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Abstract of the Dissertation 

Enhanced Backbone Dihedral Parameters for Protein Simulations 

by 

Carmenza Martinez 

Doctor of Philosophy 

in 

Chemistry 

Stony Brook University 

2014 

Molecular Dynamics (MD) and Monte Carlo (MC) simulations of biomolecules have 

become a supportive tool to experimental methods for structure refinement, protein folding, drug 

discovery and many more applications. This is due to the increase in computational power and 

necessity of finding a method capable of describing the forces at work in chemical systems 

without the need to do extensive quantum calculations. All of these are possible because of the 

classical definition of the potential force field function. 

 

The force field function is essential to perform MD simulations, since this equation 

carries the physical description of the molecules being studied. Therefore, it is imperative to have 

a realistic force field. One of the most popular force field functions for the study of biomolecules 

is AMBER ff99SB. According to web of science, as of 2013 it has been referenced more than a 

thousand times. This popularity results from ff99SB’s substantial agreement with NMR and X-

ray crystallographic experimental findings. 

 

However, ff99SB is not perfect; there have been well-documented areas in which is in 

need of improvement. For example, helical propensities of transiently helical peptides are not 

being sampled nearly as much as suggested by experiments. The agreement between NMR 

observables for poly-alanine peptides and simulations needs to be further improved; as the 

results from simulations deviate from what is reported from experiment and agreement with 
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poly-alanine vicinal scalar couplings has become one of the qualities for which force fields are 

commonly being evaluated. 

 

The backbone dihedral parameters were fitted to Quantum Mechanical (QM) energies of 

glycine and alanine tetra-peptides in AMBER ff99SB, as these tetra-peptides can helically 

hydrogen bond but isolate backbone effects from side-chains. Glycine and alanine populations 

better matched the Protein Data Bank (PDB) after this refinement. However, the dihedral maps 

did not match perfectly for each of the secondary structure regions of the Ramachandran map; 

indicating that there is still a gap between the results of QM calculations and what is observed in 

nature. This is because the secondary structure propensities of proteins in solution are governed 

by physical properties that cannot be completely reproduced by QM calculations of small 

homologous peptides in vacuum.  Thus, it is necessary to empirically modify the energy function 

in order to overcome these limitations. 

 

In this work, we present a set of modifications to ff99SB force field backbone dihedral 

parameters, in particular to the φʹ, ψ and ψʹ corrections. Our goal was to further improve the 

agreement between results from simulations with backbone scalar couplings for poly-alanine 

peptides and helical propensities for transiently helical peptides. Furthermore, it would be ideal 

that these modifications do not alter significantly the propensities of the force field for other 

secondary structure regions in the dihedral map.  

 

We generated thirty potential modifications that were tested for agreement with J scalar 

couplings for Ala5 and Val3. We tested whether the same force field could improve scalar 

couplings and helical propensities by simulating two transiently helical peptides. We additionally 

evaluated the behavior of the force field with β-like peptides. The stability of protein simulations 

was estimated by calculating NMR order parameters from proteins. One of the modifications 

denoted mod1φ had good agreement with most of the experimental standards tested; indicating 

that the changes to the energy function can be applied to simulations of systems with diverse 

secondary structure.  
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1. Introduction 
 

 

 

1.1 Difficulties experimental techniques face when studying protein dynamics 

 

 Experimental techniques have evolved significantly to study structure and function. 

Recent advances in crystallography, Nuclear Magnetic Resonance (NMR), electron microscopy, 

neutron and fiber diffraction have elucidated more than ninety thousand protein structures 

deposited in the Protein Data Bank[1]. This vast set of information has been essential in the 

development of novel therapeutics by discovering potential drug targets as well as helping to 

elucidate the role and functional mechanisms of many proteins for which this information was 

unknown before. However, this information is static and is the average of an ensemble of 

structures at a given time. The information allows for inference of how the protein behaves, yet 

the events that preceded the given resolved structure as well as the events that followed, remain 

mysteries.  

 

 Methods such as Atomic Force Microscopy (AFM)[2] are capable of measuring atomistic 

dynamics as they occur, nevertheless the slow rate of scanning can contribute to thermal drifting 

making the measurement of accurate distances between images inappropriate[3]. NMR dynamic 

studies can provide information on the internal motions of the protein by measuring specific 

bond interactions. Yet the information obtained is limited to the flexibility of the regions being 

studied and no significant structural evidence can be extracted[4].  

 

 Other methods that measure bond dynamics, like Two Dimensional Infrared spectroscopy 

takes advantage of the vibrational frequencies between bonds and how they interact with each 

other. The method is capable of measuring dynamics in the picosecond time scale and it is also 

able to determine the mechanisms between states. However the information provided requires 

interpretation in order to translate it into coordinates[5]. Hybrid methods such as fast relaxation 

imaging combine fluorescence microscopy and fast temperature jumps that allow observing how 
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changes in temperature affect cellular dynamics. Although cellular dynamics can be observed, 

the detailed atomistic information cannot be obtained from these methods[6].  

 

 Despite the advances in experimental techniques to obtain protein dynamics, there is still 

a gap that needs to be filled between structure and atomistic mechanisms. As described 

previously, current experimental methods must compromise in one area or more. Therefore, 

alternative methods have evolved in order to study these processes that can “model” proteins’ 

molecular mechanisms, though these modeling efforts often must use experimental structures as 

a “starting point” and must validate against available structural information to ensure reasonable 

predictions. 

 

1.2 Challenges in the study of protein dynamics through quantum mechanical methods 

 

 Quantum mechanical (QM) methods to study protein dynamics are currently limited by 

the size of the system. Even though computers have evolved to handle rigorous calculations, still 

the amount of atomic interactions and conformations in a large system like a protein is 

considerably large and currently not possible. QM calculations are currently possible on small 

peptides with limited conformations. The information provided is useful to determine physical 

properties of bonds, angles, dihedral information and helpful to build force field models to study 

protein dynamics.  

 

 Other methods such as ab initio molecular dynamics were conceived in order to be able 

to study large molecules and to implement quantum mechanical calculations to molecules in the 

liquid phase[7-11]. The method combines finite temperature dynamics with forces obtained from 

electronic structure calculations performed “on the fly” as the MD simulation proceeds [12]. 

Many events such as bond breaking/forming and electronic polarization are calculated within the 

accuracy of the electronic structure method used. It can also be expanded to include nuclear 

quantum effects by using the path integral approach[13, 14]. Ab initio molecular dynamics and 

ab initio path integral dynamics have been applied to a wide variety of problems such as liquid 

structure, acid-base chemistry, industrial/biological catalysis and materials[12]. 
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 Ab initio molecular dynamics have also been applied to bio-molecular simulations in 

order to calculate chemical shifts in drug-enzyme complexes[15], nucleic acids structure[16], 

design of bio-mimetics[17, 18] and dynamic studies of myoglobin[19, 20]. The results obtained 

from these studies previously listed were helpful to elucidate new mechanisms of function and 

clarified some of the experimental observations. 

 

  However, the method has limitations and one of them is the size of the system being 

simulated. In the case of ab initio molecular dynamics, the size of the system is around tens to 

hundreds of atoms in timescales of picoseconds [21-23]. The information obtained in these time 

scales is limited to bond vibrations which could be useful for comparison to Infrared (IR) 

spectroscopy. Nevertheless, events such as protein folding, ligand binding and domain dynamics 

happen in longer time scales.  Furthermore, in ab initio simulations the accuracy of the 

calculation is defined by the electronic method used [12]. Currently the most popular electronic 

method is the Kohn-Sham formulation of Density Functional Theory (DFT) in which the 

electronic orbitals are extended in a plane-wave basis set[12]. This method provides a reasonable 

electronic depiction of chemical environments. It is not mandatory to use this electronic method 

for simulations, since it is possible to use more empirical or more accurate electronic structure 

methods [24, 25]  as well as different basis sets for the calculation [26, 27]. Nevertheless, 

different electronic structure methods have different limitations, for instance the more accurate 

methods are more computationally expensive and slow. Other methods with lower levels of 

theory are more computationally feasible, however they are still slow; hence, the limitations 

given by the size of the system and the time scales obtained from the method make simulations 

of slow processes in proteins not practical at this moment. Other methods based on simpler 

classical approximations to atomistic mechanisms such as molecular dynamics simulations have 

been implemented for this purpose.   

 

 

1.3 Molecular dynamics and Monte Carlo simulations 

 

 Proteins are one of the main components of cells and have crucial functions in biological 

processes and the sustenance of life. Interestingly they are only constituted of twenty amino-
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acids that assemble into very complex and specific structures with very distinct roles in cellular 

processes. Understanding how proteins assemble into these structures is imperative to determine 

how the association of the amino-acids present in the sequence interacts to give each protein its 

role and native fold. Lack of this appropriate native fold usually results in protein degradation in 

order to prevent damage. The type of damage that is caused by mis-folding ranges from  protein 

aggregation to amyloid deposition and in certain cases even cell death[28]. Currently 

experimental methods have been developed in order to track folding intermediate states that 

reveal an intricate pathway to the native state from a vast range of potential alternatives[29]. 

 Protein folding can be studied through a wide variety of experimental methods, some 

mentioned here such as circular dichroism, nuclear magnetic resonance, X-ray crystallography, 

fluorescence spectroscopy and laser induced temperature jump spectroscopy. However, these 

methods are unable to provide sequential trajectory of global folding events[30]. Other methods 

like atomic force microscopy[31] have disadvantages such as the time required to obtain an 

image which in principle would be an average image of the ensemble at that particular point in 

time. Scanning electron microscopy can be expensive and require a large area only dedicated to 

the instrument has the disadvantage that artifacts can be found in the preparation of the samples 

and these artifacts cannot always be identified or eliminated. The samples must also be frozen in 

order to be studied[32].  

  Molecular dynamic simulations can supplement the results obtained from experimental 

methods by presenting a sequential trajectory of motion of the ensembles. This is possible by 

approximating the atomic motions in molecules to Newtonian equations of motion and 

implementing these into computational algorithms that allow for these types of calculations[33]. 

  Molecular dynamic studies have provided breakthrough in the field of protein folding 

such as the all-atom prediction of the folded state of a stable mini-protein[34]. They have also 

successfully reported a sequential course of protein motions that could not be obtained from 

experimental methods alone[35]. Other studies have been reported in detail about the reversible 

folding and free energy surfaces of two designed β-sheets in implicit solvent based on accessible 

surface area[36, 37] . The reported simulation time was in the order of several tenths of 

microseconds and the mini-proteins were reported to satisfy most of the NOE distance restraints 

seen from experiment. Although both proteins appear to follow different folding paths, the 



6 
 

authors concluded that the amino-acid sequence and the specific interactions between different 

side-chains determine the most plausible folding pathway [37]. MD simulations have also been 

implemented to study anomalous folding paths as in the case of amyloid formation where 

proteins mis-fold and aggregate. This effect in proteins and peptides alter their proper 

configuration and interactions causing formation of insoluble fibrils. These insoluble fibrils 

accumulate causing amyloidosis and have been linked to more than 20 human diseases among 

them type II diabetes. Neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease 

have also been linked to amyloid formation. Among some of the recent MD simulations reported 

the work by Berhanu et al. [38] described explicit solvent simulations of cylindrin β-barrel 

amyloid, a common motif in amyloid fibril structures. The authors investigated the effect of 

mutations of the hydrophobic core by replacing Val2 with other residues with different 

hydrophobic characteristics such as Leucine, Alanine and Glycine. The effect given by strong 

hydrophobic interactions from the Leucine mutation kept the strands in close proximity, 

maintaining the side-chain interactions, main-chain hydrogen bonds and the salt bridges along 

the weak out of register surface. The authors also identified water mediated interactions at the 

center of the hydrophobic cavity. Besides this handful of reports indicating contributions of MD 

simulations to the field of protein folding, there is a vast repertoire of publications in which 

folding and unfolding simulations of peptides and proteins have been reported [39-64]. These 

reports give proof that molecular dynamics can be a very useful tool in providing accurate 

statistical and analytical results that can help interpret some of the results obtained from 

traditional experimental methods for protein folding. 

 Molecular dynamics (MD) and Monte Carlo (MC) simulations have increased in 

popularity as computational power has increased. This is partially because other methods such as 

ab initio calculations require extensive quantum mechanical calculations of wave functions for 

each atom. As the size of molecules increases the amount of calculations increases as well, 

likewise requiring more computer power. Even with the increased speed and memory power in 

modern computers, ab initio calculations still remain computationally expensive and time 

consuming. 

On the other hand, the implementation of molecular mechanics to macromolecules like 

proteins and DNA has become routine. Proteins and DNA are of particular interest because of 
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their role in cell biology and disease, making them preferred targets for drug development and 

novel therapeutics [65-68]. Thus, MD and MC simulations have increasingly played a significant 

role in the interpretation of experiments, likewise serving as a tool to complement the results 

obtained. This can be appreciated in the growing application of MD/MC dynamics to structure 

refinement of NMR [69]and X-ray crystallographic data [70] as well as structure prediction [71]. 

At the moment MD/MC simulations in the nanosecond time scale are quite feasible 

allowing for direct assessment of the quality of simulations against hetero-nuclear NMR spin 

relaxation [72]. In certain cases, other NMR observables such as chemical shifts, scalar 

couplings and residual dipolar couplings (RDC) can be detected at this time range as well [69]. 

Likewise, certain protein motions have longer time scales that require longer simulation time in 

order to be sampled [73].  

 As faster algorithms and hardware for computer simulations are being developed, μs/ms 

molecular dynamic simulations have become more achievable and customary [45, 50, 54, 73, 

74]. Nevertheless, enhanced sampling methods are still a popular choice to study events such as 

protein folding and chemical processes at higher time scales [46, 64, 75, 76]. 

 

1.4 Challenges of molecular dynamic simulations 

 

 Although molecular dynamic simulations can be useful, they also have drawbacks like 

experimental methods. Comprehensive molecular dynamic simulations require high amounts of 

computational effort in order to perform all the required calculations between the atoms of the 

system. In order to overcome this, certain approximations have been implemented in order to 

obtain accurate results at a lower computational cost such as the treatment of protein-solvent 

interactions[9]. These approximations have been successful at accurately describing the folded 

state of a mini-protein[34] as well as sampling different folding events in another mini-protein 

system[77]. 

  

One of the core aspects of molecular dynamic simulations is the description of the potential 
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energy of a system of particles in terms of its coordinates using classical mechanics. This 

description is also known as a force field function. This calculation is not as rigorous as quantum 

mechanical calculations; because the atomic interactions are decoupled into individual, classical 

bond stretches/bends, dihedrals, electrostatic and non-bonded terms versus complex atomic 

wave-functions. Computer power and resources have increased making it possible to carry out 

simulations of large biomolecules such as proteins and DNA that were not possible decades ago. 

Therefore, the use of molecular dynamic simulations of biomolecules has become increasingly 

popular in the fields of cell biology [78-81] and drug discovery [82-84].  

 Nevertheless, force fields have limitations, as in the case of fixed-charge models; where 

charges are described as static parameters and electronic polarization is not included. Although 

there have been attempts to overcome this problem [85-87] by introducing charges and dipoles 

that are allowed to change as the environment varies. However these models have been reported 

to have issues with transferability and standardization [88].  

 Force fields assume a pre-defined connectivity that limits its ability to accurately describe 

bond forming and breaking events and do not include spin properties. Besides, force fields are 

usually parameterized by empirically fitting physical properties of small hydrocarbons and 

peptides from quantum mechanical (QM) calculations. The peptides used for the fitting are small 

which in principle assumes the notion that the empirical corrections can be the same for both 

types of systems. Furthermore, parameters for the backbone dihedral terms are usually derived 

from QM calculations of small alanine peptides in order to make calculations more feasible since 

there are no side-chain effects on the backbone parameters. This method assumes that backbone 

properties for alanine are representative of the other amino-acids with the exception of glycine. 

Therefore, the parameterization of force fields can sometimes lead to undesirable biasing 

towards given states. Recently, it has become common to fit against NMR of peptides and full-

length proteins such as in the case of ff99SB* [89], ff99SB-CS[90] and CHARMM36 [91] in 

order to overcome these issues.  

1.5 Mini-proteins and peptides as model systems for protein folding 

 

 

 Mini-proteins and peptides can be quite useful to study protein folding because they can 
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provide a simple overview of protein folding at a smaller scale that could be applied to larger 

systems [92, 93]. Sometimes they represent domains within larger proteins and usually they are 

fast folders [94, 95] in the µs time scale. Studying these small systems can provide insights in the 

conformational pathways required for protein folding. Some of these domains hold the main 

activity of the protein like in the case of the Villin headpiece (HP-67) which represents the 

smallest fragment of the enzyme that retains its F-actin binding activity[30]. A possible 

disadvantage of using mini-proteins and peptides as model systems is that sometimes their 

folding behavior undergoes intermediate and transition states defined as non-cooperative 

behavior, while is known that larger proteins fold in a cooperative manner[96]. However, there 

have also been reported cases of mini-proteins that display cooperative folding such as the Villin 

headpiece[97], the Trpcage[92] and the BBA motif[98]. Nevertheless, it is much easier to study 

protein folding through mini-protein and peptide models than through larger proteins, because 

the folding time for the proteins is much longer than for peptides/mini-proteins and also these 

small model systems provide the ability to quantitatively test simulation methods as well as 

serving like test models for folding theory. 

 In this work the fast-folding properties of peptides are implemented in order to 

benchmark the data for the proposed modifications. These folding mechanisms can provide 

insights as to how simulations of proteins would behave under the same conditions and how the 

modifications would affect their secondary structure propensities. 

1.6 The importance of the force field function for molecular dynamic simulations 

 

1.6.1 Background 

 

 One of the core aspects of molecular dynamic simulations is the description of the 

potential energy of a system of particles in terms of its coordinates using classical mechanics. 

This description is also known as a potential force field function. This calculation is not as 

demanding as a quantum mechanical calculation; however as the size of the system increases the 

calculation between its atoms also increases. This is because the interactions between the atoms 

such as bonds, angles, dihedrals, electrostatic and van der Waals energies are computed 

classically, making it more intense for the computer to evaluate the force field function. 
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Furthermore, computer power and resources have also increased making it possible to carry out 

simulations of large molecules such as proteins and DNA to extents that were not possible 

decades ago. Therefore, the use of molecular dynamic simulations of biomolecules has become 

increasingly popular in the fields of cell biology [35, 80, 99-102] and drug discovery [81-84, 

101].   

 There is a wide variety of force fields available for simulations of molecules ranging 

from hydrocarbons and small organic molecules to macromolecules found in biological systems. 

Initially force fields were developed in order to simulate small molecules such as hydrocarbons, 

among these force fields we encounter Molecular Mechanics 2 (MM2) developed by Allinger et 

al. [103] mainly to study covalent bonds and equilibrium energies. Recent revised versions such 

as the MM3 force field [104] were designed to better reproduce heats of formation, 

conformational energies and rotational barriers; and the MM4 force field in which additional 

interaction terms were added to the force constant matrix to have better agreement in the 

calculation of physical properties of alcohols, ethers, carbohydrates and related compounds. 

Among the first force fields developed, the Consistent Force Field (CFF) developed by Warshel 

et al.[105] allowed for studying structure and vibrational energies of molecules and crystals. This 

method introduced the concept of Cartesian coordinates for the description of atoms in space, 

which was further developed and implemented to other subsequent force fields.  

The work by Scheraga and co-workers known as the ECEPP[106-115] force field also 

provided novel parameters for the simulation of proteins at the time. This force field was the first 

one developed for simulations of biomolecules and some of the parameters were borrowed for 

the development of the most popular force fields being used today. It used fixed geometries for 

amino-acids in order to facilitate the potential energy calculation using energy minimization in 

the space of protein torsion angles. Similarly to the MM2 force field potential energy functions 

are included for hydrogen and single bond rotations. 

Following on this initial work, other types of force fields followed, such as polarizable 

force fields based on electronic structural theory, induce dipole, point charges, distributed multi-

poles, density and Bond Polarization Theory[116]. The development of these force fields has 

been of particular interest due to the intrinsic polarity of biomolecules. Nevertheless, classical 

additive force fields still remain more popular at modeling biomolecules[116]. 
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Other classical additive force fields such as CHARMM [117], GROMOS [118] and in 

particular AMBER [119] are popular for molecular dynamics simulations of biomolecules. These 

force fields are also called empirical because the derivation of the parameters presented is based 

on numerical approximations to ab initio calculations of small molecules and experimental 

results[116]. 

 

1.6.2 The AMBER Molecular Mechanics Force Field Function 
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Equation 1 AMBER molecular mechanics force field function. The bond angles and torsion terms are considered the 

bonded terms, whereas the van der Waals and electrostatic terms are considered the non-bonded terms. The bonds and 

angles are described mathematically as harmonic potentials whereas the torsional potentials are described as a Fourier 

series of cosine functions. The torsional potential was implemented from the rotational torsional energy barrier function 

derived by Pitzer et al. for ethane [120]. In the case of the non-bonded terms the van der Waals terms are expressed as 

Lennard-Jones potentials [121, 122] and the electrostatic energies are expressed as Coulomb terms.  

 

The family of AMBER force fields is primarily constituted by bonded and non-bonded 

terms. The bonded terms comprises the bond distances, bond angles and dihedral terms of the 

bonded atoms. The non-bonded term includes the Lennard-Jones potential and the Coulomb 

term. The Lennard-Jones potential approximates the interactions between neutral atoms in a 

pairwise manner, and the Coulomb term for the non-neutral atoms in the same manner. Thus, the 

non-bonded term of the force field calculates the van der Waals and electrostatic interactions of 

the particles.  
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In order to obtain dynamics information from this equation, the potential energy is 

calculated from the relation: 

   
  

  
 

Equation 2 Force equation 

From the force relationship we can obtain coordinates as a function of time: 

 

   

   
 
  
 

 

Equation 3 Newton's second law of motion 

The AMBER force field function includes improper dihedral terms within the torsions 

whereas other empirical force field functions such as CHARMM (Chemistry at Harvard 

Molecular Mechanics)[117] have separate terms for the improper angles as well an extra 

potential for the 1-3 interactions known as the Urey-Bradley potential. However the Urey-

Bradley potential is only implemented at discretion of the user and not by default in the 

calculation. The GROMOS96 (Groningen Molecular simulation) [118] force field also has 

another term known as the Ryckaert Bellemans potential that is implemented for the simulation 

of long alkanes and polymers. 

