.2) to isolate the 

problem. Lastly, one of the major assumptions in ff19SB training was revisited on using GBneck2 

in MM solvation calculation. We quantified the energy difference among variants of MM solvation 

models. Based on our preliminary results, we conclude that: 1. The hydrogen bond stability is 

reasonably accurate in ff14SB/ff19SB. 2. A modification to the 1-4 scaling factors can improve 

QM/MM agreement by at most 0.2 kcal/mol. 3. There is still room of improvements on the old 

Amber partial charges but systematic refitting of both partial charges and dihedral parameters are 

required. 4. The MM solvation is insensitive to the CMAP training in ff19SB. 
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Chapter 4  

 

 

 

 

 

 

Future directions 

 

 

 

 

 

  

The biomolecular force fields have made significant progress in biophysical simulations in 

the past decades. A list of recent reviews on force field advances could be referred151. The goal of 

this dissertation is to significantly improve force field for biomolecular simulations. I have shown 

that in the updated ff19SB protein force field presented in Chapter 2, we have developed new 

backbone dihedral parameters with amino-acid specific CMAP functions. We trained the 

parameters to match solution phase QM data using full 2D φ/ψ scans, instead of the gas-phase 

minima used for training uncoupled φ and ψ cosine terms in ff99SB. Use of energies calculated 

from QM in solution provides better consistency with the pre-polarized partial atomic charges used 

by the MM model, as compared to gas-phase energies that were used previously. Fitting of dihedral 

corrections against QM in solution also allows the model to incorporate (to some extent) 

conformation-dependent polarization energy that is not present explicitly in a fixed-charge MM 

model such as the one used here. A total of ~6 milliseconds MD simulations in explicit solvent 

were performed to extensively validate ff19SB against experiments. We have observed that 

ff19SB, when combined with a more accurate water model such as OPC, should have better 

predictive power for modeling sequence-specific behavior, protein mutations, and also rational 

protein design. The ff19SB model provides immediate benefit to improving the overall accuracy 
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of energy function, however, additional adjustments on ff19SB, especially on CMAP parameters 

are necessary to fine tune the model and further improve the model. 

In Chapter 3, I further investigate the physical cause of errors that are corrected by CMAP 

in ff19SB. The potential rooms for improvements in the rest of the force field were identified and 

quantified. I explored several possibilities of source of error in ff14SB00 (ff14SB model without 

backbone dihedral terms) including hydrogen-bond, 1-4 scaling factor and partial charges. One of 

the major assumptions in ff19SB training, using GB model for MM solvation, was revisited by 

quantifying the energy difference among variants of MM solvation models. We conclude that the 

force field is expected to be improved if the long-standing weaknesses in non-bonded parameters 

can be revised. However, systematic retraining and extensive testing are required for the terms that 

are dependent on non-bonded parameters such as backbone and side-chain dihedral parameters.  

The other major issue is that the overly broad application of atom types lead to significant 

inconsistency and weakness in current models. This is caused by using atom type. For example, 

the partial charges were trained for each amino acid based on a few selected conformations of 

dipeptides. The dihedral parameters were not as diversified as partial charges. In ff19SB, every 

amino acid has its own backbone dihedral parameters but side chain parameters are still shared 

among amino acids having different side chain charges (see ff14SB paper2c). The partial charges 

and dihedral parameters were trained against different QM level of theory as well. We hope to 

address these inconsistency by having a consistent FF training protocol: (1) Train partial charges 

and dihedral parameters (side chain and backbone) against same model system dipeptide for each 

amino acid separately. (2) Use same QM level of theory for both ESP and energy calculation. In 

the meanwhile, this will overcome the issue of using inconsistent QM reference data for partial 

charges and dihedral parameters in all previous AMBER force fields.  

Based on our preliminary results, the partial charges are highly dependent on conformation 

(Figure 4.1). Therefore, the dihedral fitting should be done with considering the sensitivity of 

partial charges to conformation. Two protocols are given below. In protocol 1, the dihedral fitting 

was done for each amino acid with conformation-dependent charges rather than single amino-acid 

specific partial charges. Multi-dimensional QM scan will be performed on the model system and 

two sets of reference data will be first obtained for each conformation: ESP and total QM energy. 