1.6.3 History of AMBER force field functions prior to the ff99SB era 

 

 AMBER stands for Assisted Model Building and Energy Refinement and covers a set of 

force field functions and a molecular dynamics package that have been developed over the last 

three decades. In the beginning the molecular dynamics package was designed to simulate small 

molecules as well as polymers[123, 124], however with the passage of time it has evolved to be 

one of the most popular packages for simulations of biomolecules[125]. The initial AMBER 

force field functions were conceived partially due to the work published earlier by Momany 

/Nemethy et al. [109-113] on the ECEPP potentials and the work of Lifson et al. on the 

Consistent Force Field (CFF) [105, 126, 127]. Other previous efforts in the development of 

potential energy functions for simulations of organic molecules contributed as well[128]. 
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 At the initial stages of development, the parameterization of force fields was considerably 

limited to the computer power needed for the simulations. Taking into account every single atom 

in the biomolecules would have resulted into rigorous calculations, in particular in the case of 

hydrogen. Therefore the work by Weiner et al.[129] presented an alternative to this issue by 

treating the hydrogens bound carbons as united atoms with the forces at the centers and explicitly 

considering the polar hydrogens. The charges included in this work were taken from high level 

quantum chemistry calculations[116], the van der Waals parameters were borrowed from the 

work published by Lifson et al. [126, 127] and Jorgensen et al. [130]. The force constants, bond 

lengths and angles were taken from crystal structures and implemented to match normal mode 

frequencies of small peptides [116]. The torsion force constants were fit to quantum calculations 

or experimental data in order to better reproduce torsional barriers of small hydrocarbons. 

Unfortunately this approach was soon refuted due to the inability to represent effects present in 

certain chemical groups crucial for interactions and appropriate geometry[131, 132]. Mainly, 

accurate charge distribution in aromatic rings, the correct pseudo-rotational distribution for five-

membered aliphatic rings and the direct comparison between calculated and experimental 

vibrational frequencies [131, 132]. Later on, the work  published by Weiner et al.[129] was 

extended to an all atom force field based on gas phase simulations in 1986 [133]. As computer 

power increased so did the efforts to produce a more accurate force field for the simulations of 

biomolecules. Such efforts gave rise to  AMBER ff94 force field from which most of the current 

AMBER force fields have evolved[134]. 

 AMBER ff94[134] provided a novel approach to simulations by introducing parameters 

for all atom simulations of proteins, nucleic acids and organic molecules. Some of the features 

presented included a revision to the work described by Weiner et al. [129] for the bonded terms 

to better reproduce the vibrational frequencies and structures of molecules. The non-bonded 

terms were adjusted as well; the carbon and aliphatic hydrogen van der Waals terms were 

adjusted to better reproduced the enthalpies of vaporization of liquid alkanes and benzene. Other 

terms such as the sp
2
 and sp

3
 hybridized nitrogen, sp

2
 hybridized oxygen, ether/ester oxygen and 

hydroxyl groups were taken from the OPLS model [130, 135]. For the electrostatic terms, they 

introduced a revised version of the Restrained Electrostatic potential (RESP) charge model that 

corrected for the under-estimation of charges in buried atoms [136, 137]. The dihedral 

parameters were also refined by improving the fitting to gas phase quantum chemistry 
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calculations of low energy conformations of glycine and alanine. This type of fitting is 

challenging because the model system of choice for the quantum chemistry calculations is 

dipeptides which lack the non-local electronic distributions that can be observed in larger 

biopolymers [138]. Furthermore, the gas phase calculations do not represent well the polarizing 

effects observed in solvent [139]. Nevertheless, these corrections made ff94 a popular choice for 

simulations even until the present day; however there have been reports that the force field over-

stabilizes α-helical propensities [140-143].  

 Subsequent revisions to the AMBER ff94 force field such as the ff96 revision by 

Kollman et al. [144] attempted to improve the torsional parameters by modifying the φ and ψ 

terms to better match dihedral energy profiles for alanine dipeptide and tetra-peptide. One of the 

aims was to improve the agreement with the energy differences between the native and extended 

α-helical conformations, since this peptide has enough residues to match a helical turn. In fact 

the dihedral profiles between the two peptides were qualitatively different in comparison to the 

profiles obtained from ff94, although it was difficult to quantitatively determine the 

improvements between the two force fields[116]. Contrary to the effect in secondary structure 

propensities observed in ff994, ff96 appeared to bias β-conformations.  

 Another revision termed ff99 used the RESP charge model to generate conformations for 

the alanine tetra-peptide that were included in the fitting of the dihedral parameters along with 

the existing conformations for the alanine dipeptide. Similarly to the ff96 revision, a bias was 

introduced to the function; however, the bias favored the α-helical conformation instead of the β-

conformations[140]. Following up on the work of ff96 and ff99, Garcia et al. released a force 

field function in which some of the φ/ψ dihedral torsional terms given by ff94 were zeroed. They 

observed better agreement with experimental helix-coil results, however the dihedral energy 

profiles for glycine and alanine proved worse than in the ff94 case[142]. Another correction to 

the ff99 parameters known as ff99φ by Sorin et al.[145], modified the torsional φ parameters 

with the parameters of ff94. This modification showed dihedral energy surfaces comparable to its 

predecessor ff94[142]. Another force field in which the ff99 φ/ψ torsional parameters were 

modified was reported by Okur et al. [140]. They termed this force field as ffGA and it was 

applied to simulations of α-lac 101-111[146] and Tripzip2[147] peptides. They observed that the 

results from simulations had better agreement with experimental findings in comparison to the 
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results obtained with ff99. Although the authors recommended caution when using this force 

field unless the fitting and testing of the parameters is done in a wider range of peptide structures 

with diverse secondary structure. This is because the fitting for this force field was done using a 

“decoy” database of mis-folded structures from Tripzip2 and α-lac 101-111. In principle the idea 

of using this database was to have wide variety of conformations from these two peptides where 

the fitting of the parameters would not be biased towards a particular secondary structure state 

[140]. Another modification to the ff99 φ/ψ torsional parameters was used in the simulations that 

predicted the native state of Trpcage [34]. These modifications were implemented in order to 

improve the agreement with quantum energies for the alanine tetra-peptide. Further simulations 

using this set of parameters have not been reported since then. However, the fitting to the 

quantum energies for the alanine tetra-peptide was used for the parameterization of ff99SB. 

1.6.4 Definition of torsional terms in AMBER force fields and development of ff99SB 

torsional parameters 

 

 The dihedral torsional term for AMBER force fields is shown in equation, where the 

dihedral force constant or the amplitude of the cosine wave is the k or Vn term, n is the dihedral 

periodicity, γn is the phase of the dihedral angle (φ or ψ) and ϕ is the dihedral angle of interest φ 

or ψ. 

∑
  
 

         

               

Equation 4 Dihedral Torsional Term for AMBER force fields, where Vn is the dihedral force constant (amplitude of the 

cosine wave), υ is the dihedral angle of interest and γ is the phase of the angle 

 When the torsional parameter terms for ff94 were conceived, an additional set of 

backbone dihedral terms were added to the existing terms for AMBER force fields. This set of 

terms was designed to address the torsional effects that amino-acids with β carbons have in the 

backbone conformations, in the case of ff94 was alanine[142]. Originally, the dihedral term were 

constituted by φ/ψ backbone, side-chain and improper dihedral angles. Unlike other classical 

force fields such as CHARMM[117] and GROMOS [118], the improper dihedrals are part of the 

torsional term in AMBER force fields and are not excluded into a separate term. This additional 

set of backbone dihedrals includes the β-carbon present in most amino-acids with the exception 

of glycine as shown in figure 10: 



16 
 

 

 

 

Figure 1 Scheme for the backbone dihedral definitions of AMBER force fields taken from Hornak et al. [142]. 

 

 Since the dihedral energies in AMBER are additive, the total backbone dihedral energy is 

the sum of the general, specific and improper dihedral terms described in figure 10. Besides the 

difference in the four atoms definition, the φ/ψ and φʹ/ψʹ angle definitions differ by the “offset” 

~120º between the dihedral planes. This definition for the backbone dihedrals around φ and ψ is 

exclusive to AMBER force fields. In other words, other force fields such as CHARMM and 

GROMOS do not have this “extra” set of dihedrals when defining φ and ψ, however the 

conformational effects of amino-acids with β carbons in the backbone dihedrals are not 

negligible and influence the propensities of the force field[142]. This effect is certainly not 

exclusive of AMBER force fields, other force fields such as CHARMM have accounted for this 

effect by adding corrective terms to its energy function in order to improve the dihedral maps of 

alanine[148]. In the case of ff99SB the φ/ψ and φʹ/ψʹ energy terms were refined to better match 

the dihedral profiles for glycine and alanine according the protein databank survey [149]. 

 From the time in which ff94 was published until the development of the ff99SB[142] 

torsional parameters, all the revisions previously discussed were only applied to the general  φ/ψ 

energy terms, leaving the φʹ/ψʹ terms identical to the ff94 parameters. As previously described, 

ff96, ff99 and the Simmerling et al. [150] revisions used quantum calculations to revise the 

torsional parameters based on energy profiles for alanine dipeptide and tetra-peptides. The other 

revisions were applied empirically to the existing parameters for ff99 and ff94 [140, 141, 145]. 
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The ff99SB force field corrected the α-helical preference shown by ff94 by fitting the energies of 

numerous conformations of blocked tetra-glycine and tetra-alanine peptides. The local minima 

on the energy surface were optimized through random search in φ/ψ dihedral space followed by 

local minimization. The conformations for the local minima were optimized with high level of 

theory ab initio calculations obtaining 28 conformers for glycine tetra-peptide and 51 conformers 

for alanine tetra-peptide[142]. The energies were calculated using the approach of Beachy et al. 

[138] in the gas phase, as it was demonstrated that electron correlation calculations are necessary 

for the accurate description of relative energies for conformations in peptides [138]. These 

conformers were optimized using a 12-dimensional φ/ψ dihedral space search using the 

amplitudes (three amplitudes) and phases (three phases) of the torsional function. The amplitudes 

were systematically varied from 0 to 2 kcal/mol and the phases were varied between 0 to π 

yielding over 100 million grid points. As described by Hornak et al. [142] the zero energy point 

for the molecular mechanics (MM) energy function is arbitrary, therefore the optimization is best 

done using pair energy differences (QM/MM) for alternate conformations while using each 

conformer’s energy set as the reference points. In ff99 they ignored this by setting the lowest 

energy as the “zero” energy point and calculated energy differences based on that “zero” energy 

point. However, this method is not ideal because the “zero” energy point is arbitrary and the 

results of the optimization will change depending upon the definition of the “zero” energy point. 

This “zero” energy corresponds to the energy that determines the relative population of 

structures, consequently it must be accurate. Therefore, Hornak et al. [142] described the 

function that was optimized  as the average between the quantum mechanics (QM) and 

molecular mechanics (MM) pair energy differences with each conformer’s energy set as a 

“reference”. From this procedure the average absolute error (AAE) was obtained. Besides this 

definition, they also used another function for optimization where all individual QM and MM 

pair energy differences were calculated; again, with each conformers energy set as a “reference 

zero energy”. From this procedure the maximum absolute error was obtained. As mentioned by 

Hornak et al. [142] the maximum absolute error is more sensitive to different parameter sets than 

the average absolute error because there were several sets of dihedral parameters that had 

comparable average absolute error values. Therefore, the choice of parameters was based on the 

results obtained for the maximum absolute error calculation. In principle the maximum absolute 

energy errors correlate to the average absolute energy error, therefore low values for the 
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maximum absolute error will also have low values for the average absolute error[142].  

 For the optimization of the glycine tetra-peptide, the first phase of the φ angle was zeroed 

in order to have rational dihedral functions around φ angle of zero since in this region there was 

not QM data available. This procedure was also applied to the 51 conformers of the alanine tetra-

peptide from which the φʹ/ψʹ dihedral parameters were obtained. Although the fitting seemed to 

give reasonable results, after careful analysis it became known that one of the conformers 

contributed a significant amount of errors to the fitting, therefore it was removed from the 

optimization[142]. 

 This correction improved the agreement between poly-alanines and the Protein Data 

Bank rotamer distribution as well as yielded better agreement with NMR order parameters for 

proteins like Ubiquitin and Lysozyme. Furthermore, this force field has become one of the most 

popular ones among the scientific community for its ability to quantitatively and qualitatively 

reproduce the results seen in experiments [69, 72, 151]. These features have made ff99SB a force 

field with major impact in the computational biology field contributing to the increase in 

popularity of the MD/MC simulations by experimentalists[69, 72]. Nevertheless, there have been 

many recent developments attempting to further improve the quality of the force field backbone 

dihedral parameters by several computational groups and experimentalists as described below. 

1.6.5 Modifications to the ff99SB backbone dihedral function 

 

 Initially Robert Best et al.[152] reported that the force field could benefit from 

improvement in the agreement between experiments and simulations, in particular the 

description of poly-alanine ppII dihedral propensities. His claim was that ff99SB was one of the 

worst force fields at reproducing scalar coupling values for the Ala5 peptide[152]. The deviations 

between simulations and experiments according to his claims were considerably significant in 

comparison to force fields like OPLS-AA/L, CHARMM-CMAP and some variants of the 

GROMOS force fields[152]. After these claims, Robert Best issued a correction for his statement 

regarding the performance of ff99SB and ff03 in which he declared that the simulation protocol 

leading to the published results was faulty which prompted him to run another simulation for 

which he reported revised results that had comparable performance to the other force fields 

previously discussed [153]. Following up on this debate, Wickstrom et al.[151] revisited the 
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simulations of Ala5 with different water models for which better agreement than the one obtained 

by Best et al.[153] was reported and concluded that the results are dependent upon the Karplus 

parameters used. Nevertheless, both accounts agreed on the fact that AMBER force fields have 

had issues with helical preferences in the past and it appears that ff99SB while improved is not 

without error in this case. Both reports suggest that further investigation of the propensities of the 

force is required. 

 After these reports were published, optimizations to the ff99SB force field have been 

reported [89, 90, 154-158]. Some of these optimizations have been dedicated to the improvement 

of the backbone dihedral parameters while others have refreshed the side-chain torsion 

parameters[158] as well as the van der Waals interactions[157]. The initial goal of the backbone 

optimizations was to improve the conformational preference of the force field for helices since it 

had been reported that the force field had poor agreement with experiments at reproducing 

secondary structure for helix-forming peptides and proteins[89, 152]. One of these optimized 

parameter sets was reported by Best et al.[89] who presented modifications to the backbone 

dihedral potential for ff99SB and ff03 which they denominated ff99SB* and ff03*. Their 

modification was based on including a cosine correction term to the ψ dihedral term which is 

applicable for amino-acids without β carbons (glycine); these corrections have an angle offset; 

following a similar philosophy behind the definition of the ψʹ dihedral angle [89] as indicated in 

figure 10. 

Table 1 Optimized corrections to ff99SB and ff03 that originated ff99SB* and ff03* 

Parameter ff99SB ff99SB* ff03* 

kψ (kcal/mol) 0.2 0.1788 0.3575 

δψ (deg) 180.0 105.4 285.5 

 

Table 1 Optimized corrections to ff99SB and ff03 that gave rise to ff99SB* and ff03*. The parameters refer to a cosine 

correction to ψ given by   (       )    [     (    )] 

  Their recent publications point to the preference of the ff03* correction over the ff99SB* 

correction; according to their reports the helical propensities for helical systems significantly 

improve with both force fields. In other words, they increase with the ff99SB* revisions and 

decrease with the ff03* revisions; nevertheless, hairpins with the revised ff99SB* parameters de-
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stabilize the intrinsic native populations obtained with ff99SB whereas the populations obtained 

with the ff03* have better agreement than ff03 and ff99SB simulations [159-161].  

 Recently, Nerenberg et al. [154] presented their comparisons for the performance of 

ff99SB on TIP3P and TIP4Pew explicit solvent models. Primarily the aim was to show that the 

TIP4Pew explicit solvent model is more appropriate in order to obtain accurate conformational 

ensembles than TIP3P. Nevertheless, they derived a perturbation of the φʹ backbone dihedral 

potential of ff99SB that adjusts the β-ppII secondary structure equilibrium[162]. As shown in 

table 1-2, their modification was based on decreasing the value for the second term in the 

amplitude of the φʹ. 

Table 2 Optimized corrections for ff99SB-opt φʹ 

Parameter V2 ff99SB ff99SB-opt φʹ 

kφ(kcal/mol) 2.0 1.8 

 

Table 2 Optimized corrections for ff99SB-opt φʹ 

  This discrete modification showed improvement, with results showing better agreement 

between calculated scalar couplings from simulations and experiment for Ala5 [154]. Although 

the results obtained for the NMR order parameter calculation was comparable to ff99SB[154], 

they did not test secondary structure conformational preferences for α-helix and β-sheet as Best 

et al. had done. Their justification was that this revision was designed to improve the accuracy of 

the intrinsic conformational preferences of single amino acids, and not the secondary structure 

propensities of the force field. Therefore, the exploration of the secondary structure behavior of 

this force field in helical peptides was not further pursued. 

 The quest for optimization of ff99SB has also drawn the attention of NMR 

experimentalists, mainly Li et al.[155] who initially modified the ff99SB backbone dihedral 

potential by introducing a Gaussian function that couples the dihedral functions of φ and ψ terms. 

This modification was introduced based on a similar procedure done for the CHARMM-CMAP 

correction[163], however this iterative refinement was based on agreement with chemical shifts 

(CS); and later, another refinement was implemented following the same philosophy while 

including residual dipolar couplings (RDC) as a benchmark as well[90]. This revision showed 
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marginal improvement for the agreement of folded proteins by showing lower RMSD values of 

chemical shifts and residual dipolar couplings when comparing to crystal and NMR structures; 

although, these improvements were ≤ 0.11 ppm. The scalar coupling values for Ala3 were also 

calculated with this revision for ff99SB, ff99SB_CS and ff99SB_CS_RDC as shown in table 3. 

 

Table 3 χ
2
 values for Ala3 for optimized force fields based on NMR observables 

ff99SB ff99SB_CS ff99SB_CS_RDC 

1.69 1.55 1.88 

 

Table 3 χ2 values for Ala3 for optimized force fields based on NMR observables. The results obtained from 

ff99SB_CS_RDC force field were slightly worse than the ones obtained with ff99SB. The authors sustained that the J 

scalar coupling constants fall within the uncertainties from experiments and Karplus parameters used. 

  

 The performance of several dated and recent AMBER force fields along with variants of 

other force fields such as OPLS and CHARMM have been evaluated to determine its ability at 

reproducing NMR observables in small and medium size peptides, and their secondary structure 

propensities from folding simulations. Pande et al. [164] showed that overall several variants of 

AMBER force fields have the best performance when calculating NMR observables like scalar 

couplings. The results observed were within uncertainty of experiments. Other reviews as the 

one from Schulten et al.[165] using the CHARMM-CMAP correction show that after several 

microseconds of simulations this force field is not capable of folding the Pin 1WW domain, a β-

sheet structure. The authors discuss that the CHARMM-CMAP correction has been known to 

bias helical conformations in small peptides and this issue could be resolved by introducing a 

better treatment of the hydrogen bond patterns to better match crystallographic structures[166]. 

One of the most recent reviews of the performance of these new versions of force fields was 

reported by Lindorff-Larsen et al. [73] where they showed that CHARMM-22*[45] and 

AMBER99SB*-ILDN had the best agreement with experimental observables for peptide and 

protein systems such as CLN025 and (AAQAA)3 15-mer peptide, ubiquitin and GB3. The 

CHARMM-22* force field was obtained by modifying the CHARMM22 parameters in order to 

obtain better agreement for simulations of helical proteins[45]. AMBER99SB*-ILDN is a force 
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field that was created by merging the parameters of AMBER 99SB* from Best et al. [89] and the 

ILDN optimized parameters for side-chain torsions of Isoleucine, Leucine, Aspartic acid and 

Asparagine from Lindorff-Larsen et al.[158]. Overall, AMBER force fields are the best force 

fields for simulations of biomolecules across the reviews discussed here.  

 

 The efforts of improving the backbone dihedral parameters were continued here, by 

introducing modest changes to the backbone dihedral energy function of ff99SB in particular to 

the φʹ, ψ and ψʹ potentials. The ultimate goal was to improve the agreement for poly-alanines 

with NMR data and helical propensities of the force field without significantly altering other 

secondary structure regions. The most appropriate modifications to suit this purpose involved the 

φʹ, ψ and ψʹ energy terms for which thirty force fields were derived, with small changes in the 

range of 0.2 to 0.4 kcal/mol. These modifications showed improvement in the agreement with 

scalar couplings for Ala5 and higher helical propensities for transient helical peptides such as 

Baldwin-type peptide known as K19[167] and a smaller peptide derived from the Bak BH3 

domains[168]. Furthermore, improved agreement with NMR order parameters for Lysozyme was 

also observed.  

   

1.7 Goals of the thesis: To provide enhanced backbone dihedral parameters for protein 

simulations 

 

 The main aim of the thesis is to provide a new set of backbone dihedral parameters for 

protein simulations by introducing modest changes to the backbone dihedral energy function of 

AMBER ff99SB  in particular to the φ’, ψ and ψ’ potentials. The idea of introducing these 

modifications was conceived to improve the accuracy of molecular dynamic simulations of 

transiently structured peptides.  These modest changes to the potentials would be tested and 

validated against a variety of peptide systems in order to discard the changes that worsen the 

accuracy of simulations or perform comparably to AMBER ff99SB. 