For each conformation, the partial charges will be fit following RESP scheme. The dihedral fitting 

will be first performed based on QM energies and MM energies with conformation-dependent 
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partial charges (the first fitting error, quantifying QM/MM energy disagreement). Then the 

resulted dihedral parameters will be evaluated with one chosen set of partial charges to check if 

the QM profiles can be reproduced equally well (the second fitting error, quantifying QM/MM 

energy disagreement). The difference between first and second fitting error is that the first is 

evaluated with conformation-dependent partial charges while the second is evaluated with one 

single set of partial charges. The selection of partial charges depends on the distribution of partial 

charge sets (collected from all conformations) and the second fitting error. Theoretically, the most 

populated partial charges should give lowest second fitting error and be used for MD.  This 

consistent training will be performed for each amino acid separately, and the partial charges and 

dihedral parameters will be equally broadly applied to each amino acid. Both partial charges and 

dihedral parameters will be amino-acid specific and derived from consistent training in amino-acid 

specific manner. The equations used for fitting are as following: 

𝑂 =  
2

𝑁(𝑁−1)
∑ ∑ [(𝑄𝑀𝑖 − 𝑄𝑀𝑗) − (𝑀𝑀(𝐸𝑒𝑙𝑒 , 𝐸𝑑𝑖ℎ)𝑖 − 𝑀𝑀(𝐸𝑒𝑙𝑒, 𝐸𝑑𝑖ℎ)𝑗)]𝑁

𝑗>𝑖
𝑁−1
𝑖   (4.1), 

where N is the number of conformations for a particular amino-acid type in dipeptide form (ACE-

X-NME), MM energy is dependent on both the selected force field and also adjustable Eele and 

Edih. For each conformation i, the MM is calculated as: 

𝑀𝑀(𝐸𝑒𝑙𝑒, 𝐸𝑑𝑖ℎ) = 𝑀𝑀0 + 𝐸𝑒𝑙𝑒(𝑞𝑖) + 𝐸𝑑𝑖ℎ(𝜑1, 𝜑2 … )     (4.2), 

where Eele is the electrostatic energy calculated using Coulomb’s law and atom-centered partial 

charges, Edih is dihedral energy calculated using cosine functions and/or CMAP functions with 

adjustable dihedral parameters. MM0 is calculated with the remaining FF terms including bonds, 

angles, etc. qi is partial charge fit against the conformation i using RESP scheme. φ1, φ2 … are the 

dihedral values for conformation i. The objective function O will be optimized by adjusting the 

parameters used in Edih calculation.  

In protocol 2, the dihedral fitting will be performed with each set of partial charges (gained 

from fitting to each conformation) separately. The dihedral parameter + partial charges 

combination that gives lowest fitting error will be eventual force field parameters and used for 

MD. 
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Figure 4.1 The magnitude of partial charges on amide C=O bond (left) and N-H bond (right) for 

each Ala dipeptide conformation. The RESP charges were fit for each conformation separately 

against the ESP obtained from M05-2X/6-311G**/SMD calculations. 

 

An important component of force field development is extensive validation against data 

outside that used for training. In ff19SB, we performed a total of ~6 milliseconds MD simulations 

in explicit solvent to extensively validate force field parameters against experiments. A variety of 

test systems are included such as NMR scalar coupling data of short peptides, NMR S2 parameters 

of folded proteins, chemical shift of polypeptides and PDB statistical data. However, additional 

testing results are always helpful for force field development. Negative results are often more 

informative than successes since they help pinpoint weaknesses and opportunities for model 

improvements.  

One of the longstanding challenges in classical MD simulations is to predict the less well-

defined intrinsic disordered peptides and proteins (IDP). Several recent force fields including 

Charmm36m3d and a99SB-disp40d have managed to extensively train force field parameters to 

better reproduce IDP data such as structural population and NMR, in the meanwhile minimizing 

errors on well-defined folded simulations. This makes parameter optimization a complicated 

process and the resulted parameters that were intentionally optimized to reduce errors for both 

folded and unfolded data are in fact not working well for either one. This is also difficult since the 

IDP is more sensitive to water model than solute FF and a rigorous FF training might need good 

deconvolution of the solvent model from the solute FF. We will continue test our AMBER force 

fields including ff19SB and its potential variants against disordered proteins. Some groups have 

reported comparisons of IDP simulations to experiment with a variety of force field models3d, 40d, 

87a, 87c, 152 and we could compare to these to assess improvements of our new model. 
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