AMBER ff99SB[142] was chosen as the force field of interest because it has a solid 

trajectory of being one of the best force fields for protein simulations[69, 72, 151, 169-171] with 
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more than 1500 citations as per Google scholar. AMBER ff99SB has become popular among the 

scientific community for its ability to quantitatively and qualitatively reproduce the NMR 

observables [69, 72, 151] seen in experiments.  

Nevertheless, force fields are not perfect because of the limitations in the methods used 

for the derivation of parameters obtained from quantum calculations such as fitting to secondary 

structure minima and the lack of solvent representation. Empirical fitting is necessary in order to 

close the gap between the results obtained from gas phase quantum calculations to the data 

obtained from protein experiments.  Even though AMBER ff99SB has represented one of the 

highest standards for force field performance, the force field would benefit from fine tuning in a 

few areas.  

1.7.1 Specific Aim 1: Improving the agreement between results from simulations and 

experiments for poly-alanine peptides 

 

One of these areas is the agreement with poly-alanine peptides [151] as this has become 

one of the standards for evaluation of the force field quality [89, 151, 152, 164, 172, 173]. 

Results from previous simulations of poly-alanine peptides [151, 152] have indicated that 

agreement between experimental results and simulations could be improved. Furthermore, it 

appears that the largest discrepancies are due to the φ torsional potential [151]. In order to 

determine the φ dihedral populations of the force field, the penta-alanine peptide was simulated 

following the protocol described by Wickstrom et al. [151]. This peptide has been previously 

simulated in a comparative study performed by Best et al. [152] in which they used several 

variants of AMBER, CHARMM, GROMOS and OPLS force fields. 

Figure 1 shows the comparison between the dihedral populations obtained from 

simulation with AMBER ff99SB (left panel) and the dihedral φ and ψ angles of alanine for 500 

proteins obtained from the Protein Data Bank [149]. Although the information provided in the 

rotamer library can be useful to determine the propensities of alanine in proteins, caution must be 

exercised when comparing the results from simulations to experimental data. Firstly, the data 

shown in the rotamer library is the collection of snapshots of protein structures that represent 

ensemble averages under specific experimental conditions that might not be applicable to the 

conditions described in the simulations. Lastly, simulations are carried in a small Ala5 peptide 
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not topologically comparable to proteins. The comparison done here serves as a guide to 

determine how the φ dihedral angles are behaving in simulation and to determine if this behavior 

is seen in proteins. As seen in figure 1 the comparison indicates that the sampling in the region of 

-150° > φ > -120° is more pronounced in the simulation than in the rotamer library. 

 

 

Figure 2 Comparison between the dihedral angle populations from simulations for Ala5 peptide (left) and the Protein 

Data Bank rotamer library of backbone dihedral angles for alanine [149].  

 

In order to quantitatively benchmark these results, it was necessary to compare 

experimental results to simulation values directly. The method that would allow for direct 

comparison is scalar couplings. Recent studies by Graf et al.  [172] measured NMR scalar 

couplings for backbone atomic interactions of several poly-alanine sequences (Ala3 – Ala7) and 

compared them to molecular dynamic simulations. Since this was published in 2007, the 

information provided has been used as a benchmark for performance of force fields [89, 162, 

164, 173]. Scalar couplings have a direct relationship with dihedral angles that is described by 

the Karplus equation [174] presented below. This equation is particularly useful in order to 

calculate scalar coupling values in a straight-forward manner. The 
3
J (HN, Hα) scalar coupling 

value was selected to obtain an initial estimation of the force field performance. This scalar 

coupling was chosen because it depends on the φ backbone dihedral angle and it has a wide 

range of values between 2 and 11 Hz depending on the Karplus parameters chosen for the fitting. 

This wide range allows for clear distinction of specific regions in φ dihedral space. 
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Figure 3 Karplus function for 3J(HN, Hα) scalar coupling based on the parameters published by Hu et al.[175]. The 

Parameters used for the function were A = 7.09, B = -1.42 C = 1.55 and θ = υ dihedral value – 60°. 

  

 The results from the simulations of AMBER ff99SB for residue 2 in Ala5 indicated that 

the scalar coupling value was 6.99 Hz whereas the experimental value is 5.59 Hz. This result 

indicates that the simulations are considerably sampling high scalar coupling values. As shown 

in figure 3, the dihedral populations in the -150° ≤ φ ≤ -120° region are contributing to this large 

value. In order to reduce the average value of the scalar coupling close to 5 Hz, it would be 

𝐽  𝐴 𝑐𝑜𝑠 𝜃  𝐵𝑐𝑜𝑠𝜃  𝐶 

 

Equation 5 The Karplus equation which establishes the relationship between scalar coupling values and dihedral angles. 

Below the function for the 3J (HN, Hα) scalar coupling is shown based on this equation. 
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necessary to increase the sampling in the φ = -60° region because this is the region where these 

values can be found according to the Karplus function (figure 2). 

 

Figure 4 Histograms of dihedral populations from simulation with ff99SB shown in magenta. The populations were 

normalized and fitted to the range of the Karplus function shown in black for 3J (HN,Hα) scalar coupling. The function 

was obtained from the Hu et al. parameters described in figure 2. 

 

1.7.2 Hypothesis 

From figure 3, it appeared that the solution for the problem could be obtained by 

modifying the φ dihedral potential of the force field. In principal this modification should 

decrease the sampling in the -150° > φ > -120° region. Furthermore, this modification would 

affect populations at different ψ values in dihedral space; it would affect the region around the ψ 

= -150° and the region around 0 ≥ ψ ≥ -30° (figure 1).  

This would narrow the sampling of the simulations for the ppII and the helical regions as 

indicated in figure 4. However, it is apparent that this modification could also impact the β 

region in the Ramachandran map. Therefore, the proposed changes to the φ dihedral potential are 

small to not detrimentally affect the sampling of the β region in simulations. The proposed 

changes were in the range of 0.2 to 0.4 kcal/mol.  

• ff99SB 
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Figure 5 Comparison between the histograms of the dihedral populations for the υ angle (left, magenta) and the 

Ramachandran plot generated from simulations with AMBER ff99SB for residue 2 of Ala5 (right). The Karplus function 

for the 3J(HN,Hα) is also included (left, black) [175]. 

 

 These modifications were tested on Ala5 as done in the case of AMBER ff99SB; other 

scalar coupling values that are dependent on the φ and ψ dihedral angles were compared against 

NMR J scalar coupling experimental data for all the residues in the peptide [172]. The scalar 

coupling values used for comparison were 
3
J(Hα,C), 

3
J(HN,C’), 

3
J(HN,Cβ), 

3
J(HN,Hα), 

3
J(C,C’) 

for the φ angle; 
1
J(N,Cα), 

2
J(N,Cα) for ψ angle and 

3
J(HN,Cα) for the φ and ψ angles. The 

differences between the average obtained from simulations and the experimental values were 

calculated in the form of a χ
2
 value using the definition provided by Best et al. [152]. 

1.7.3 Caveats of using calculated scalar couplings to benchmark the results from 

simulations 

 

 Although calculating scalar couplings from MD simulations is currently possible due to 

the Karplus function, the method has limitations. Karplus functions have been obtained by fitting 

to X-ray crystallographic and NMR data of proteins such as ubiquitin, flavodoxin and 

others[176] [175, 177-181]. The parameters A, B and C are empirically derived and depend on 

the atoms and substituents used for the calculation. Uncertainties obtained from the X-ray and 

NMR data are intrinsically added to the derivations. Furthermore, scalar couplings measure 

spin/spin interactions, which depend on more than dihedral angles, bond lengths/angles, 
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neighboring spin systems, hydrogen bonding etcetera.  

 Another caveat that impacts the calculations obtained from the Karplus function is 

precision. The Karplus function at the top of the hills and bottom wells have a wider range of 

possible dihedral angles that might represent a given scalar coupling value; whereas at the 

regions where is steep the range of dihedral angles is much narrower. For example, in figure 2, 

the region for the 8 Hz is at the top of the hill with a much wider range of dihedral space than the 

region between 3-4 Hz mainly dedicated to the -60° in φ dihedral space. This particular effect 

can contribute significantly to the results obtained because that is the region of interest for the 

modifications proposed. 

 

 Besides what has been mentioned, another aspect that requires discussion is the 

calculation of scalar couplings from parameters obtained experimentally; as discussed by 

Brüschweiler et al. [182] , when calculating scalar couplings with parameters derived from X-

ray/NMR data for dihedrals from simulations; corrections should be implemented in order to 

avoid overemphasis of thermal fluctuations. Although this effect does not appear to overcome 

the intrinsic propensities of the force field choice in simulations [151]. 

 

1.7.4 Specific Aim 2: Increase the helical propensities for simulations of transient helical 

peptides 

  

Following up on the work that was reported in 2008 [152], Best et al. published a 

comparative study between the performance of AMBER ff99SB and another contemporary 

AMBER force field known as ff03 [89]. Their work indicated that ff99SB had lower helical 

propensities than the NMR chemical shifts for the Ac-(AAQAA)3-NH2 peptide. In order to make 

the results from simulations and NMR comparable, the authors used the Lifson-Roig model to 

define helical propensities; their findings indicate that ff99SB has low helical propensities, 

whereas ff03 has high helical propensities compared to experiments. 
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  In order to corroborate this, two other peptides known as Hydrogen Bond Surrogate 

(HBS) peptide [168] and K19 [167] were simulated with ff99SB. HBS peptide was chosen as a 

model because of its ten residue size makes it suitable for Replica Exchange Molecular 

Dynamics (REMD). Replica Exchange Molecular Dynamics is a type of Monte Carlo algorithm 

that allows obtaining enhanced sampling from simulations. This is particularly advantageous 

because more statistically robust data is obtained from this method. Another reason to choose 

this peptide is because there is NMR scalar coupling data available that can be useful to compare 

against the results obtained from the simulations. Although K19 is a larger peptide that cannot be 

studied using REMD simulations, it is small enough to perform long MD simulations that can be 

useful to study the differences in behavior between ff99SB and the modifications. This peptide 

has helical propensities obtained from NMR chemical shift deviations that can indicate folding 

behavior at room temperature. 

 

  As indicated in figure 5, the helical propensities from simulations eventually frail 

without attempting to reach a higher helical fraction value. The metric for helical propensities in 

this case was defined by the Define Secondary Structure in Proteins (DSSP) algorithm [183] 

which measures the intra-backbone hydrogen bonding pattern between the neighboring residues 

by means of electrostatic calculations. This metric cannot be compared directly to the metrics 

applied to experiments in order to determine helical fraction because in the case of the Hydrogen 

Bond Surrogate peptide [168] they used the ratio [θ]222/ [θ]max from the Circular Dichroism 

spectrum and for K19 they used Lifson-Roig theory from NMR Chemical Shift Deviations [184] 

to estimate fraction folded. In both cases the experiments were taken at room temperature as the 

simulations. Although the results cannot be directly compared, the results from experiments can 

provide insights for the behavior of the peptides at room temperature. 
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Figure 6 Helical Content vs. time for two helical peptides known as Hydrogen Bond Surrogate (HBS) peptide (left) and 

K19 peptide (right). The results for HBS peptide were obtained through Replica Exchange Molecular Dynamics (REMD) 

whereas the results for K19 were obtained with canonical Molecular Dynamics. The native structure for both peptides 

was obtained by imposing helical dihedral angles in all the amino-acid residues. The extended structure was obtained by 

imposing helical dihedral angles in the first five amino-acid residues of the peptides without imposing any other 

secondary structure angles for the rest of the residues. The structures were built using the tleap module in Amber tools 

1.5.  

 

1.7.5 Hypothesis 

 

 In order to correct this issue there is three possible solutions. The first one is to take 

advantage of the proposed solution postulated to improve the agreement with poly-alanines. As 

previously stated, this proposed modification in φ would have two effects in ψ dihedral space; it 

would narrow the sampling for the secondary structure region for ppII and it would also narrow 

the helical region. As shown in figure 4, modifying the dihedral potential to increase the 

sampling in the φ = -60° dihedral region could achieve this purpose. The sampling in the -150 ≤ 

φ ≤ -120 region would decrease allowing for more structures to simulate the helical region. 

However, this effect would also de-stabilize the β region and drive the populations to the ppII 

region. Another possibility would be to increase the helical sampling by modifying the potential 

in ψ dihedral space. This type of modification was previously reported in the work of Best et al. 

[89].  

 In the Best et al. work, the ψ potential was modified by including a cosine correction term 

for ff99SB and ff03. The authors recognized that including a cosine correction term goes against 

the AMBER notion of including separate definitions for the canonical φ /ψ backbone dihedral 

angles and the dihedrals dependent on the torsion around the β-carbon denominated φʹ/ψʹ. 
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However, the cosine correction term takes advantage of the same philosophy behind the 

definition of ψʹ (ψʹ = ψ + 120°) because the authors included an angle offset in their correction 

and an adjustment of the amplitude of the cosine function.  

 In principle, modifying the ψ potential would drive the sampling from the ppII region to 

the helical region. This could be achieved by modestly introducing changes without significantly 

altering the propensities of ff99SB, similarly in size to the changes proposed to improve the 

agreement with poly-alanine systems. 

 

 

Figure 7 Dihedral populations obtained from simulation with ff99SB for Ala5 residue 2. The arrows indicate the proposed 

modification to the ψ potential in order to drive the sampling from the ppII region to the helical region 

 

 Although the proposed solution would increase the sampling in the helical region, it 

would not solve the problem of the agreement with the poly-alanine experimental results. This 

proposed change might make the agreement with the poly-alanine data even worse. 

 In order to account for both problems, the modifications should couple both proposed 

solutions: modest changes to the φ and ψ dihedral potentials. The changes to the φ and ψ 

potentials alone would also be explored in order to determine their applicability.  

 

 The third possibility would be to introduce a modification that would couple the φ and ψ 

dihedral terms by introducing Gaussian modifications to the regions of interest. This type of 
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modifications were introduced to the CHARMM [117]  force field in 2004 by Mackerell et al. 

[148]. This modification is known as the CMAP correction. The rationale behind the correction 

was to improve the fitting to the dihedral maps from the protein Data bank. Although this 

proposed modification appeared to be the exact solution to the dihedral dilemma, the results of 

the simulations proved to be biased towards secondary structures such as helices; requiring the 

use of high temperatures and further refinement in order for simulations to obtain the appropriate 

secondary structure populations [45]. It would also require the addition of an extra term to the 

force field function that would be related to the existent backbone dihedral term.  

 

1.7.6 Challenges for benchmarking the results obtained from simulations of helical systems 

 

 HBS peptide has an un-natural covalent bond that holds the first five residues as in the 

turn of a helix. Experimentally, this turn was designed to promote helix nucleation in the peptide 

and it was introduced from the hydrogen of the amide bond in the first residue (cap) to the 

oxygen of the amide bond in the fifth residue (Alanine). The covalent bond is supposed to 

replace the naturally occurring hydrogen bond between i i+4 residues. For our purposes, we 

cannot include this C-C covalent bond explicitly because besides the validation of the backbone 

parameters proposed here, it would also require the validation of the charges for the covalent 

bond. In order to overcome this, it was necessary to impose distance and angle restraints that 

would resemble the values from the C-C covalent bond introduced by experiments. This would 

limit our ability to directly compare the experimental results to the results obtained from 

simulations to certain extent. However, it is expected that qualitatively, the simulations would 

resemble the experimental results. 

 The experimental results from K19 NMR chemical shift deviation experiments were 

fitted to helical fractions using a Lifson-Roig model [184], whereas helical fractions in this case 

would be estimated using DSSP theory [183]. Besides, long MD simulations would be required 

in order to obtain qualitatively relevant data. Although the experimental results cannot be 

compared directly, the trends can help to describe how the modifications are affecting the helical 

propensities. 
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1.7.7 Specific Aim 3: Implement the proposed modification without significantly altering 

the force field propensities for other secondary structures 

 

 Overall the goal is to improve the agreement for poly-alanines with NMR data and helical 

propensities of the force field without significantly altering other secondary structure regions. 

The modifications to the φ potential would intrinsically affect the β region but the changes 

should be designed to affect this region to the least extent. Although the proposed changes would 

be very small (~ 0.5 kcal/mol) or less, these small changes can affect the results from simulations 

significantly and should be carefully evaluated in order to validate their applicability to the 

proposed solution. For this purpose we would investigate a small peptide system known as Val3 

and four hairpins known as CLN025, chignolin, HP5F and GB1m3. These hairpins systems were 

chosen because of their size and because of their fast folding properties. Besides, they also have 

experimental information that can be useful to qualitatively compare the results from 

simulations. 

 Val3 is another peptide system that has experimental J coupling information available that 

was published along with the poly-alanine peptides [172]. This peptide has been defined as 

having extended β conformation and its size makes it an ideal candidate for initial testing using 

REMD simulations. This peptide has been previously studied for the purpose of force field 

validation [154, 172]. The results obtained from simulations would be compared in a similar 

manner as proposed for Ala5. The same type of scalar coupling information that is available for 

Ala5 is available for Val3 which allows us to use the same previously proposed methodology. 

Initially the agreement with the 
3
J(HN,Hα) scalar coupling value was investigated then the rest of 

the scalar coupling values: 
3
J(Hα,C), 

3
J(HN,C’), 

3
J(HN,Cβ), 

3
J(HN,Hα), 

3
J(C,C’) for the φ angle; 

1
J(N,Cα), 

2
J(N,Cα) for ψ angle and 

3
J(HN,Cα) for the φ and ψ angles were investigated. Similarly 

to the Ala5 case, the differences between the average obtained from simulations and the 

experimental values were calculated in the form of a χ
2
 value using the definition provided by 

Best et al. [152]. 

 Although the results obtained from Val3 peptide can be helpful to evaluate the 

performance of force fields to an initial extent, further simulations on β-like systems are required 
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to further assess the qualities of the force fields. Therefore, it is proposed to study larger hairpin 

peptides, in this case chignolin [185] and CLN025 [186]. Chignolin was chosen as a test case, 

because of its ten amino-acid residue size. This peptide has been previously studied by 

computational methods extensively [47, 53, 55, 59, 187-190]. Another property that makes it 

attractive for testing is its folded properties at room temperature (~50%) obtained from Chemical 

Shift Deviations from backbone/side-chain protons and CD spectrum. This transient nature is 

ideal for this purpose because the modifications should be able to simulate systems like this in 

the same manner as it is proposed with the helical systems previously described. In the case of 

the CLN025 its fast folding properties were of interest. Hairpins fold at a slower rate than 

helices, requiring longer simulation times to obtain relevant statistical ensembles. A fast folding 

hairpin would be a good model system to obtain statistically relevant data in order to determine 

how the propensities are being affected. 

 

 Besides these two hairpin systems we also propose to study two other hairpins slightly 

larger in size (16 residues). These hairpins known as GB1m3 and HP5F were chosen for this 

purpose [191]. They were obtained from single point mutations to the GB1p sequence of Serrano 

et al. [192]. Both hairpins are almost identical, the only differences are at the 3
rd

 and 5
th

 amino-

acid positions. In the case of HP5F, the 3
rd

 residue is Tyrosine and the 5
th

 residue is Tryptophan. 

In the case of GB1m3, the 3
rd

 residue is Tryptophan and the 5
th

 residue is Tyrosine. The rest of 

the amino-acid sequence is identical for both. GB1m3 has been previously simulated using 

Monte Carlo simulations [56] and HP5F was used as a test system for the validation of the 

revised GB Neck implicit solvent model by Nguyen et al. [193]. For our purposes, HP5F was 

simulated with REMD simulations and revised GB Neck implicit solvent model [193] whereas 

GB1m3 was simulated with canonical MD simulations and TIP3P explicit solvent model. Both 

systems have comparable melting temperatures and thermodynamics properties[194] . Although 

the simulations for HP5F would allow more statistical relevant information because of the 

enhanced sampling method, the simulations under explicit solvent could be useful to have a 

quick estimation of how the simulations differ between ff99SB and the modifications. 
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1.7.8 Hypothesis 

 

 The proposed modifications to the φ potential and the combinations of φ and ψ 

modifications would make the sampling of the β region in dihedral space more sparing because 

in order to increase the sampling in the φ = -60° the populations in the -150 ≤ φ ≤ -120 would be 

reduced and driven to the ppII/helical region in φ dihedral space. Therefore, it is expected that 

this would be resembled in the simulations; the β region would be less sampled. However the 

modifications would be designed so this effect is minimal. The most appropriate modifications to 

suit this purpose involved the φ’, ψ and ψ’ energy terms for which thirty force fields were 

derived, with small changes in the range of 0.2 to 0.4 kcal/mol.    

 

1.7.9 Challenges for benchmarking the results from simulations of hairpin systems 

 

 Calculating scalar coupling values from simulations for poly-alanine peptides can be 

challenging due to uncertainties in the fitting of the Karplus functions. One of the core aspects of 

the modifications presented here is to improve the agreement with experimental NMR scalar 

coupling values for the poly-alanine peptides in particular Ala5. However the differences 

between the experimental values for Val3 and Ala5 are significant. Experimentally, Val3 is 

described as an extended β peptide [195, 196] whereas Ala5 is described as a poly-proline 

peptide according to experiments [172]. The proposed modification as described above would 

make the sampling of the β region less frequent, which in turn would reduce the agreement with 

the scalar values because one of the desired results is to improve the agreement of the backbone 

dihedral propensities from simulations with the rotamer library for alanine [149]. The 

assumption is that alanine behaves like the other amino-acid residues. 

 

 Another challenge is related to the currently available experimental data for the hairpin 

systems. The structure for chignolin was obtained from the PDB NMR structure access code 

(1UAO). The structure for CLN025 was obtained from the Biological Magnetic Resonance Data 

Bank access code 20009. Mostly the reported data for both hairpins was obtained from Chemical 
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Shift Deviation (CSD) experiments and CD spectra. The CSD data was fitted to a two state 

model using the protons that moved more than 0.07 ppm with temperature in order to obtain the 

melting curve. For the CD spectra the melting curve was obtained from the [θ]222/ [θ]max ratio 

[185]. As previously mentioned it is not possible to directly assess the data from simulations 

against experimental values because such metrics cannot be obtained from simulations. 

However, the trends observed from simulations can be compared to the trends observed from 

experiments in order to have a reasonable idea how the simulations are due to behave at room 

temperature. 

 

1.7.10 Specific Aim 4: Evaluate backbone dynamics from NMR order parameter 

calculations for simulations of lysozyme and ubiquitin 

 

 Agreement between NMR order parameters calculations for proteins from simulations 

and experiments have become one of the standards for force field quality; several groups [69, 72, 

89, 90, 142, 154, 197-199] have dedicated research efforts to compare the results obtained from 

experiments to those obtained from simulations. Therefore, it is necessary to investigate how the 

proposed modifications would perform with simulations of proteins, in particular lysozyme and 

ubiquitin for which there are several sources for information of this measurement [4] [200-205]. 

 The calculation of order parameters is necessary in order to determine the stability of the 

backbone interactions from simulations. For this purpose, the dynamics of the N-H bond are 

measured for most of the amino-acids in the protein with the exception of proline and the termini 

residues. The dynamics of the ordered portions of the molecule such as helices, β strands and 

others would be almost rigid; that is slower; whereas the less ordered regions such as loops 

would be more flexible, meaning faster. In order to quantify these motions, the preferred method 

of choice is the Lipari-Szabo model free approach where the global motion of the protein is 

decoupled from the internal (bond) motions [206].  

 As described by the authors the method works really well because the internal motions 

are fast enough to be specified by the S
2
 order parameter and the τc correlation time terms from 

the spectral density function. The spectral density equation is the probability function of finding 

motions at a given angular frequency (ω): 
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     (
   

       
 
) 

Equation 6 Spectral density function that describes the probability of finding motions at a given angular frequency ω. Τc 

is the time needed for the root mean square deflection of the molecules to be ~1 radian (60°) 

  

 As described by Lipari-Szabo [206] the motions of the bond can be described by 

monitoring the bond vector over time starting at some random time t and any time i + t. The 

motions can be compared against each other. A number can be assigned to describe the 

probability of finding the bond vector in the same orientation at i + t that it had at t. At the 

beginning this probability would be very high and the larger t got, the probability would be 

smaller [207]. A sample of how the function would be like is shown in figure 7. In this case the 

independent variable is frequency. 

 

Figure 8 Spectral density function for the relaxation time. Molecules that tumble very rapidly can sample a wide range of 

frequencies. Molecules that tumble slowly with long correlation times only sample lower frequencies. Taken from 

http://www.ncbr.muni.cz/~lzidek/C6770/presentations/Dynamics_2.pdf 

  

 One more concept that is essential for the understanding of order parameters is the 

correlation function. This is called the correlation function, because it represents the correlation 

between the orientations at time i and the orientation at time i + t. 

http://www.ncbr.muni.cz/~lzidek/C6770/presentations/Dynamics_2.pdf
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Figure 9 Correlation function for fast and slow motions of a bond vector. The correlation is represented between the 

orientation of the vector at time I and the orientation at time i+t taken from http://conflux.mwclarkson.com/2007/11/the-

model-free-dynamics-formalism-of-lipari-and-szabo/ 

 As seen from figure 8, the correlation function can be approximated to an exponential 

decay dependent on time t and the time constant τm based on the speed at which the bond 

tumbles. Assuming that the motion of the molecule is isotropic, the function could be expressed 

as: 

      
 

 
 
  
   

Equation 7 Correlation function for the exponential decay of the motions of the bond vector studied. CM(t) is the 

correlation function, t is the time (x axis), and τm is the time constant that represents the speed at which the bond tumbles; 

also known as the rotational correlation time of the molecule. 

 Since the bond is part of a larger system such as a protein, an extra function needs to be 

introduced in order to account for bond constraints inside the protein. This function will also 

approximate an exponential decay, however the motions will not decay to zero as originally 

postulated, instead they will decay to a static value known as the order parameter S
2
. If the bond 

is absolutely rigid, meaning there is 100% probability of finding the bond at the same place, the 

order parameter S
2
 will be one and if is completely flexible this value will be zero. Figure 8 

shows the dependence of the correlation time C(t) on time. Motions that dampen fast will have a 

high S
2
 value whereas motions that dampen slower will have a low S

2
. Nevertheless, the 

correlation function will never be lower than the S
2
 value.  

http://conflux.mwclarkson.com/2007/11/the-model-free-dynamics-formalism-of-lipari-and-szabo/
http://conflux.mwclarkson.com/2007/11/the-model-free-dynamics-formalism-of-lipari-and-szabo/
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Figure 10 Correlation time function of motions for the bond vector inside a larger system such as a protein. This function 

accounts for the bond constraints inside such large system. Motions that dampen fast will have a high S2 value whereas 

motions that dampen slower will have a low S2. Nevertheless, the correlation function will never be lower than the S2 

value. Taken from http://conflux.mwclarkson.com/2007/11/the-model-free-dynamics-formalism-of-lipari-and-szabo/ 

 Similarly to the first case, this “extra function” can also be expressed in terms of 

exponential decay; however the order parameter S
2
 and the extra correlation time make the 

function slightly different than the first equation. As shown in equation 1-4 the equation includes 

the S
2
 value and the extra correlation time that will be denominated as Ce (t). The extra time is 

denominated as τe.  

      
 

 
(          

  
  ) 

Equation 8 Correlation time equation for the bond constraints that bond vector N-H experiences inside the protein. ΤE is 

the extra correlation time that takes for the constrained motions to dampen to the static value S2. 

  

 In the event of both functions being correlated, the calculation of the total correlation 

time would be very complex. However, as mentioned previously, the Lipari-Szabo method 

assumes that the motions of the bond vector and the protein are decoupled and makes the 

calculation simpler. Therefore in order to combine both the correlation time of the molecule 

Cm(t) and the extra correlation time for the constraints of being inside the protein Ce(t) it is 

possible to multiply both terms to obtain the total correlation time as described in equation 1-5: 

http://conflux.mwclarkson.com/2007/11/the-model-free-dynamics-formalism-of-lipari-and-szabo/
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(   

  
           

  
   ) 

Where 

 

   
 

 

  
 

 

  
 

Equation 9 Total correlation time function that incorporates the molecular correlation time and the extra correlation 

time. 

 Combining the spectral density function from equation 1-2 and the total correlation time 

for the molecule would give the spectral density function: 

     
 

 
(

    
      

 
 
        

      
 ) 

Equation 10 Spectral density function that combines the molecular correlation function and the total correlation function 

in terms of the angular frequency ω. 

 

 The explanation provided here does not describe how the spectral density is related to S
2
 

and the relaxation parameters T1 and T2. So far, only the explanation for the correlation function 

and correlation time has been given. In order to describe it, the spectral density function needs to 

be defined in terms of the relaxation parameters. 

 As described by Lipari-Szabo [208], in the case of protonated carbons for 
13

C NMR, 

nuclear relaxation is mainly dipolar, the dipole-dipole interaction between two nuclei is 

described by the correlation function [209, 210]: 

     〈   
 (      )   

         〉 

Equation 11 Correlation function for dipolar nuclear relaxation, where Dq0
(2) (ΩLF) is a Wigner rotation matrix element 

[211] and the Euler angles, (ΩLF). The Euler angles (ΩLF) specify the orientation of the unit vector, (ȗLF) connecting the 

two nuclei in the coordinate system. This correlation function also describes the quadropolar and chemical shift 

anisotropy relaxation in the special case where the relevant tensors are axially symmetric. 

 For a system in solution, the correlation function does not depend on the index q and can 

be re-written by using the addition theorem for spherical harmonics [211] as: 
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〈                 〉 

Equation 12 Correlation function that implements the addition theorem for spherical harmonics. P2(x) is the second 

Legendre polynomial:       
 

 
        

  

 The spectral density, which determines the relaxation parameters T1, T2, taken from 

Lipari-Szabo’s description [206]  is given by:  

      ∫              
 

 

 

Equation 13 Spectral density function that determines the relaxation parameters T1 and T2 in terms of angular frequency 

ω. 

 At time t = 0, the correlation function from equation 1-8 becomes: 

      〈            〉    

At time t =∞ the function becomes: 

       ∑  〈      〉 
 

 

    

 ∬                               

〈     〉  ∫              ∫   ∫     
 

 

  

 

              

         

Equation 14 Correlation time function that defines the generalized order parameter S2. If the internal motion is isotropic 

(all orientations of ȗ are equally probable), Peq(Ω)=(4π-1) then S=0. If the motion is completely restricted Peq (Ω)=δ(Ω-Ω0) 

then S=1. When the motion is azimuthally symmetric about an axis Peq(Ω)=Peq(θ), independently of ϕ, where θ is the angle 

between ȗ and the symmetry axis, S =< P2(cos θ) > = S. 

  

 As indicated from equation 1-10, the correlation function information is essential to 

obtain the spectral density information and the generalized order parameter S
2
. From the spectral 
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density information, the relaxation times T1, T2 and the NOE parameters can be derived from the 

following equations [206]. 

 

 For 
13

C NMR where relaxation is primarily dipolar, the relaxation times and the Nuclear 

Overhauser Enhancement (NOE) are given by: 

  
    

    
   

 

    
                          )) 

  
   

    
   

 

    
                                       )) 

      
                      

                            
 

 

Equation 15 Relaxation times T1, T2 and Nuclear Overhauser effect equations based on the spectral density function for 

13C NMR. 

  

 Where   is Planck’s constant, γ is the gyromagnetic radio of 
13

C and H, r is their inter-

nuclear distance, ωI, I = C, H are the Larmor frequencies [212, 213]. For 
2
H NMR of deuterated 

carbons, the quadrupolar tensor is axially symmetric about the C-
2
H bond, and the relaxation 

times are given by [210]: 

  
   

 

  
(
  
  

 
)

 

                

  
   

 

  
(
  
  

 
)

 

                        

Equation 16 Relaxation times for 2H NMR of deuterated carbons, the quadropolar tensor is axially symmetric about the 

C-2H bond. The correlation function has the same form for both 13C NMR and 2H NMR because the ȗLF vector points 

along the 13C-H bond in 13C NMR, while it points along the C-2H bond in 2H NMR.  
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 Nevertheless, this is all possible assuming the simplest of the cases, that is, the bond has 

isotropic motion. This means that the bond has a single correlation time τm because the motions 

are equal in all x, y and z directions. However this is not always the case, when the contrary 

happens, meaning the molecule has anisotropic motion, then the method is slightly revised and 

the correlation time function becomes as described by the Lipari-Szabo method [206]: 

     
 

 
(  

 
 
         

 
 
  ) (          

 
 
  ) 

Equation 17 Correlation function for anisotropic relaxation. A, τ1 and τ2 are the adjustable parameters that can be 

determined by fitting the relaxation data of a nucleus that is attached to the macromolecular backbone. This equation has 

the same form as equation 1-5 that describes the correlation time for isotropic relaxation (A S2, τm  τ1, and τ  τ2).   

 

 As described by the authors [206] the method is accurate even in cases where there are 

several correlation times involved as in the case of random-coil polymers, as long as the 

correlation times decay in an exponential-like manner. The dynamics of the local bonds must be 

much faster than the overall tumbling of the protein in order to be de-coupled. 

 

1.7.11 Challenges of NMR order parameter calculations using the Lipari-Szabo method 

 

 The Lipari-Szabo model is applicable when the motions of the protein can be decoupled 

from the bond vector motions. However, this is not always the case; for instance, in certain 

systems where there is significant flexibility such as RNA loops, the local motions cannot be 

decoupled from the overall motions of the system [214] [215]. Other cases such as in protein 

loops where there is a significant amount of flexibility, bond vector reorientation is correlated 

even after overall protein tumbling is subtracted [216].  

 Another instance in which the method was not able to reproduce relaxation parameters 

was described by Clore et al. [217] where they compared T1, T2 and Nuclear Overhauser 

Enhancement (NOE) parameters for staphylococcal nuclease [218] and interleukin-1β [219] 

against estimates obtained from the Lipari-Szabo model free approach. They mentioned that the 
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method appears to reproduce the data within the experimental error, however for some residues 

in both proteins the internal re-orientational correlation function that is probed by NMR is not 

exponential with slow correlation times that are not in the extreme narrow limit as described by 

Lipari-Szabo [206]. This effect was particularly seen when comparing the 
1
H-

15
N NOE data from 

experiment to the fitted data using equation 6. The fitted values were significantly small or 

negative whereas the experimental values were positive. The issue is due to fast and slow 

correlation times for the relaxation motion of these bond vectors, when these differ by more than 

one order of magnitude the function does not decay exponentially. Instead, the function decays to 

a plateau intermediate before reaching the S
2
 value.  In order to account for this, Clore et al. 

[217] to revise the definition of the S
2
 order parameter for the amino-acid residues where this 

effect was observed to: 

     
   

  

Equation 18 S2 order parameter equation that decomposes the term for fast and slow correlation times when the 

difference between them is greater than one order of magnitude. 

 

Where Sf and Ss are the correlation function values obtained from the fast (Sf )  and slow (Ss) 

relaxation motions of the bond vectors.  

 

 Although this method is considered an extension of the Lipari-Szabo method, it shows 

instances where the model-free approach falls short and requires additional parameters for the 

estimation. Other methods used for the interpretation of hetero-nuclear spin relaxation data of 

proteins include spectral density mapping [220], and analytical motional models [221, 222]. 

These methods are not as popular as the model-free Lipari-Szabo approach but they are used for 

the estimation of NMR order parameters as well. 

  Recently, other methods based on re-orientational intra-molecular motions have been 

reported [216, 223, 224] that describe the correlation dynamics that affect spin relaxation 

parameters. These methods implement covariance matrices of spherical harmonics of rank 2 for 

inter-nuclear vector motions estimated from MD simulations. Covariance matrices are used 

because nuclear spin relaxation parameters for 
15

N and 
13

C spins are obtained from the deviations 

of the angular parts of the lattice functions of spin-relaxation interactions such as dipole-dipole 
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and chemical anisotropy interactions. The lattice functions are often represented in terms of 

spherical harmonics of rank 2, Y2M (θ,φ), where θ,φ are the polar angles describing the 

orientation of an inter-nuclear vector in a stationary snapshot [225]. As described by Bloch, 

Wangness and Redfield [226-228] relaxation is a second order perturbation and their three-

dimensional properties are described by variance and covariance properties of the Y2M (θ,φ) 

lattice functions. 

 In principle the re-orientational approach offers a more statistically relevant method 

because relaxation parameters are obtained from many conformations obtained from trajectory 

snapshots, whereas the experimental results are obtained from a single snapshot that poses as the 

ensemble average at a given time. The results obtained from MD simulations are compared 

against experimental data in order to determine its applicability [229]. This approach was applied 

because the correlation of spin interactions responsible for NMR relaxation is present at short 

distances between nuclei. Since atoms do not move individually from each other, but 

simultaneously involving groups of variable sizes, the direct identification and description of 

correlation times from experiments alone can be challenging; making it necessary for the 

supplementation with results from MD simulations [229]. 

 

1.7.12 Isotropic Re-orientational Eigenmode Analysis (iRED) 

 

 This method relies on principal component analysis of an isotropically averaged 

covariance matrix of the spin contacts in control of relaxation. This covariance matrix is 

generated from the snapshots of a molecular dynamics trajectory and diagonalized to obtain the 

eigenfunctions and eigenvalues that describe the correlated dynamics of the system being 

studied. The information provided by the eigenvalues determines if the overall and internal 

motions of the protein are separable, while the eigenfunction information provides the 

correlation time needed to calculate the relaxation parameters T1, T2 and NOE’s described in 

equations 1-8 through 1-11. In principle the iRED method and the other re-orientational (RED) 

methods use covariance matrices of the lattice functions to describe the re-orientation of the N-H 

bonds. For molecules in which the internal and overall motions can be decoupled, the covariance 

matrix of the RED approach is described in terms of a static reference frame. The eigenmodes 
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and eigenvalues are obtained by diagonalizing the covariance matrix where each eigenmode has 

its own correlation time [229]. 

 

 However, in the case of more flexible systems, large-amplitude re-orientational dynamics 

of the backbone N-H vectors can be observed from MD simulations; where the covariance 

matrix cannot be represented in terms of a single static frame. The iRED method solves these 

issues by analytically integrating each snapshot of an MD trajectory over an equally scattered 

distribution of orientations in spherical coordinate’s space. The following derivations were taken 

from Prompers et al. which applied the method to the calculation of NMR order parameters for 

ubiquitin [230]. For each snapshot of an MD trajectory a n(2L+1) dimensional vector      ⟩ is 

constructed from spherical coordinates YLM (Ωj) evaluated at the n directions Ωj(t)=(θj(t), φj(t)), 

j=1, .., n, of the inter-nuclear vectors N-H 

     ⟩                                                                                           ⟩ 

Equation 19 Dimensional vector       ⟩ built from spherical harmonics of rank 2 YLM. The notation described here is 

slightly different than the notation provided in equation 1-8 through equation 1-10, however the correlation times can be 

obtained from this definition as well in a similar manner. 

 

The n(2L+1) × n(2L+1) covariance matrix P is constructed as described below: 

 

  (  ⟩    ⟩̅̅ ̅̅ )(⟨   ⟨  ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    ⟩⟨  ̅̅ ̅̅ ̅̅ ̅̅    ⟩̅̅ ̅̅  ⟨  ̅̅ ̅̅  

Equation 20 Isotropically averaged covariance matrix P generated from the dimensional vectors      ⟩ built from 

spherical harmonics of rank 2 YLM as described in equation 1-15.  

 

Where   ⟩ is the complex-conjugate row vector of column vector   ⟩. The horizontal bar 

indicates an ensemble average over the N conformations or a time average over a trajectory 

[230]. 

 In order to account for the equally scattered distribution of orientations, in other words 

the isotropic effect, the MD snapshots are integrated analytically following the expression: 
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    〈    〉 

Equation 21 Analytical expression for the isotropically averaged matrix P: The term   ⟩̅̅ ̅̅  ⟨  ̅̅ ̅̅  of P averages to zero for L≠ 

0, since 〈      〉     ∫                        The averaging of the term can be done using individual matrix 

elements PM’k,M”l along with the transformation properties in spherical coordinates R (α, β, γ) where α, β, γ are Euler 

angles [211]. The 3D rotation would be                ∑     
 

                     
         are the Wigner 

matrix elements [211].  

 

 

 Using the concepts described in equation 1-17 the expression for the isotropically averaged 

matrix P becomes: 

         〈        〉    〈                 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
   

 〈                                  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〉   

 
 

   
∑ ∫              

    
                     

                 
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

     

 
 

   
∑                  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    

    
            

     

 
      

    
∑                  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

     

 
      

  
              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Equation 22 Isotropically averaged covariance matrix obtained from equation 1-17. As shown in equation 1-8 PL(x) is the 

Legendre polynomial of order L, and Ωk – Ωl denotes the angle between directions Ωk and Ωl; δM’,M” denotes the 

Kronecker δ. The Wigner matrix elements are given by: 

∫               
             

          
   

    
           and the addition theorem for spherical harmonics is 

               
  

    
∑         
 
               

  

 Since the matrix is isotropically averaged, the elements of the matrix Q depend only on 

the intra-molecular angles       and no longer in the orientation. Matrix Q can be described 

as the matrix product Q  
 

  
 M   where 1 is a 2L + 1 dimensional unity matrix, and M is a n 

× n matrix with elements Mkl =              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . The eigenvalues of Q are at least 2L + 1 times 

degenerate, and all information enclosed in Q is also enclosed in M, this leads to simplification 
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due to spherical symmetry for the covariance matrix Q [230]. Matrixes Q and M can be 

diagonalized    ⟩      ⟩ and    ⟩      ⟩ and the eigenvectors of Q can be constructed 

from the eigenvectors of M:   ⟩    ⟩    ⟩.    ⟩ are the 2L +1 –dimensional column vectors 

   ⟩                ⟩                     ⟩            . The diagonal elements of 

Q are Qij=     ⁄ , and the diagonal elements of M are Mij = 1. The traces of Q and M, which are 

the sum of their respective eigenvalues (mode amplitudes), are proportional to the number of 

vectors n: Tr{ }  
       

    
   { }    

 The correlation times can be reconstructed by projecting the vector      ⟩ constructed 

from the snapshot at time t onto eigenvector   ⟩       〈      〉 in order to obtain the 

correlation function: 

              〈                  〉  

Equation 23 Correlation time function for individual modes obtained by projecting vector      ⟩ onto eigenvector   ⟩ at 

time t. q = (2L +1)m + l – L, and l = -L, …, L. The average covers snapshots sampled at times τ = 0  T – t. The correlation 

functions can be obtained from matrix M by summing the 2L + 1 correlation functions Cm,l(t) to       ∑     
 
        

from the degenerate modes q. 

 Given the condition that the correlation function has exponential decay, the correlation 

time τm discussed in equation 1-5 of section 1.5.10 can be described as: 

   
 

             
∫                  

 

 

 

Equation 24 Correlation time τm associated with mode   ⟩. Cm(t  T) represents the plateau value of Cm(t):         
∑           ∑  〈       〉  

  
    

 
    . For systems where internal and overall tumbling motions are separable, Cm,l(t) 

and Cm(t) and their correlation times reveal both internal and overall motions. Isotropic tumbling’s correlation time is 

given by τc, the effective correlation time τm of an internal mode with an internal correlation time τm’ is given by 
 

  
 

 

  
 

 

   
 . This equation is equivalent to equation 1-5b described in the Lipari-Szabo model free method. 

 Having described how the correlation times and functions is obtained from the 

isotropically averaged matrix calculation, it is necessary to define how the order parameter 

components are obtained. In the case of Prompers et al. [230] they considered the scenario of 

individual interactions where the contribution of mode m to the decay of the correlation function 

of interaction j is the principal order parameter component: 
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       ⟩⟨      

Equation 25 Principal order parameter component obtained from the contribution of mode m to the decay of the 

correlation function.      
  ≥ 0, and ∑       

 
 = 1 

 The correlation function Cj(t) can be expressed as a weighted sum of the normalized 

correlation functions Cm(t), that is Cm(0) = 1, belonging to iRED modes m 

      ∑     
      

 

 

Equation 26 Correlation function expressed as a weighted sum of the normalized correlation functions Cm(t), where m 

numbers all re-orientational eigenmodes, including overall and internal motions, leading to a complete de-correlation  at 

long times Cj(t ∞) = 0. If Cm(t) is mono-exponential, Cm(t) =  
  

  , this is the case of isotropic re-orientation and it was 

found to be the case in good approximation for nearly all modes 

  

 From the correlation function described here the spectral density function Jj(ω) is 

obtained from analytical cosine-transformation based on the relation described in equation 1-9: 

      ∫               
 

  

∑     
 

   
       

 

 

Equation 27 Spectral density function expressed in terms of principal order parameter components      
  of the 

covariance matrix M and the correlation time τm . 

 

 Initially this approach was implemented to study NMR relaxation in ubiquitin [230] and 

recently it has been applied to study the dynamics of RNA loops [214, 215, 231]. The method 

was applied because the dynamics of RNA loops have large range of motions where the overall 

tumbling of the protein cannot be decoupled from the local bond vector dynamics. In the case of 

the simulations of lysozyme and ubiquitin presented here, the iRED method was implemented in 

order to account for loop regions where there is significant flexibility. Furthermore, the iRED 

method does not require the a priori assumption that the overall tumbling motions of the protein 

can be decoupled from the local N-H vector motions. This is because the correlation functions 

and ultimately the order parameter values are obtained from vector operations of an isotropically 

averaged covariance matrix of spherical coordinates. In other words, the dynamics of the N-H 

vectors are calculated with respect to all conformations sampled by the protein in spherical 
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coordinate space. Although the decoupling assumption is not required for the calculation, it is 

possible that the correlation function information obtained decays to approximately a single 

exponential function (isotropic re-orientation) or several exponential functions (anisotropic re-

orientation) as described by the Lipari-Szabo model. Furthermore, the correlation function may 

not decay in an exponential-like manner at all, but in another manner that approximates more 

complex functions than exponential decay [217]. Therefore, the iRED method implements the 

concepts described by the model-free approach in a more robust way for the treatment of order 

parameters obtained from MD simulations; due to this robustness, this method was applied to the 

simulations described here. 
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2. Methods 
 

 

 

2.1 Changes to the backbone dihedral function of ff99SB 

 

 In ff99SB the backbone dihedral term is expressed as a Fourier series of periodicity 4: 

∑
  
 

         

               

Equation 28 Dihedral Torsional Term for AMBER force fields, where Vn is the dihedral force constant (amplitude of the 

cosine wave), υ is the dihedral angle of interest and γ is the phase of the angle 

 Where Vn is the dihedral force constant (amplitude of the cosine wave), n is the dihedral 

periodicity and γn is the phase of the dihedral angle θ. The backbone dihedral angle θ can be any 

of the dihedral angles φ/ψ (for all amino-acids) or  φʹ/ψʹ (for all amino-acids except glycine) . 

The definition for each of these dihedral angles is given in figure 11 borrowed from the work of 

Hornak et al. [142]. 

 

Figure 11 Backbone dihedral angle definitions for AMBER force fields. The scheme was taken from Hornak et al. used 

for the dihedral angle definition in the alanine tetra-peptide. 

 

 It should be noted that the φʹ/ψʹ angles have an offset of 120º between the dihedral planes 
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in comparison to the canonical φ/ψ angles. The notion of this “extra” set of dihedrals is exclusive 

to AMBER force fields and was re-visited by Hornak et al. [142] when they applied the dihedral 

changes to ff99SB. 

  

 In order to describe how these changes are being applied to the backbone dihedrals of 

ff99SB we have plotted the functions for the φʹ ψ and ψʹ terms as this is crucial for the 

understanding of how things got modified, figure 13 illustrates the energy function for the φʹ 

term of ff99SB. 

 

 

Figure 12 Dihedral energy functions for ff99SB force field 

  

 As previously described, the energy function for φʹ is constituted by the sum of three 

cosine functions described in figure 13. Since the first term has the most contribution to the 
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energy function, we began by applying the changes to the second and third terms by introducing 

small changes to the amplitudes of the cosine waves in order to make it more favorable for the 

sampling of the φ = -60º region. 

 

Figure 13 Cosine terms that constitute the φʹ backbone dihedral term of ff99SB 

  

 The modifications were empirically derived by manually adjusting the φʹ, ψ and ψʹ 

dihedral energy terms. Initially, an ensemble of structures was obtained from a simulation of 

ff99SB. Then, the dihedral angles and dihedral energies were measured and fitted to the 

backbone dihedral energy function. The dihedral angle information was used to calculate the 

vicinal 
3
J (HN, Hα) scalar couplings, in order to know how much the scalar coupling value 

differed from experiments. Lastly, the energy functions (φʹ, ψ and ψʹ) were empirically 

perturbed to yield a closer value. The dihedral energy term was modified by making small 

adjustments to the periodicities in the series .As previously described the first set of changes was 

applied to the φʹ dihedral term, one of these first modifications was mod1φ. The amplitude of the 
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cosine wave was changed by 0.2 and 0.4 kcal/mol in the second and third terms of the energy 

function in comparison to ff99SB (see figure 14-16). 

  

Figure 13 Dihedral energy function for ff99SB (blue) and mod1phi (dark blue) force fields 

  

 

Figure 14 Applied changes to the second term of the φʹ energy function for mod1φ 
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Figure 15 Applied changes to the third term of the φʹ energy function for mod1φ 

 The energy differences for the different terms between the modifications were plotted for 

easy reference (see figure 17). Since the changes for the mod1φ and mod2φ for the second term 

of the cosine function were the same, we only plotted the energy differences for mod1φ; there 

were no changes in the second cosine term for mod3φ, mod4φ and mod5φ. 

 

Figure 16 Energy differences for the second cosine term of the φʹ energy function of ff99SB and mod1φ. The changes for 

mod2φ were the same, whereas the other modifications did not have any changes (mod3φ, mod4φ and mod5φ) 
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 In the case of the third cosine term all the force fields had changes and are shown in 

figure 18. The differences between the curves clearly show how the φ = -60º is stabilized by each 

of the modifications, especially mod1φ. 

 

Figure 17 Energy differences between the modifications for φʹ and ff99SB. The force field that stabilizes the φ = -60º 

region the most is mod1φ. 

 Besides these changes the mod5φ modification changed the first term of the cosine 

function from 2.0 to 1.8 kcal/mol. All the changes to the energy function are shown in figure 19. 

 

Figure 18 Changes to the dihedral energy function for φʹ 
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 Initially the modifications to the force field were only introduced to the φʹ term, however 

when work by Best et al. was published [89] changes to the ψ and ψʹ were tested as well. Their 

claim indicated that ff99SB was stabilizing β sheets; therefore the most reasonable adjustment 

would require modifying the ψ term in order to increase helical propensities.  

 In the case of the ψ angle, modifications were introduced to both the ψ and the ψʹ terms 

of the function: mod1ψ, mod2ψ and mod3ψ had changes to the ψ and ψʹ terms whereas mod4ψ 

only had changes to the ψʹ term. The changes applied to mod1ψ, mod2ψ and mod3ψ were only 

to the first term of the ψ cosine function, where mod2ψ and mod3ψ had the same changes (from 

0.45 to 0.6 kcal/mol). For mod1ψ the changes were from 0.45 to 0.7 kcal/mol. In the case of the 

ψʹ term, the changes were applied to the first, second and fourth terms of the cosine function (see 

table 4). A fourth term of the cosine function was added for mod1ψ and mod2ψ (from 0 to 0.4 

kcal/mol). Mod2ψ did not have any other changes to the ψʹ term, while mod1ψ had changes to 

the second cosine term (from 0.2 to 0.5 kcal/mol). Mod4ψ only had changes in the first term of 

the cosine function (from 0.2 to 0.3 kcal/mol with an offset of -60º). 

 In order to clarify this we are plotting the cosine functions for ff99SB and modifications 

for ψ and ψʹ independently (figures 20-23) and jointly (figure 24); we also plotted the energy 

differences between ff99SB and the modifications to ψ (see figure 25). 

 

Figure 19 First cosine term of the ψ energy function of ff99SB, mod1ψ and mod2ψ. Mod3ψ has the same values as mod2ψ 

and mod4ψ has the same values as ff99SB. 
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Figure 20 First cosine term of the ψʹ energy function for mod4ψ. Mod1ψ, mod2ψ and mod3ψ have the same values for 

ff99SB. 

 

Figure 21 Second cosine term of the ψʹ energy function for mod1ψ. Mod2ψ, mod3ψ and mod4ψ have the same values as 

ff99SB. 
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Figure 22 Fourth cosine term of the ψʹ energy function for mod2ψ. Mod2ψ and mod3ψ have the same values, ff99SB does 

not have a fourth cosine term. 

 

 

Figure 23 Dihedral energy functions of ψ for modifications to the ψ and ψʹ and dihedral parameters added 
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Figure 24 Energy differences between modifications to ψ/ψʹ and ff99SB 

 These modifications to the φʹ ψ and ψʹ dihedral terms primarily focused on changing the 

amplitude of the functions whereas the changes to the ψʹ dihedral term included phase changes 

as well. Initially, we tested thirty different force field combinations (see table 3) in which φʹ ψ 

and ψʹ were modified in parallel with simulations of Ala5 and Val3. This initial testing was 

designed to choose the parameters that had the results with best agreement between experimental 

and simulation vicinal scalar couplings. We selected the force fields that had the best results for 

both systems. Then, we proceeded to test helical peptides such as Hydrogen Bond Surrogate 

Peptide (HBS) and K19. Again the force fields that had the best results were chosen for testing 

using NMR order parameters of Lysozyme and Ubiquitin. From this test we proceeded to test β 

secondary structure propensities for hairpins in implicit solvent. After this testing, there was one 

force field chosen for simulations of hairpins in explicit solvent, mainly mod1φ.  

 The modifications to the φʹ term known as mod1φ, mod2φ and mod5φ were the most 

extensively tested throughout the systems because they had the best results through the study. 

This is because these modifications were initially conceived in order to increase the sampling of 

the ppII region in the Ramachandran plot. As previously described, our hypothesis was that these 

changes would inherently increase the sampling of the helical region as well, as the energy 

function was shaped to have more dihedral populations in the φ = -60º region. 

 The goal of the modifications to the ψʹ term was to increase the sampling of the α-helical 
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region by stabilizing the 0 ≥ ψ ≥ -60º. The modifications that accomplished this in comparison to 

ff99SB were mod1ψ and mod2ψ. Stabilizing this region would further increase the helical region 

in the Ramachandran map which might have undesired effects on the rest of the secondary 

structure regions such as destabilizing the ppII region. This effect would not be desired because 

one of the goals of the work presented here is to increase the sampling of the ppII region in order 

to improve the agreement between experimental and simulated vicinal scalar couplings for poly-

alanines which are considered to have ppII secondary structure. 

Table 4 Modifications to the υʹ, ψ and ψʹ terms of the force field 

 
 φʹ C-N-Cα-Cβ   ψ N-Cα-C-N  ψʹ N-C-Cα-Cβ  

ff n Vn γ ff n Vn γ n Vn γ 

99SB 1 2 0 99SB 1 0.45 180 1 0.2 0 

2 2 0 2 1.58 180 2 0.2 0 

3 0.4 0 3 0.55 180 3 0.4 0 

Mod1φ 1 2 0 Mod1ψ 1 0.7 180 1 0.2 0 

2 1.8 0 2 1.58 180 2 0.5 0 

3 0.8 0 3 0.55 180 3 0.4 0 

      4 0.4 120 

Mod2φ 1 2 0 Mod2ψ 1 0.6 180 1 0.2 0 

2 1.8 0 2 1.58 180 2 0.2 0 

3 0.6 0 3 0.55 180 3 0.4 0 

        4 0.4 120 

Mod3φ 1 2 0 Mod3ψ 1 0.6 180 1 0.2 0 

2 2 0 2 1.58 180 2 0.2 0 

3 0.8 0 3 0.55 180 3 0.4 0 

Mod4φ 1 2 0 Mod4ψ 1 0.45 180 1 0.3 -60 

2 2 0 2 1.58 180 2 0.2 0 

3 0.6 0 3 0.55 180 3 0.4 0 

Mod5φ 1 1.8 0        

 2 2 0        

 3 0.8 0        

Table 4 Modifications to AMBER ff99SB dihedral parameters. Changes highlighted in bold 

 

2.2 Peptide/protein systems used to benchmark the data 

 

 In order to validate the modifications proposed we tested these parameters in peptides 

and proteins with diverse secondary structure in order to determine how these changes were 
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affecting the dihedral propensities of the force field.  

2.2.1 Testing the agreement between simulations and experiments for homologous peptides. 

Using Ala5 as a model system 

 

 

 This peptide has been used as a model system for testing the ability of simulations to 

reproduce experimental NMR scalar coupling data [89, 151, 152, 172] for poly-alanine systems. 

Others have used analog peptides of glycine[172, 173], valine [162, 172, 173] and alanine[90, 

172] residues for this purpose as these homologous peptides have become popular to benchmark 

the performance of force fields at reproducing NMR observables. One of the advantages of these 

systems is that its size makes them suitable for long molecular dynamics/Monte Carlo 

simulations in explicit water without the need of extensive computer power. Another reason is 

that in 2007 Graf et al.[172] measured vicinal scalar couplings that probe the φ and ψ backbone 

dihedral angle propensities and other NMR observables for homologous peptides of glycine 

(Gly3), valine (Val3) and Alanine (Ala3-Ala7). They also compared simulations with the 

GROMOS96 force field 43a149[232] with their experimental data.  

 

 At the time when the ff99SB parameters were published, the experimental data by Graf el 

al. [172] was not available for comparison, therefore the force field could not probed in this 

manner. Following up on this, Robert Best et al. used this information to benchmark the data of 

obtained from simulations of ff99SB/other variants of AMBER force fields, CHARMM-CMAP, 

OPLS-AA/L and some variants of the GROMOS force fields[152] using Ala5 peptide as their 

test model. Their results portrayed ff99SB as one of the worst performers in the list, although 

later, they issued a correction with new results that indicated that the previous results were faulty 

and that ff99SB was one of the best performers[152]. Wickstrom et al. [151] also used this model 

system and its analogous Ala3 to investigate the vicinal coupling results for ff99SB in TIP3P and 

TIP4PEw[233] water models. After this, Best et al. published revised parameters for ff99SB and 

ff03 which he denoted ff99SB* and ff03*; again using Ala5 as one of its model peptides to 

benchmark the data. Later on, Nerenberg et al. [154, 162] also used the information for Ala3 and 

Val3 scalar values to probe their modified version of the ff99SB backbone parameters, as well as 

Li et al.[90] who used Ala3 for the same purpose.  
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 For the work described here, Ala5 is being used because it has enough residues to model 

the turn of a helix[89]. Since helical propensities for small peptides are primarily governed by 

dipole interactions, having the hydrogen bonding of a helical turn would define the dihedral 

populations for this secondary structure region more accurately than for shorter homologous 

peptides. Furthermore, it is known that poly-alanine peptides have mainly ppII character; 

although as the number of residues increases, the helical content increases as well[234]. This 

system was used to evaluate the quality of simulations against experimental data, in particular 

vicinal scalar couplings and dihedral populations. This information was used to discriminate 

between force fields that were not comparable to experimental information. Figure 26 shows the 

structure of the protonated Ala5 peptide used for the simulations described here. This peptide was 

protonated in order to reproduce the low pH conditions described by Graf et al. in their 

publication [172]. The parameters for the protonated C-terminus were obtained from Wickstrom 

et al.[151]. This peptide was simulated using the Replica Exchange Molecular Dynamics method 

in order to generate converged statistics between the native and unfolded simulations. 

 

 

Figure 25 Protonated Ala5 simulated structure 

 

2.2.2 Ramachandran plots for residue 2 of Ala5 

 

 We calculated the dihedral angle populations for residue 2 from the trajectories of Ala5 at 

299K and built free energy Ramachandran plots using equation 28. Where N0 is the population of 

the most occupied bin calculated from the simulation and Ni is the population of bin i. Therefore 

the free energy of the most populated bin by definition would be zero.  

        (
  

  
) 

Equation 29 Free energy differences equation for each bin of dihedral populations obtained from simulations with Ala5 
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2.2.3 Comparing vicinal scalar couplings for simulations and experiments of Ala5 

 

 Experimental  vicinal scalar couplings measure the spin-spin interaction effects of 

neighboring nuclei in molecules. This is very useful to measure structure in bio-molecules, in 

particular, secondary structure of peptides in order to determine if they are random coiled or 

ordered[168]. However vicinal scalar coupling values obtained from NMR data alone are not 

indicative of any ordered or disordered state unless they are interpreted with the help of Karplus 

functions[174]. The functions couple the scalar values to dihedral angles in a two dimensional 

manner, due to this relation it is possible for NMR experimentalists to convert their results to 

secondary structure dihedral maps. The relation is shown in equation 29: 

    𝑐𝑜𝑠   𝐵𝑐𝑜𝑠    

Equation 30 Karplus equation that establishes the relationship between scalar coupling values and dihedral angles where 

A, B and C are specific parameters for the specific scalar value measured and θ is the dihedral angle of choice plus a 

given offset.  

 Similarly, with the help of this function it is possible to calculate scalar coupling values 

from dihedral angle populations from simulations, by using the Karplus parameters of choice, the 

equation will give the scalar value populations. There are many Karplus parameters that probe 

for backbone dihedral angles [176, 180, 181, 235], although for purposes of the work described 

here, only the parameters derived by Case et al.[235] and Hu et al. are being discussed[178].  

 The use of vicinal scalar couplings to evaluate the performance of force fields is not new, 

Graf et al. [172] pioneered this type of analysis with their work, followed by Best et al.[152], 

Wickstrom et al.[151], Nerenberg et al. [173], Lindorff-Larsen et al. [158], Li et al.[90] and more 

recently Pande et al. [164]. Primarily this type of analysis has been applied to study secondary 

structure propensities and dihedral propensities of side-chains for emerging force fields against 

some of the older versions.  

 

Although the calculation seems straightforward between angles and scalar couplings, the 

method has innate deficiencies. For example, the derivation of the parameters can be empirical, 

based on experimental data with uncertainties [235]. Furthermore, direct comparison from 

vicinal scalar couplings of experiments to simulation can also be difficult because of the nature 
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of simulations vs. experiments. In other words, simulations generate trajectories of molecular 

snapshots over periods of time, whereas NMR experiments capture one molecular snapshot at a 

given point in time where effects such as motional averaging are present. These must be taken 

into account when comparing directly to simulations where this effect is not intrinsically 

present[235].  

 

2.2.4 Karplus parameters from density functional theory (DFT) quantum calculations 

 

The parameters derived by Case et al. [235] were obtained from Density Functional 

Theory (DFT) ab initio calculations of two variants of alanine dipeptide, mainly Ace-Ala-NMe 

(DFT1) and Ala-Ala-NH2 (DFT2). Parameters were derived for vicinal scalar couplings that 

probe for the backbone’s φ/ψ angle; mainly 
3
J (HN, Hα), 

3
J (HN, Cβ), 

3
J (HN, C’), 

3
J (C’, Hα), 

3
J 

(C’, Cβ) and 
3
J (C’, C’) for the φ angle and 

3
J (Hα, N), 

3
J (N, N) that probe for the ψ angle. The 

detail of the parameters derived is given in tables 4 and 5. The experimental work published by 

Graf et al.[172] measured mostly the same scalar values as the ones described by Case et al. with 

the exception of 
3
J (C’, Cβ) for the φ angle and 

3
J (Hα, N), 

3
J (N, N) for the ψ angle. Instead Graf 

et al. [172] measured 
1
J (N, Cα) and 

2
J (N, Cα) for ψ.  

 

Table 5 Karplus coefficients for DFT1 functions 

Scalar Couplings A B C Offset 

3
J(HN,Hα) 9.44 -1.53 -0.07 -60 

3
J(HN,C’) 5.58 -1.06 -0.30 180 

3
J(Hα,C’) 4.38 -1.87 0.56 120 

3
J(C,C) 2.39 -1.25 0.26 0 

3
J(HN,Cβ) 5.15 0.01 -0.32 60 

 

Table 5 Scalar Coupling parameters for Karplus functions obtained from Density Functional Theory Calculations of Ace-

Ala-Nme dipeptide by Case et al. The parameters shown probe for the φ angle. 
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Table 6 Karplus coefficients for DFT2 functions 

Scalar Couplings A B C Offset 

3
J(HN,Hα) 9.14 -2.28 -0.29 -64.51 

3
J(HN,C’) 5.34 -1.46 -0.29 172.49 

3
J(Hα,C’) 4.77 -1.85 0.49 118.61 

3
J(C,C) 2.71 -0.91 0.21 -2.56 

3
J(HN,Cβ) 4.58 -0.36 -0.31 58.18 

 

Table 6 Scalar Coupling parameters for Karplus functions obtained from Density Functional Theory Calculations of Ala-

Ala-NH2. The parameters shown probe for the φ angle. 

Case et al. [235] reported that most of the quantum-calculated Karplus functions (DFT1 

and DFT2) agree well with empirically derived Karplus functions with the exception of 

3
J(HN,Cβ) that couples φ at -60°. The deviations between the empirical and quantum Karplus 

functions can be as high as 3 Hz as shown in figure 27. The authors mentioned that these 

discrepancies are due to motional averaging effects and to the size/identity of the side-chain used 

for the quantum calculation. Calculations with serine and higher basis set gave better agreement 

between the empirical, DFT1 and DFT2 parameters. 

 

 

Figure 26 3J(HN,Cβ) Karplus Function. The black curve corresponds to the empirically derived parameters by Hu et al. 

[175] from ubiquitin, the blue curve corresponds to the parameters obtained from DFT calculations of Ala-Ala-NH2 [235] 

dipeptide and the red curve corresponds to the parameters obtained from DFT quantum calculations of Ace-Ala-NMe 

dipeptide [235]. 

  

φ 
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2.2.5 Karplus parameters from ubiquitin 

 

These parameters were reported by Hu et al. [175] and Wirmer et al. [236]. They were 

obtained by empirically fitting the vicinal scalar coupling values from NMR spectra with 

dihedral angle populations from crystal structures of ubiquitin and staphylococcal nuclease. Hu 

et al. [175] reported parameters for 
3
J(HN, Hα), 

3
J(HN, Cβ), 

3
J(HN, C’), 

3
J(C’, Hα) and 

3
J(C’, C’) 

that probe for the φ angle, whereas Wirmer et al. [236] reported the parameters for 
1
J(N, Cα) and 

2
J(N, Cα) that probe for ψ. Contrary to the case of the parameters obtained from the DFT 

calculations that only used dihedral profiles from alanine, these parameters are obtained from 

fitting to dihedral profiles of all the amino-acids present in ubiquitin and staphylococcal 

nuclease. Intrinsically, the fitting is more robust since effects of branched amino-acids on the 

backbone dihedrals are accounted for. Such is the case of the 
3
J(HN, Cβ) value that couples φ at -

60° and is not well described by the Case et al. [235] parameters from DFT calculations. 

However, these fittings are “empirical” and have “uncertainties” within that need to be accounted 

for in the calculations. For the work described here, these parameters will be termed “Original” 

parameters as Best et al. [152] and Wickstrom et al. [151] had denominated them from their 

published work. The details of the parameters are given in table 7. 

Table 7 Karplus coefficients for calculations of scalar values also known as original 

parameters with uncertainties (σi) from experiments 

Scalar Couplings A B C Offset σi 

3
J(HN,Hα) [175] 7.09 -1.42 1.55 -60 0.91 

3
J(HN,C’) [175] 4.29 -1.01 0.0 180 0.59 

3
J(Hα,C’) [175] 3.72 -2.18 1.28 120 0.38 

3
J(C,C) [175] 1.36 -0.93 0.60 0 0.22 

3
J(HN,Cβ) [175] 3.06 -0.74 0.13 60 0.39 

1
J(N,Cα) [236] 1.70 -0.98 9.51 0 0.59 

2
J(N,Cα) [236] -0.66 -1.52 7.85 0 0.50 

 

Table 7 Karplus coefficients parameters reported by Hu et al. [175] and Wirmer et al. [236]  obtained from NMR and 

crystallographic data of Ubiquitin and Staphylococcal Nuclease. 1J(N,Cα) and 2J(N,Cα) are the only scalar couplings that 

probe for ψ angle. The other scalar couplings probe for φ angle 
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2.2.6 χ
2 

value calculation for vicinal scalar couplings 

 

 Best et al. [89] used this calculation in order to determine how well AMBER, OPLS and 

GROMOS force fields were reproducing experimental scalar coupling values for Ala5. He also 

used this calculation to validate his modifications of ff99SB and ff03 named ff99SB* and ff03*. 

Wickstrom et al. [151] used as well for her validation of ff99SB simulations with TIP3P and 

TIP4PEw water models; measuring scalar couplings for Ala3 and Ala5 peptides. Nerenberg et al. 

[154] did the same as Best et al., although they included calculations for Ala3, Gly3 and Val3 

peptides in their report and Li et al. [90] used this calculation for validation of their force field 

including only calculations for Ala3 peptide. As previously done we used this calculation to 

evaluate the quality of the modifications proposed here as previously reported. The details of the 

χ
2
 value calculation are included in equation 30. Since the DFT1 and DFT2 parameters do not 

have Karplus coefficients for vicinal scalar couplings that probe the ψ angle, in order to keep the 

calculations even for all the cases of parameters (DFT1, DFT2 and Original) the original 

coefficients that probe for the ψ angle were used to calculate χ
2
 values for all parameters. In other 

words, χ
2
 values were generated for each of the Karplus parameters (DFT1, DFT2 and Original) 

independently, using the original coefficients for the calculations of the 
1
J(N,Cα) and 

2
J(N,Cα) 

scalar couplings that probe for ψ in all cases. Besides these scalar couplings mentioned here, 

there was an additional vicinal scalar coupling value that was included in the calculation known 

as 
3
J(HN,Cα). This scalar coupling couples the φ and ψ angles and its definition is two 

dimensional. The coefficients for this scalar coupling were borrowed from the work of Hennig et 

al. [237], who used NMR data for the fitting. Since Graf et al. included it in their report, Best et 

al. and Wickstrom et al. included it in their work as well. The details for the parameters of this 

“special” Karplus function are explained in table 8.  







N

i i

tisimi JJ

N 1
2

2

exp,2
)(1




 

Equation 31 χ2 calculation to evaluate the agreement between results obtained from simulations and experimental vicinal 

scalar couplings. N is the number of vicinal scalar couplings measured (7 in this case). <Ji> sim is the average of scalar 

value obtained from the simulation trajectory. Ji, expt is the scalar value from experiments and σi is the uncertainty for the 

scalar values from experiments 
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Table 8 Karplus coefficients for 
3
J(HN,Cα) scalar coupling that probes for φ and ψ angles 

Scalar 

Coupling 

A B C D E F G H I 

3
J(HN,Cα) -0.23 -0.20 0.07 0.08 0.07 0.12 -0.08 -0.14 0.54 

 

Table 8 Karplus coefficients for the 3J(HN,Cα) vicinal scalar coupling that couples φ and ψ. The equation for the Karplus 

function is given by 3J = A cos (φ) + B cos (ψi-1) + C sin (φ) + D sin (ψi-1) + E cos (φ)cos(ψi-1) + F cos (φ)sin (ψi-1) + G sin 

(φ)cos(ψi-1) + H sin (φ) sin (ψi-1) + I 

 

2.2.7 Using 
3
J (HN,Hα) scalar coupling for the initial assessment of the quality of 

modifications 

 

The 
3
J(HN,Hα) vicinal scalar coupling is one of the few vicinal scalar couplings that has a 

wide range. This has made it useful for the initial assessment of secondary structure propensities 

because it makes it easier to distinguish between helical/ppII conformations and β conformations 

while probing the φ angle distributions. It has a wide range of values between 2 and 11 Hz 

depending on the Karplus parameters chosen for the fitting. This wide range allows for clear 

distinction of specific regions in φ dihedral space. 

  As previously discussed, the results from the simulations of AMBER ff99SB for residue 

2 in Ala5 indicated that the scalar coupling value was 6.99 Hz whereas the experimental value is 

5.59 Hz. This result is indicative that the simulations are considerably sampling high scalar 

coupling values. As shown in figure 3, the dihedral populations in the -150° ≤ φ ≤ -120° region 

are contributing to this large value. In order to reduce the average value of the scalar coupling 

close to 5 Hz, it was necessary to increase the sampling in the φ = -60° region. From the 

3
J(HN,Hα) values it is possible to roughly infer how the other scalar coupling values will behave 

for the rest of the modifications. 

2.2.8 Secondary structure basin definitions 

 In order to determine how the secondary structure propensities were being affected by the 

modifications, we calculated the basin populations from simulations according to the definition 

previously reported by Wickstrom et al. [151]. Similar calculations were reported by Graf et al. 
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[172] and Best et al. [89] for their work. Although the definitions of their secondary structure 

basins were different because Graf et al. used the scalar coupling values obtained from 

simulations to estimate the populations whereas Best et al. used almost the same definition 

described here with the exception of the extended β-strand conformation, (-180° to -90°, 50° to 

240°; or 160° to 180°, 110° to 180°) The definitions of the four principle regions for the work 

described here were as follows: right handed helix (αR), (φ,ψ) ~ (-160° to -20°, -120° to +50°); 

extended β-strand conformation, (-180° to -110°, 50° to 240°; or 160° to 180°, 110° to 180°); 

and poly-proline II, (-90° to -20°, 50° to 240°). The number of structures in individual regions 

were summed and divided by the total number of structures. Then, they were multiplied by 100 

to get the percentages in each basin. Error bars were taken from independent runs.   

 

2.2.8.1 Secondary structure free energy maps for alanine dipeptide  

 

 Following up on the information provided by the secondary structure basin information, 

free energy maps were calculated for some of the modifications using umbrella sampling 

simulations for alanine dipeptide (N-acetyl alanyl-N-methyl-amide). Small peptides such as this 

have been previously used for parameterization of force fields as in the case of Cornell et al. ff94 

[134] and Kollman et al. ff96 [144].  

 In order to quantify in terms of energy the results for the secondary structure basins from 

the Ala5 simulations, potential mean force maps were calculated for some of the best 

modifications and ff99SB. This information was useful to determine how the dihedral maps were 

changing with the different parameters. These results were compared against the results of 

ff99SB to see how the different regions were changing between modifications. 

2.2.9 Using Val3 peptide to compare vicinal scalar couplings between simulations and 

experiments 

 

In order to further investigate the performance of the force fields in another small system 

analog to Ala5, we tested all modifications in a small peptide known as Val3 (figure 28) for 

which experimental data was also published in the work of Graf et al. [172]. Simulations for this 

peptide were previously reported by Nerenberg et al. [154] intended to validate their 
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modification to the AMBER ff99SB backbone dihedral parameters. This peptide is useful to 

investigate how the secondary structure propensities are being affected by the modifications 

proposed here because this peptide is considered to have extended β character according to 

previously documented experimental findings [195] [196]. Since the proposed modifications are 

designed to increase the sampling in the ppII region, the simulations from this peptide will help 

us to indicate how the modifications are affecting the β region. 

 

Figure 27 Val3 protonated structure used for simulations in order to compare to the experimental data published by Graf 

et al. [172].  

One of the assumptions for the modifications of the φʹ torsional potential based on scalar 

coupling values of Ala5 is that all amino-acid residues have similar φ angle dihedral behavior. In 

other words, fitting the energy function in order for the simulation results to match the dihedral 

behavior of poly-alanines should also improve the agreement of the dihedral behavior for other 

amino-acids; in this case, valine. Although this is partially true, the effect of side-chain dynamics 

in the backbone conformations cannot be neglected and is not addressed in the fitting presented 

here. Therefore, the results obtained might be indicative of this behavior. The vicinal scalar 

couplings studied and the methods used for this peptide are the same as in the case of Ala5 

discussed previously [172]. Like Ala5, the peptide is protonated in order to reproduce the 

experimental conditions described by Graf et al. [172]. 

2.3 Evaluating helical propensities for modifications 

 

 One of the goals of this thesis is to determine if the proposed modifications are 

appropriate to address the issues of helical propensities for AMBER ff99SB. In order to do this, 

the modifications that have the best results for the poly-alanine peptides were tested against two 

model helical peptides. To our knowledge these model peptides have not been used for this 
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purpose before, however they have experimental data that was used to estimate how the helical 

propensities were behaving. Initially, a small helical peptide known as the Hydrogen Bond 

Surrogate peptide [168] was evaluated, then the testing was extended to a longer helical peptide 

known as K19 [167]. 

 

2.3.1 Hydrogen Bond Surrogate (HBS) peptide 

 

The Bcl-2 protein family has an essential role in the regulation of cell apoptosis. Some 

members of the family, in particular Bcl-2 and Bcl-x(L) inhibit cellular apoptosis, whereas others 

such as Bak and Bax stimulate cell death. It is known that the BH3 domain of the Bak protein is 

responsible for regulating binding to other pro-apoptotic members of the family such as Bax, Bik 

and Bad [238]. Furthermore, truncated sequences of the BH3 domain have been reported to be 

enough to induce apoptosis in transfected cells [239]. 

 

Following up on this notion, Wang et al. [168] generated truncated sequences of the BH3 

domain consisting of only ten amino-acid residues. However, stabilization of short peptides like 

this can be challenging due to the energy penalty of helix nucleation [240, 241]. Short peptides 

that are made out of 10 residues or less are in essence unstable due to low helix nucleation 

probability [242, 243]. In order to overcome this, the peptide sequences were stabilized by 

introducing a 1C=1Cʹ--5C-5N covalent bond between residues 1 (cap) and 5 (alanine) at the N 

terminus as seen in figure 29 and figure 30. The idea behind this approach was to generate a 

stable helical domain by promoting a pre-organized helical turn that would increase the 

nucleation probability and mimic the function of Bak-BH3 domain which interacts with the Bcl-

x(L) target protein.  

 

In fact it was demonstrated that this was the case when experimental binding assays were 

performed [244]. This approach has been applied to other protein drug targets successfully as 

well [245, 246] [247, 248]. 
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Figure 28 Left panel corresponds to Hydrogen Bond Surrogate (HBS) Peptide as described by Wang et al. [168]. Left 

panel corresponds to the experimental sequence and the right panel corresponds to the simulated sequence 

AcQVARQLAEIY-NH2.  

 

For the purpose of the work described here this peptide was used to evaluate helical 

propensities for the modifications proposed. This peptide was chosen because of its size that 

makes it suitable for Replica Exchange Molecular Dynamics and because it has 
3
J (HN-Hα) 

vicinal scalar coupling data available. Replica Exchange Molecular Dynamics was chosen for the 

simulations because it is a method that enhances conformational sampling [249-251]. 

The covalent bond described by experiments was not implemented in the simulations 

because it would require validation of the charges along with the backbone parameters involved 

in the C-C covalent bond described by Wang et al.[168] as seen in figure 30. This would add 

more unknowns to the fitting. In order to overcome this, bond angles and bond distances were 

restrained harmonically to covalent bond parameters of AMBER force fields. The length of the 

bond between the cap and Alanine 5 (1O-5H) was restrained to 1.522Å with a weight of 317 kcal 

mol
-1

Å
-2

. The 1C=1O-5H angle was restrained to 120° with a weight of 80 kcal mol
-1

 rad
-2

 and 

the 1O-5H-5N angle was restrained to 110.1° with a weight of 63 kcal/mol/rad
2
.  
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Figure 29 Left panel: Canonical hydrogen bond pattern in alpha-helices. Right panel: Hydrogen Bond surrogate pattern. 

Image taken from [252] 

  

 Besides motional averaging effects intrinsic to the nature of results obtained from 

experiments, direct comparison between experiments and results from simulations can be 

challenging; especially in this case, where the covalent bond description from experiments was 

not implemented in the simulations. Nevertheless, the helical propensities for the other residues 

that are not part of the Hydrogen Bond Surrogate (HBS) region should follow the same trends as 

in the experiments.  

 Previously there was a molecular dynamics study dedicated to investigate the binding 

mechanism of HBS helix to Bcl-xL in comparison to the binding mechanism of wild type Bak to 

Bcl-xL [253]. However, protein folding studies have not been reported for this peptide to our 

knowledge. Furthermore, this peptide has not been used for the validation of force fields 

parameters recently, and no previous simulation information is available that is comparable to 

what is proposed here. Previous work such as the one published by Best et al.[89] used Ac-

(AAQAA)3-NH2 peptide, a small fragment of lysozyme known as 19-HEWL, GB1 hairpin, 

Trpcage, Villin HP35 and Pin WW to validate their force fields[89, 159-161]. Pande et al. [164] 

used dipeptides, tri-peptides, tetra-alanine and ubiquitin to investigate how the force fields 

reproduced NMR observables. Nerenberg et al. [154] also used small tri-peptides for the 

validation of their force field along with ubiquitin. The Ac-(AAQAA)3-NH2 could have been 

used for the validation of the helical propensities as Best et al. had done[89], however this 

Alanine 

Cap 

Alanine 

Cap 
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peptide is quite homologous and does not have scalar coupling information available for 

comparison. The HBS peptide has this information available and it also has more diversity of 

amino-acids since it would be highly desirable to evaluate the helical propensities of the 

modifications for more amino-acids other than alanine. 

 

2.3.2 K19 peptide 

 

 In order to further validate the helical propensities of the modifications proposed, it was 

necessary to study another helical peptide that would be longer than the HBS peptide and that 

would not require bond constraints as previously described for this peptide system. Previously 

the work by Graf et al.[172] and Best et al. [89] used the 19-mer of Hen Egg White Lysozyme 

(19-HEWL) for the validation of their force field. This peptide was particularly useful for them 

because Graf et al. [172] measured scalar coupling information available that they could compare 

against their simulation results. They also used the Ac-(AAQAA)3-NH2 peptide as a benchmark 

for their validation of force fields. Furthermore, designed alanine rich peptides in which polar 

amino-acid residues are introduced into the sequence are popular to study helix formation 

experimentally [242, 254-259] and computationally [141, 259-261].  

 These two peptides used by Graf et al. and Best et al. could have been used for the 

validation of the parameters described here as well, however only the information provided by 

Graf et al. [172] was available for comparison and validation. It was decided to use another 

peptide known as K19 for which more experimental information (other than NMR) and 

simulation data was available[167].   

 K19 is an alanine rich peptide with transient helical nature, in which Lysine residues have 

been introduced in order to make it more soluble[167]. Furthermore it was reported that this type 

of peptides benefit from glycine N-capping by enhancing fractional helicities greater than 40% at 

any position in the sequence [167]. This effect was not as marked when C-capping was 

introduced based on the data obtained from experiments however the effect was more noticeable 

from simulation results [167]. Apparently when the cap at the N-terminus is removed, helix 

fraying appears due to the lack of hydrogen bonding that supports helix formation. The 
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introduction of polar amino-acids, in particular positive side-chains at the C-terminus was also 

investigated; it showed enhanced helicity for this peptide due to favorable interactions with the 

helix macro-dipole. Seemingly charged side-chains protect the backbone’s hydrogen bonds from 

contact with water [141]. 

 This peptide was chosen in order to evaluate the helical propensities in a larger system 

for which experimental information is available (CD and NMR), without the need to impose 

distance and angle restraints as in the case of the Hydrogen Bond Surrogate Peptide (HBS). This 

peptide has been studied previously with implicit solvent simulations [167]. However in the 

work described here, the simulations were done with explicit TIP3P solvent model. 

 The structure of the K19 peptide is described in figure 31 

 

 

Figure 30 K19 Peptide 

 

2.2.2.1 Definition of helical content for HBS Peptide 

 

Wang et al [168] defines helical content as percent helicity which was measured from CD 

experiments as the ratio [θ]222/[θ]max, where [θ]max = -23,400. The concentration was determined 

by monitoring the absorbance of the tyrosine residue under denaturing conditions. In the case of 

K19, the experimentalists measured Chemical Shift Deviations (CSD) in order to calculate 

fractional helicities. Although it is possible to use chemical shift libraries for prediction 

measurements from simulations, the assignments for the peaks are usually done with software 

Ac-GGG(KAAAA)3K-NH2 
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packages that are based on empirical assignment from these libraries. Furthermore, these 

software packages are trained to predict chemical shifts which are taken from NMR ensemble 

averages; therefore the method can become less sensitive to conformational variations that 

contribute to the experimentally measured average. In other words, the software package can 

prefer the static experimental conformation and incorrectly predict chemical shifts from 

conformational dynamics from simulations [262].  Since we cannot measure how the backbone 

of the protein absorbs polarizable light through its amide bonds, or the measurement of chemical 

shift deviations from simulations is currently a method that has not been extensively validated, 

we ought to use another way to quantify helical content in a matter measurable from simulations.  

 

In order to solve these issues, we used an alternative helical content definition that was 

defined as the amount of residues that adopt helical hydrogen bonding as defined by Dictionary 

of Protein Secondary Structure (DSSP) analysis [183]. Only the residues listed as α-helical (H) 

or 310 helical (G) were included in the calculation of the average. DSSP defines the intra-

backbone hydrogen bonds of the protein through electrostatics, assuming partial charges of -

0.42 e and +0.20 e to the carbonyl oxygen and amide hydrogen, their opposites assigned to the 

carbonyl carbon and amide nitrogen.  A hydrogen bond is identified if E in the following 

equation is less than -0.5 kcal/mol: 

 

       {
 

   
 

 

   
 

 

   
 

 

   
}       𝑐    𝑜  

Equation 32 Intra-backbone hydrogen bond energy definition given by DSSP analysis. 

  

 One of the basic patterns for secondary structure definition is the turn. A residue is 

assigned as turn if it has a hydrogen bond from the oxygen of the C=O of amino-acid i to the 

hydrogen of the H-N of amino-acid i+n; where n = 3, 4, 5. There are three types of turns: turn 1 

where the backbone dihedral angles of amino-acid i are (-60 = υ, -30 = ψ) and the dihedral 

angles for amino-acid i+1 and i+2 are (-90 = υ, 0 = ψ).  Turn 2 where the backbone dihedral 
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angles of amino-acid i are (-60 = υ, 120 = ψ) and the dihedral angles for amino-acid i+1 and i+2 

are (80 = υ, 0 = ψ), and turn 3 where the backbone dihedral angles of amino-acid acid i are (-60 

= υ, -30 = ψ) and the dihedral angles for amino-acid i+1 and i+2 are (-60 = υ, -30 = ψ). Turn 3 is 

considered a single unit of a helix. A minimal helix is defined by two consecutive type 3 turns 

[183]. Longer helices are defined as overlaps of minimal helices, in the case described here, only 

the overlaps of 3-helices (310) and 4-helices (α) are considered for the calculation. 

 

 The secondary structure type was calculated for every residue per picosecond, with the 

exception of the 1
st
, 2

nd
 and last residue of the peptide. These residues are excluded from the 

calculation because in the case of the 1
st
 and 2

nd
 residues they don’t have preceding residues (i-1 

and i-2) in order to form turns as previously described. In the case of the last residue, it does not 

have following residues (i+1 and i+2) that would form turns. The average was calculated by 

dividing the total number of residues in the (H) or (G) conformations by the total number of 

possible helical residues (7 for HBS peptide and 18 for K19 peptide). The simulation 

temperature used for this analysis was 300K as the experimental information for both peptides 

was obtained at this temperature.    

 

2.3 Comparison of backbone NMR order parameters for Lysozyme and Ubiquitin 

 

 One of the standards for which force fields are evaluated is internal backbone dynamics 

in the form of order parameters. The comparison between NMR order parameters obtained from 

MD simulations and spin relaxation data has become customary for lysozyme and ubiquitin [4, 

69, 72, 90, 154, 263-268] and necessary for this purpose. As previously described (section 

1.5.10) the implementation of the Lipari-Szabo method as described by Prompers et al. [230], 

was applied to MD simulations of lysozyme and ubiquitin.  

 

 Lysozyme is a well-known and characterized protein with vast amounts of experimental 

information available such as NMR nuclear relaxation data [4, 69, 72, 198, 265] as well as 
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ubiquitin [269]. The validation of force field quality against these experimental observables has 

become customary and necessary; most of the time when new modifications to the existent force 

fields are implemented, simulations comparing experiments in simulations are reported as in the 

case of GROMOS [263, 264], CHARMM [266, 270] and AMBER [89, 90, 154, 158, 268]. 

Following up on this validation we also calculated NMR order parameters for the postulated 

modifications and compared to the experimental data available following the conditions 

described by Koller et al. [198]. The simulated structures of lysozyme and ubiquitin are shown in 

figures 32 and 33 

 

 

 

 

Figure 31 simulated lysozyme structure. PDB access code 1IEE 
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Figure 32 simulated structure of ubiquitin. PDB access code 1UBQ 

 

2.4 Evaluating β secondary structure propensities for modifications 

 

 One of the goals of this thesis is to increase the helical propensities for simulations of 

transient helical peptides, however since the dihedral parameters for classical AMBER force 

fields are decoupled; small changes to the energy function as the ones proposed here will 

influence secondary structure propensities elsewhere. The proposed modifications to the 

backbone dihedral energy functions are minimal; nevertheless it is necessary to determine how 

these changes will affect β structures for simulations. Ideally the force field parameters should be 

robust enough in order to simulate diverse secondary structures without preferring specific ones. 

In order to corroborate this, β-hairpins ranging from 10 to 16 amino-acid residues were simulated 

for comparison to the secondary structure propensities to ff99SB to investigate how the newly 

developed parameters were performing with β structures for both hairpins. The metric for this 

test was agreement with backbone root mean square deviation to the native structure. For this 

particular testing we used four hairpins chignolin [185], CLN025 [186], GB1m3 and HP5F 

[191].  

 



81 
 

 

 

2.4.1 Testing CLN025 and HP5F hairpins in implicit solvent simulations 

2.4.1.1 CLN025 

 

 

 CLN025 [186] is a hairpin that originated from the chignolin peptide [185]. This peptide 

was designed to be more stable than its predecessor chignolin by mutating the glycine residues at 

the termini to tyrosine residues. It is stabilized by electrostatic contacts between the charged 

termini, cross-strand hydrogen bonds. Furthermore, for this hairpin, almost 50% of the amino-

acid sequence is aromatic; which also suggests a strong influence of aromatic interactions that 

stabilize its fold. Other interactions such as cation-π interactions have been described for this 

peptide [271]. 

 

 

 One of the  features that makes CLN025 useful for protein folding simulations is its fast 

folding properties previously described by Davis et al. [272]  in the nanosecond time scale. 

Previous experimental/MD simulation work published by Hatfield et al. [271, 273], Lindorff-

Larsen et al. [73] reported folding mechanisms for this small peptide as well. Its size of only 10 

residues also makes it attractive for experimental and MD simulations, hence it has become a 

popular test model [73, 271, 273-277] for protein folding. Details for the peptide are specified in 

figure 34. 
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Figure 33 CLN structure, amino-acid sequence = YYDPETGTWY. Bio-magnetic Resonance Bank (BMRB) access entry 

20009 

 Simulations for this hairpin were ran with Replica Exchange Molecular Dynamics 

(REMD) [249, 250] in implicit solvent in order to obtain converged results between native and 

extended conformations. This solvent model was used for these simulations because it simplifies 

the calculations by representing the solvent around the peptide as a continuum. Only the internal 

atomic interactions of the molecule are computed in the simulation which makes the Replica 

Exchange method feasible for this system. Subsequently one of the limitations of the Replica 

Exchange method is that the number of replicas required for the simulation increases as the size 

of the system increases; hence, including the solvent explicitly will increase its size, requiring 

large number of replicas for the simulation. Furthermore, replica exchange molecular dynamics 

of large systems have been reported as problematic [278, 279] 

 One of the challenges of using implicit solvent models such as Generalized Born is that 

they have limitations that have been previously reported [9, 193, 280-283] such as secondary 

structure preferences for different models and over-stabilization of salt bridges. Nevertheless, the 

method is still used for simulations of large biomolecules [284-286] and its results reproduce the 

trends observed in explicit solvent simulations [261, 286, 287]. 
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2.4.1.2 HP5F 

 

 Further testing with a different hairpin was necessary in order to determine if the results 

obtained with CLN025 were transferable to other hairpins. We used HP5F because it is a longer 

hairpin unrelated to CLN025 and it has been simulated previously for the parameterization of 

Generalized Born solvent models using ff99SB as the chosen force field [193]. The previously 

obtained information for ff99SB served as a measurement of how the modifications were 

performing in comparison to ff99SB and to determine if the results obtained from simulation had 

reasonable agreement. 

 

 

 HP5F (figure 35) is a 16 residue hairpin that was obtained from mutational experiments 

designed to stabilize the second hairpin of the protein GB1 domain. The mutations were 

specifically designed to enhance the turn region and to favor Coulombic interactions at the 

termini. The optimization of the turn region was done based on database search of amino-acids 

that commonly occur in turn regions of hairpins like this [191]. The termini residues were 

mutated to Lysine in order to favor hydrogen bond interactions between the two strands in the 

peptide [191]. Along with HP5F, Fesinmeyer et al. [191] reported other hairpin systems where 

stability was increased as much as 7 kJ/mol. The reported HP5F sequence was one of the 

hairpins with higher stability where it was reported to be 82 ± 4% as per chemical shift deviation 

experiments [191].   
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Figure 34 Structure for HP5F hairpin obtained from mutations to the GB1p[288] hairpin. The amino-acid sequence for 

this hairpin is KKYTWNPATGKFTVQE 

2.4.2 Simulations of Hairpins in Explicit TIP3P waters 

2.4.2.1 Chignolin 

 

 In order to further validate the results obtained from the implicit solvent simulations for 

hairpins, testing continued in explicit solvent. The goal of this testing was to determine if the 

modifications would cause the simulated conformations to frail in a given period of time. In 

other words, the conformations would be destabilized throughout the simulation which would 

indicate the fallacies of the modifications proposed. Chignolin was chosen for this type of 

simulation because is small like CLN025 and has transient β-hairpin structure contrary to 

CLN025 which has higher thermodynamic stability. The chosen peptide ought to be able to 

sample both folded and folded states for the given amount of time that the simulation took place 

(100 ns). The intention was not to run folding simulations of this peptide, instead it was 

necessary to observe if the peptide could fold and unfold without preferring a specific state. 

  Chignolin is a 10 residue peptide (figure 36) with melting temperature at 315K[185] 

designed from the G-peptide scaffold reported by Honda et al. in 2000 [289]. G-peptide is 

constituted by 16 residues taken from the section of amino-acids 41-56 of the protein G B1 

domain. Originally Blanco et al. reported this peptide to fold into a hairpin in aqueous solution in 

1994 [192] without the need to introduce any mutations to enhance its stability. Honda et al. 
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[185] selected 8 residues from this peptide that would rationally form a stable β-hairpin using 

secondary structure propensity information for all amino-acids from databases of proteins of the 

Protein Databank; this information was obtained from more than 100 non-homologous proteins.  

 

 Similar to CLN025, this peptide has been used for experimental [187, 188, 290] and 

protein folding simulation studies [53, 55, 59, 190] making it popular as a model system. 

Recently Best et al. used this peptide for force field validation of ff99SB, ff03*, ff03w and 

CHARMM22/CMAP [59] against NMR observables.  

 

Figure 35 Structure of chignolin. PDB access code 1UAO 

  

 Native and extended conformations of this peptide were simulated in explicit solvent for 

approximately 100 ns in order to determine if it would unfold in this time as a measure of the 

effect of the modifications in the stability of the peptide. The results were compared against the 

results obtained from simulations of ff99SB. 

2.4.2.2 GB1m3 

 

 Similarly to the case of implicit solvent simulations, it was necessary to test the hairpin 

stability for a peptide longer than chignolin. As previously described the goal of this testing is to 

test the stability of the structure for a given period of time in explicit solvent in order to validate 
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the modifications proposed. 

 This hairpin is homologous to HP5F peptide, both peptides were derived from the GB1p 

sequence by Fesinmeyer et al. [191]. The differences between these two hairpins are illustrated 

in figure 37. Both hairpins have comparable stability at room temperature (82 ± 4% for HP5F 

and 86 ± 3% for GB1m3). Structurally, the only difference between these two hairpins is at the 

3
rd

 and 5
th

 positions, where tryptophan and tyrosine are interchanged between the sequences (see 

figure 37). Both of these hairpins have been used for the validation of revised implicit 

Generalized Born parameters and protein folding studies [56, 75, 91, 193, 194, 291], where 

GB1m3 has more simulation reports than HP5F with explicit solvent models. We chose GB1m3 

since this hairpin has more previous explicit solvent simulation data available for assessment of 

the quality of simulations.  

 

HP5F Sequence KKYTWNPATGKFTVQE 

GB1m3 Sequence KKWTYNPATGKFTVQE 

Figure 36 GB1m3 hairpin and comparison between GB1m3 and HP5F hairpin sequences 

 

 

2.4.3 Definition of folded structures for hairpin simulations 
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2.4.3.1 CLN025 and HP5F REMD simulations 

 

 Native structures from simulations were defined as snapshots from the trajectory that had 

a backbone Root Mean Square Deviation (RMSD) of 2.0Å or less to the NMR structure (BMRB 

entry 20009). This metric was obtained by plotting the histogram distribution of the backbone 

RMSD values obtained from simulations with ff99SB force field. 

  As seen in figure 38, the RMSD distribution is the greatest for values close to 2.0Å. 

Then there are other distributions around 3-4 Å. In order to determine if the characteristics of the 

native hairpin were still present in these populations around 2.0Å, the trajectory was visually 

inspected to evaluate for the correct backbone fold and hydrogen bonding pattern of residues. 

We did not elaborate on other metrics such as side-chains RMSD; side-chain stacking that can 

define the native state more thoroughly. This is a limitation of the metrics used for this analysis 

because the description of native can be considerably broad and not specifically defined. 

Nevertheless, this metric can help to determine if the modifications are affecting the canonical 

backbone definitions for a hairpin which would indicate problems with the secondary structure 

propensities of the force fields being tested. 

 

Figure 37 Histogram analyses for the definition of the native state cutoff. This information was obtained from replica 

exchange molecular dynamics post-processed temperature trajectory at 300K. The simulation was done with ff99SB for 

CLN025 hairpin. The backbone RMSD was calculated by measuring the distances for the N, Cα and C atoms of all amino-

acids excluding the N and C terminus.  
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 After this analysis was done, it was decided that this was an appropriate measure since 

the features of the hairpin were seen within this range according to the histogram analysis. The 

trajectories used for this analysis were the post-processed temperature trajectories at 300K. We 

compared the results obtained from simulations for each of the force fields being tested. 

 

 In the case of the HP5F hairpin the definition of native was borrowed from the work 

described by Nguyen et al. where they used a similar  hairpin definition for the validation of their 

revised implicit solvent parameters [193]. They used a similar approach as described here to 

define their cutoff of 2.5Å. 

 

2.4.3.2 Melting curves from backbone RMSD values 

 

 One of the reasons for using Replica Exchange Molecular Dynamics is that you have 

several simulations running at different temperatures; in the case of CLN025 and HP5F the 

temperatures used for the simulations were 280K, 300K, 315K, 325K, 340K, 360K, 380K and 

400K. Since the method allows for exchanges between the different replicas, the replica 

trajectories were post-processed to include the trajectory information of each temperature into 

separate “temperature trajectories”; in other words separating each temperature trajectory 

information from the independent replica trajectories. After this, backbone RMSD values were 

measured for each of the temperature trajectories ranging from 280-400K. Then the structures 

that had backbone RMSDs ≤ 2.0Å were counted and divided by the total number of structures of 

each temperature trajectory and multiplied by 100 in order to determine the fraction folded. This 

was done to obtain populations of native structures as a function of temperature as in a melting 

curve. In order to have error bars for this information, this procedure was applied to native and 

extended simulations of both hairpins as in the case of the work of Nguyen et al. [193]. 
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2.4.4 Chignolin and GB1m3 MD simulations 

 

 In the case of chignolin and GB1m3 simulations, only the backbone RMSD of the MD 

trajectories was measured as a way to determine how the simulation was sampling the different 

RMSD values for 100 ns. This was done to the native and extended structures of both hairpins in 

order to determine how the backbone of the hairpin was behaving in this given time and not 

intended to define folded states; instead this measurement was used to conclude the stability of 

the hairpin structure during this time.  

 

2.4.5 Workflow for the validation of the modifications 

 

 

Figure 38 Workflow for the validation of force field parameters 
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2.5 Simulation Methodology 

 

2.5.1 Molecular Dynamics and Monte Carlo Simulations 

 

 Molecular dynamic (MD) and Monte Carlo (MC) simulations have increased in 

popularity as computational power has increased. This is partially because other methods such as 

ab initio calculations require extensive quantum mechanical calculations of wave functions for 

each atom. As the size of molecules increases the amount of calculations increases as well, 

likewise requiring more computer power. Even with the increased speed and memory power in 

modern computers, this method still remains computationally expensive and time consuming. 

Furthermore, ab initio calculations limit the amount of possible conformations being studied.  

On the other hand, the implementation of molecular mechanics methods to 

macromolecules like proteins and DNA has become routine. Proteins and DNA are of particular 

interest because of their role in cell biology and disease, making them preferred targets for drug 

development and novel therapeutics. Thus, MD and MC simulations have increasingly played a 

significant role in the interpretation of experiments, likewise serving as a tool to complement the 

results obtained. This can be appreciated in the growing application of MD/MC dynamics to 

structure refinement of NMR and X-ray crystallographic data as well as structure prediction. 

At the moment MD/MC simulations in the nanosecond time scale are quite feasible 

allowing for direct assessment of the quality of simulations against hetero-nuclear NMR spin 

relaxation. In certain cases, other NMR observables such as chemical shifts, scalar J couplings, 

residual dipolar couplings (RDC) and order parameters can be detected at this time range as well; 

nevertheless wider ranges to the millisecond time scale can also be identified. Likewise, certain 

protein motions have longer time scales that require longer simulation time in order to be 

sampled.  

As faster algorithms for computer simulations are being developed, μs/ms simulations 

have become more achievable and customary. Nevertheless, enhanced sampling MC methods are 

still necessary to study events such as protein folding and chemical processes at higher time 

scales. One of the methods described below is Replica Exchange Molecular Dynamics. 
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2.5.2 Replica Exchange Molecular Dynamics REMD 

 

This method also known as multiple Markov chain method and parallel tempering[249] is an 

enhance sampling method in which multiple replicas of the same simulation run simultaneously 

and independently for a certain number of Monte Carlo or Molecular Dynamic steps [250]. The 

method allows for effective sampling of rough energy landscapes so trapped states in the 

simulation can escape local minima until the reach the global minimum. As shown in figure 40 

multiple copies of simulations are setup to different temperature conditions. The simulations are 

allowed to proceed and every few simulation steps the copies of the simulation or “replicas” 

attempt to exchange following a stochastic criterion.   

 

Figure 39 Replica exchange molecular dynamics scheme [292] . Multiple replicas proceed and attempt to exchange given 

the REMD metropolis criterion 

In principle the simulations follow a random walk in energy and coordinate space as 

described by figure 41. This random walk allows for different states of the simulations to 

exchange as the simulation proceeds promoting wider sampling of the energy landscape in 

comparison to the sampling that could be obtained from canonical MD simulations. As seen in 

figure 41 the low and high energy conformations can interchange, speeding the path for the 

structure to reach its native state.  
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Figure 40 Replica Exchange Molecular Dynamics (REMD) diagram 

 

 The method requires that the simulation copies be closely distributed in temperature 

space. In other words, the energy distributions must overlap in order for the exchange 

probabilities not to be zero. If the temperature distribution is not closely and evenly spaced in 

between replicas the simulations will not attempt to exchange and the desired results will not be 

obtained. The results obtained would be comparable to multiple parallel canonical MD 

simulations. Due to this requirement the method has limitations; it is limited to the size of the 

system being simulated. The amount of required replicas for simulations is proportional to the 

size of the system. If the size of the system is considerably large it will require a large number of 

replicas as well. Since the temperature range must be closely and evenly distributed in order for 

the exchange probabilities not to be zero the range of temperatures must be large in order for the 

probabilities to overlap. This makes the energy space difficult to sample in order to obtain 

converged results because the exchange between distant replicas will not be as often as in the 

case of more compact energy landscapes. Besides this, computer power also limits the possibility 

of large number of replicas as large numbers of processors are required for this type of 

calculations.  

The criterion for the exchange process to converge towards an equilibrium distribution 

Coordinates 
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requires imposing the detailed balance condition on the transition probability w (X  Xʹ) as 

described by equation 32 where the criterion for exchange is explained in detail: 
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Equation 33 Derivation of the energy criterion for exchanges in REMD simulations[250]. 

 

The method has been widely reported to simulate molecular processes such as domain 

dynamics[250], amyloid formation[293], protein folding [39, 48, 64, 76, 294] and protein ligand 

binding[295] . We used this method in order to produce converged results from simulations and 

to generate robust statistics. This method was used with implicit Generalized Born (GB) and 

explicit solvent models. 
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2.6 Solvation 

 

Protein-solvent interactions play an important role in the events conducting to protein 

folding, stability, catalytic activity, association and ligand binding. They have also become an 

attractive target for biotechnology development of protein applications such as development of 

strategies for the purification and storage of proteins, as well as food processing and 

preservation. Therefore, solvation plays an essential role in molecular dynamic simulations 

because it is necessary to describe the solute - solvent interactions appropriately in order to 

obtain accurate results. 

The solvent models used for simulations are implicit and explicit solvent models, in 

particular the revised Generalized Born Implicit solvent model[193] and TIP3P solvent 

model[135]. 

 

2.6.1 Generalized Born Implicit Solvent Models 

 

Implicit solvation is a method of representing the solvent around the molecule of 

interest as a continuous medium instead of describing each explicit molecule of the solvent. The 

method is most often used in molecular dynamic simulations and in other applications 

of molecular mechanics. The method is used to estimate free energy of interactions in structural 

and chemical processes, such as protein folding [37, 282, 296] or conformational 

transitions of proteins[9, 281], DNA, RNA[297-299] and polysaccharides[300]. Other 

calculations include the free energy of association of biological macromolecules with 

ligands[169], or transport of therapeutics across cellular membranes[301]. 

In order to estimate the free energy of solvation the following equation is used: 

                         

Equation 34 Solvation Free Energy 

http://en.wikipedia.org/wiki/Conformational_change
http://en.wikipedia.org/wiki/Conformational_change
http://en.wikipedia.org/wiki/Proteins
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ΔGnon-polar is the free energy necessary to solvate a molecule from which all charges have 

been removed and ΔGel is the free energy penalty for removing the charges from the molecule in 

a vacuum medium and then adding them back in the presence of solvent[283]. 

The implicit solvation model is applied for liquid substances, where the potential mean of 

force can be useful to estimate the averaged behavior of many highly dynamic solvent 

molecules[302]. There are two basic types of implicit solvent methods: models based 

on accessible surface areas and continuum electrostatic models, although various modifications 

and combinations of the different methods are possible[303]. The accessible surface area (ASA) 

method is based on experimental linear relations between Gibbs free energy of transfer and 

the surface area of the molecule being solvated[280].  

For molecular dynamics the method is coupled directly with free energy of solvation 

estimation, unlike molecular mechanics or electrostatic methods that include only 

the enthalpy component of free energy. The continuum representation of solvent is also useful to 

make simulations faster and diminishes errors in statistical averaging that arise from incomplete 

sampling of solvent conformations. The energy landscapes obtained with implicit and explicit 

solvents are different; however the trends and tendencies in simulations can be determined 

between them. Even though the implicit solvent model is useful for simulations of biomolecules, 

this approximation have limitations and problems related to parameterization and treatment 

of ionization effects[303]. 

Generalized Born implicit solvent (GBIS) is an approximate method for calculating 

molecular electrostatics in solvent as described by the Poisson Boltzmann equation which 

models water as a dielectric continuum[280]. GBIS enables the simulation of atomic structures 

without including explicit solvent water. The elimination of explicit solvent makes simulations 

faster; however as the number of atoms in the molecule increases, the electrostatics calculation 

becomes more complex because the pairwise interactions increase as well. This makes the 

scaling of the simulations sometimes slower or comparable to the explicit solvent simulations. 

2.6.1.1 The Generalized Born (GB) equation 

 

The Generalized Born free energy of solvation is [304]: 
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Equation 35 Generalized Born Free Energy of Solvation 

 Where qi and qj are partial charges, ɛw is the solvent dielectric constant, and fGB is the 

function that interpolates an “effective Born Radius” Ri . The effective Born radius is originally 

obtained by numerical integration, however this calculation has been simplified by obtaining the 

effective Born radius from pairwise approximations. The approximation is estimated from a sum 

over atom pairs [297, 298, 305-308]. 

In order to obtain the electrostatic potential model the Poisson-Boltzmann equation has to be 

taken into account: 

 [         ]          

Equation 36 Poisson Boltzmann equation for a continuum 

 Where ρ is the charge distribution, and the dielectric constant ɛ. The dielectric constant 

can be calculated at the interior (ɛin) and exterior (ɛext). In the gas phase the dielectric is equal to 1 

while in solvent conditions the dielectric is ɛsolv. The potentials for these conditions are φsolv and 

φvac . The difference for the potentials is: 

φreac = φsolv – φvac 

Equation 37 Difference between the potentials in the gas and solvent phase 

 The electrostatic component of the solvation free energy is: 

      
 

 
∫               

Equation 38 Electrostatic component of the solvation free energy taken from the reaction potentials 

If the distribution is approximated by partial atomic charges qi the electrostatic component then 

becomes: 

      
 

 
∑  
 

          

Equation 39 Electrostatic energy approximated by partial atomic charges 
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In the case of an ion of radius a and charge q electrostatic equation becomes: 
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Equation 40 Born energy equation 

For a molecule with charges qi . . . qN  surrounded by spheres of radius ai . . . aN  then the free 

energy can be approximated by a series of pairwise of Born terms and Coulombic terms: 
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Equation 41 Polar free energy for pair-wise terms of Coulombic and Born terms 

Where the Generalized Born Function is: 
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Equation 42 Generalized Born Function that introduces the concept of effective radii and intrinsic radii = rij 
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Equation 43 Effective Born radii Definition[9] 

 

2.6.1.2 Explicit Solvent Models : TIP3P 

 

Explicit solvent models are often used to represent water in simulations. There are several 
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models available depending on the level of representation that the user wants to achieve.  Some 

models include “dummy” atoms to represent the lone pairs in the water molecule.  

 

 Some water models treat the water molecule as rigid and rely only on non-bonded 

interactions. These non-bonded interactions are similar to the non-bonded interactions in a force 

field such as the electrostatic interaction, modeled using Coulomb's law and the dispersion and 

repulsion forces using the Lennard-Jones potential [309]. The potential for water models such as 

TIP3P and TIP4P is described as: 

    ∑ ∑
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Equation 44 Potential energy term for water models as per Jorgensen et al.[135] 

 Where kC, the electrostatic constant, has a value of 332.1 Å·kcal/mol; qi are the partial 

charges relative to the charge of the electron; rij is the distance between two atoms or charged 

sites; and A and B are the Lennard-Jones parameters. The Lennard-Jones term is usually applied 

to the oxygen atom from the water molecule. TIP3P belongs to a class of water models called 

three-site water models. These models have three interaction sites, corresponding to the three 

atoms of the water molecule. Each atom gets assigned a point charge, and the oxygen atom also 

gets the Lennard-Jones parameters. The TIP3P water model is very popular for molecular 

dynamics simulations because of its simplicity and computational efficiency. 

Table 9 Summary of Parameters for the TIP3P Model 

Parameters TIP3P Water Model 

r (OH), Ǻ 0.9572 

H-O-H, deg 104.52 

A × 10
-3

, kcal Å
12

/mol 582.0 

B, kcal Å
6
/mol 595.0 

q (O) -0.834 

q (H) +0.417 

Table 9 Summary of Parameters for the TIP3P water model [206] 
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All the calculations presented here in explicit solvent were done with the TIP3P water 

model. 

2.7 Simulation details Ala5 

 

 All runs for Ala5 were simulated with Amber 11 and 12 packages. The peptide had free 

and protonated C-terminus without counter ions as described by Graf et al. [172]. The parameter 

source for the protonated C-terminus was borrowed from the work of Wickstrom et al. [151]. 

The number of water molecules used in the solvation of the truncated octahedron box was 891 

for native and extended simulations using TIP3P as the water model [135]. The time step was 

setup to 2 fs. The topology and coordinate files for all systems were built with the tleap module 

in AMBER. 

 The native conformations were defined by building the Ala5 structure and imposing 

helical dihedral angles in all amino-acids (φ = -60º ψ = -40º). The extended simulations were 

defined by building the same structure without imposing any dihedral angles in the amino-acids. 

Each one of these conformations was run for 50 ns. As previously described, there were thirty 

combinations of force fields (ff99SB + 29 variants) in which each possible modification to the φʹ 

dihedral term was matched with a set of ψ/ψʹ modifications. Therefore, the total amount of 

simulations added to 60, which were ran with Replica Exchange Molecular Dynamics 

(REMD)[249, 250] under the sander module in AMBER. 

 Each of these conformations was equilibrated at 300K through gradual heating during 50 

ps while imposing harmonic restraints on the system. After equilibration, the system was 

minimized while progressively reducing positional restraints at constant pressure (1 atm) and 

temperature (300K) following on the published protocol of Wickstrom et al. [151]. The 

coordinate files from this last step were taken to perform REMD. The temperatures for the runs 

were 293K, 299K, 306.9K, 314.1K, 321.5K, 329K, 336.8K, 344.7K, 352.7K, 361K, 369.5K, 

378.2K, 387K, 396.1K, 405.4K and 414.9K. Exchanges were attempted every ps with a target 

acceptance ratio of 20%. Production runs were 50 ns long, again following on the work 

published by Wickstrom et al. [151]. The simulations were run in the NVT ensemble with a 

weak Berendsen thermostat [310] and particle mesh Ewald [311] for long range electrostatic 

interactions with a cutoff of 6Å. We also performed long MD simulations for 160 ns with a 
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cutoff of 8.0Å under the same conditions as described above in order to determine the effect of 

the change in the cutoffs between simulations. 

 

2.8 Simulation details alanine dipeptide 

 

 All runs for alanine dipeptide (N-acetyl alanyl-N-methyl-amide) Ace-Ala-NMe were 

simulated with AMBER 12 package. The initial topology and coordinate files were created with 

the tleap module of AMBER. The free energy surface was obtained through umbrella sampling 

simulations by constructing and minimizing independent conformations where the φ and ψ were 

rotated every 5º to cover the dihedral region of -180º to 180º for both angles, following on the 

procedure described by Bergonzo et al. [312]. These coordinates were solvated with 378 

TIP3P[135] waters, generating 1296 umbrella sampling windows. During the minimization 

procedure the φ and ψ angles were restrained with a force constant of 500 kcal/mol.rad
2
 through 

1000 steps.  Each minimized structure was used to generate an independent umbrella sampling 

window, while the force constant used for these simulations was 75 kcal/mol.rad
2
 on φ and ψ 

dihedral angles. Each window was run for 10 picoseconds in time steps of 2 femtoseconds at 

300K while saving the dihedral angle information every 2 femtoseconds. The data was post-

processed using the Weighted Histogram Analysis Method (WHAM) by Grossfield et al. [313]. 

2.9 Simulation details Val3 

 

 All runs were done with AMBER 11 package [125]. Val3 was simulated with free N and 

protonated C terminus as described by Graf et al.[172]. Like in the case of Ala5, native 

conformations were defined by building the Ala5 structure and imposing helical dihedral angles 

in all amino-acids (φ = -60º ψ = -40º). The extended simulations were defined by building the 

same structure without imposing any dihedral angles in the amino-acids. The number of water 

molecules used in the solvation of the truncated octahedron box was 916 for both simulations. 

The time step was setup to 2 fs. The topology and coordinate files for all systems were built with 

the tleap module in AMBER. For this case thirty force fields were tested (ff99SB + variants) in 

which each possible modification to the φʹ dihedral term was matched with a set of ψ/ψʹ 
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modifications. Therefore, the total amount of simulations added to 60, which were ran with 

Replica Exchange Molecular Dynamics (REMD)[249, 250] under the sander module in 

AMBER. 

 Each of these conformations was equilibrated at 300K through gradual heating during 50 

ps while imposing harmonic restraints on the system. After equilibration, the system was 

minimized while progressively reducing positional restraints at constant pressure (1 atm) and 

temperature (300K) following on the published protocol of Wickstrom et al. [151]. The 

coordinate files from this last step were taken to perform REMD. The temperatures for the runs 

were 293K, 299K, 306.9K, 314.1K, 321.5K, 329K, 336.8K, 344.7K, 352.7K, 361K, 369.5K, 

378.2K, 387K, 396.1K, 405.4K and 414.9K. Exchanges were attempted every ps with a target 

acceptance ratio of 20%. Production runs were 50 ns long, again following on the work 

published by Wickstrom et al. [151]. The simulations were run in the NVT ensemble with a 

weak Berendsen thermostat [310] and particle mesh Ewald [311] for long range electrostatic 

interactions with a cutoff of 6Å. 

 We also performed REMD simulations with revised GB Neck implicit solvent model as 

reported by Nguyen et al. [193], using mbondi 3 radii as specified in tleap in order to determine 

how the calculation of scalar coupling values would agree between explicit and implicit solvent 

models. This was done as a test that would determine how the implicit solvent model compares 

when calculating experimental observables. For these simulations, the definition of native and 

extended conformations previously described for the explicit solvent simulations was re-applied 

in this case. Langevin dynamics were used for minimization and production runs [314]. Initially, 

hydrogen atoms were restrained for a thousand cycles while the rest of the structure was allowed 

to minimize, followed by 500 ps of gradual heating with decreasing restraints on hydrogen 

atoms. Then, the backbone atoms were restrained for a thousand cycles followed by gradual 

heating to 300K. The next three rounds of equilibration required gradually reducing restraints 

from 10 kcal/mol.Å
2
 to 1 kcal/mol.Å

2
, then to 0.1 kcal/mol.Å

2
 to complete unrestrained 

dynamics. After this last step of equilibration, the coordinates were used for REMD production 

runs of 50 ns long as this was the time were the deviations between the results obtained from the 

native and extended simulations were similar.  The temperatures used for the replicas were 

280K, 300K, 315K, 325K, 340K, 360K, 380K and 400K with a target exchange ratio of 20%. 



102 
 

2.10 Simulation details Hydrogen Bond Surrogate (HBS) peptide 

 

 All simulations described here  were run with AMBER 11 package [125]. The topology 

and coordinate files for all systems were built with the tleap module in AMBER. We built native 

conformations by imposing helical conformations on all the residues while the semi-extended 

ones had only imposed helical conformations on the first five residues to resemble a pre-

organized helical turn that propagates helix to the rest of the peptide as described by experiment 

[168]. This pre-organized α turn is achieved by an unnatural covalent bond between an N-

terminal cap with a C=C double bond and a carbon that is bound to the amide nitrogen of 

Alanine5, the four atoms here named 1C=Cʹ-5C-5N. The most accurate simulation of this system 

would require parameter fitting, including partial charges. Since the first five residues are pre-

organized by the covalent modification just described, however, enforcement of covalent bond 

lengths and angles is expected to be a sufficient approximation for examination of helical 

propensity. 

 To imitate this feature, we harmonically restrained bonds and angles to analogous bonded 

parameters of AMBER force fields. The length of the bond between the cap and the alanine5 

(1Cʹ-5C) was restrained to 1.522Å with a weight of 317 kcal/mol.Å
2
. The 1C=1O-5H angle was 

restrained to 120º with a weight of 80 kcal/mol.rad
2
 and the 1Cʹ-5C-5N angle was restrained to 

110.1º with a weight of 63 kcal/mol/rad
2
. These systems were solvated with 1339 waters and 

initially minimized while restraining the hydrogen atoms and the water molecules for ten 

thousand cycles followed by gradual heating from 0 to 100K and then from 100K to 300K for 

100 ps while imposing harmonic restraints in the water molecules and hydrogen atoms. Then, 

restrained molecular dynamics were performed gradually reducing the constraints in the water 

and hydrogen bonds for 350 ps.  After this step, restraints were applied to the backbone atoms 

and slowly removed. The steps of equilibration were performed under constant pressure of 1 atm. 

 The coordinate files from this last step were taken to perform REMD simulations, 

uncertainties were calculated from independent native and semi-extended runs. These 

simulations were run for 50 ns until the uncertainties between the independent runs were similar. 

The temperatures used for the replicas in the simulation were 272.2K, 277.5K, 283K, 288.6K, 

294.2K, 300.0K, 305.9K, 311.9K, 318.0K, 324.3K, 330.6K, 337.1K, 343.8K, 350.5K, 357.4K 
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and 364.4K. This testing was applied to the modifications of the φʹ term known as mod1φ, 

mod2φ and mod5φ as well as the combined set of mod1φ with modifications to the ψ/ψʹ term 

known as mod1φ-mod1ψ, mod1φ-mod2ψ, mod1φ-mod3ψ and mod1φ-mod4ψ because these 

force fields had the best results when testing the vicinal scalar couplings for Ala5. 

2.11 Simulation details for HBS peptide in implicit solvent 

 

 Simulations described here were run with the AMBER 12 package. The topology and 

coordinate files were built with the tleap module in AMBER. The time step was setup to 2 fs. 

Simulations were performed with parallel tempering also known as replica exchange molecular 

dynamics[249, 250] under the sander module in AMBER. Langevin dynamics and revised GB 

Neck implicit solvent model with mbondi 3 radii as specified in tleap were used for the 

minimization and production runs. For the minimization protocol, initially, hydrogen bonds were 

restrained for a thousand cycles while the rest of the structure was allowed to minimize, followed 

by 500 ps of gradual heating with decreasing restraints on hydrogen bonds. Then, the backbone 

atoms were restrained for a thousand cycles while gradually heating to 300K. The next three 

rounds of equilibration required gradually reducing restraints from 10 kcal/mol.Å
2
 to 1 

kcal/mol.Å
2
, then to 0.1 kcal/mol.Å

2
 to complete unrestrained dynamics. After this last step of 

equilibration, the coordinates were used for production runs of 50 ns long as this was the time 

were the deviations between the results obtained from the native and extended simulations were 

similar. The temperatures used for the REMD simulations were 280K, 300K, 315K, 325K, 

340K, 360K, 380K and 400K with a target exchange ratio of 20%. We built native 

conformations by imposing helical conformations on all the residues while the semi-extended 

ones had only imposed helical conformations on the first five residues to resemble a pre-

organized helical turn that propagates helix to the rest of the peptide as described by experiment 

[168]. To imitate this feature, we harmonically restrained bonds and angles to analogous bonded 

parameters of AMBER force fields. The length of the bond between the cap and the alanine5 

(1Cʹ-5C) was restrained to 1.522Å with a weight of 317 kcal/mol.Å
2
. The 1C=1O-5H angle was 

restrained to 120º with a weight of 80 kcal/mol.rad
2
 and the 1Cʹ-5C-5N angle was restrained to 

110.1º with a weight of 63 kcal/mol/rad
2
. 
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2.12 Simulation details K19 peptide 

 

 All simulations were run with AMBER 12 package [125]. The topology and coordinate 

files for all systems were built with the tleap module in AMBER. The time step was setup to 2 fs. 

Explicit water simulations were performed in a truncated octahedron box with TIP3P 

[135]waters. Canonical MD simulations were run using the PMEMD module in AMBER [315]. 

The simulations were run in the NVT ensemble with a weak Berendsen thermostat [310] and 

particle mess Ewald (PME)[311] for long range electrostatic interactions. Real space 

electrostatics had a cutoff of 8.0Å. 

 We ran native and semi-extended conformations for K19. The native conformations were 

generated by imposing helical conformations on all residues. The semi-extended conformation 

was generated from a snapshot of an ff99SB trajectory that had random coil conformation after 

80 ns of simulation in explicit water. This snapshot was stripped from its waters and generated a 

PDB structure that was solvated to the same amount of waters that the native conformation had. 

In order to have both systems with the same number of atoms, the semi-extended conformation 

was generated first with the size of the octahedron box to be 8.0Å. Then the native conformation 

was built from the sequence while imposing helical conditions in all residues and the size of the 

box was 12.6Å.  The systems were initially minimized while restraining the hydrogen atoms and 

the water molecules for ten thousand cycles followed by heating for 100 ps while keeping the 

restraints in the water molecules and hydrogen atoms. Then, restrained molecular dynamics were 

performed gradually reducing the constraints from 10 kcal/mol.Å
2
 to 1 kcal/mol.Å

2
, then the 

restraints were lowered from 1 kcal/mol.Å
2
 to 0.1 kcal/mol.Å

2
 until they were eventually turned 

off completely through 350 ps cycles. The steps of equilibration were performed under constant 

pressure (1 atm). Both sets of simulations were run for approximately 200 ns at 300K in order to 

compare to the results from ff99SB simulation. In other words, the behavior of the force fields is 

compared to the behavior of ff99SB. The results presented here correspond to the mod1φ, mod2φ 

and mod5φ variations. We also tested other force fields mainly mod1φ-mod1ψ, mod1φ-mod2ψ 

and mod1φ-mod3ψ because they had promising results based on the testing conducted with Ala5. 

However, these simulations were only prolonged to the 100 ns mark. The lengths of the 

simulations described here are not intended to define folded states, as previously reported by 
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Clarke et al.[316] helix nucleation is in the millisecond time scale which will require 5000 times 

more simulation time in order to have  enough statistics relevant to this event. Previously work 

by Song et al. [184] reported REMD simulations for 56 ns per replica (12 replicas), totaling 672 

ns of simulation in GB implicit solvent model of Tsui et al. [299]. Although the work presented 

here has considerably less statistical data than previously reported work, the simulations are 

intended to benchmark the performance of the modifications against the performance of ff99SB. 

In other words, the modifications should have at least similar behavior than what is observed for 

ff99SB. 

 In the case of Hydrogen Bond Surrogate Peptide, the simulations were done using REMD 

simulations for 16 replicas for 40 ns each which is 640 ns total simulation time. Furthermore, the 

pre-organized turn of the helix overcomes the nucleation rate limiting step required for helix 

formation. Therefore, these results can resemble helix folding process better than the simulations 

of K19. 

 

2.13 Simulation details Lysozyme 

 

 The topology and coordinate files for all systems were built with the tleap module in 

AMBER. The native conformations were built from NMR structure deposited in the Protein Data 

Bank known as 1IEE [317]. The time step was setup to 2 fs. Explicit water simulations were 

performed in a truncated octahedron box with the TIP3P water model. Real space electrostatics 

had a cutoff of 8.0Å. MD simulations were run using the PMEMD module in AMBER. The 

simulations were run in the NVE ensemble with a weak coupling algorithm thermostat [318] and 

particle mesh Ewald for long range electrostatic interactions. Lysozyme simulations were run in 

order to estimate the force field quality against NMR order parameters S
2
 corresponding to the 

N-H amide bond. The method used for the calculation was the iRED method developed by 

Prompers et al. [230]. The simulations were initially minimized while restraining the hydrogen 

atoms and the water molecules for ten thousand cycles followed by gradual heating for 100 ps 

while keeping the restraints in the water molecules and hydrogen atoms. Then, restrained 

molecular dynamics were performed gradually reducing the constraints from 10 kcal/mol.Å
2
 to 1 
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kcal/mol.Å
2
, then the restraints were lowered from 1 kcal/mol.Å

2
 to 0.1 kcal/mol.Å

2
 until they 

were eventually turned off completely through 350 ps cycles. The steps of equilibration were 

performed under constant pressure (1 atm). We generated ~ 25 ns at 300K of MD dynamics for 

mod1φ, mod2φ, mod5φ, mod1φ-mod1ψ, mod1φ-mod2ψ and mod1φ-mod3ψ. For each of these 

simulations we ran two simulations with different random seed values in order to determine 

uncertainties following on the recommendations provided by Koller et al. [198] who suggested 

that is more appropriate to calculate NMR order parameters from several short MD simulations 

than from one long one.  

 

2.14 Simulation details Ubiquitin 

 

 The topology and coordinate files for all systems were built with the tleap module in 

AMBER. The conformations were built from NMR structure deposited in the Protein Data Bank 

known as 1UBQ [319]. The time step was setup to 2 fs. Explicit water simulations were 

performed in a truncated octahedron box with TIP3P water model. Real space electrostatics had 

a cutoff of 8.0Å. MD simulations were run using the PMEMD module. The simulations were run 

in the NVE ensemble with a weak coupling algorithm thermostat [318] and particle mesh Ewald 

for long range electrostatic interactions. Order parameters S
2
 corresponding to the N-H amide 

bond were calculated. The method used for this calculation was the iRED method developed by 

Prompers et al. [230]. The simulations were initially minimized while restraining the hydrogen 

bonds and the water molecules for ten thousand cycles followed by heating for 100 ps while 

keeping the restraints in the water molecules and hydrogen atoms. Then, restrained molecular 

dynamics were performed while gradually reducing the constraints from 10 kcal/mol.Å
2
 to 1 

kcal/mol.Å
2
, then the restraints were lowered from 1 kcal/mol.Å

2
 to 0.1 kcal/mol.Å

2
 until they 

were eventually turned off completely through 350 ps cycles. The steps of equilibration were 

performed under constant pressure (1 atm). We generated ~25 ns at 300K of MD dynamics for 

mod1φ, mod2φ and mod5φ. For each of these force fields we ran two simulations with different 

random seed values in order to determine uncertainties following on the recommendations 

provided by Koller et al. [198]. In certain cases such as mod2φ and mod5φ we ran three 

simulations to minimize the deviations between the runs. 
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2.15 Simulation details CLN025 

 

 Simulations described here were run with the AMBER 12 package. The topology and 

coordinate files were built with the tleap module in AMBER. The time step was setup to 2 fs. 

Simulations were performed with parallel tempering also known as replica exchange molecular 

dynamics[249, 250] under the sander module in AMBER. Langevin dynamics and revised GB 

Neck implicit solvent model with mbondi 3 radii as specified in tleap were used for the 

minimization and production runs [193, 314]. For the minimization protocol, initially, hydrogen 

bonds were restrained for a thousand cycles while the rest of the structure was allowed to 

minimize, followed by 500 ps of gradual heating with decreasing restraints on hydrogen bonds. 

Then, the backbone atoms were restrained for a thousand cycles while gradually heating to 

300K. The next three rounds of equilibration required gradually reducing restraints from 10 

kcal/mol.Å
2
 to 1 kcal/mol.Å

2
, then to 0.1 kcal/mol.Å

2
 to complete unrestrained dynamics. After 

this last step of equilibration, the coordinates were used for production runs of 50 ns long as this 

was the time were the deviations between the results obtained from the native and extended 

simulations were similar. The temperatures used for the REMD simulations were 280K, 300K, 

315K, 325K, 340K, 360K, 380K and 400K with a target exchange ratio of 20%. The native 

simulated sequence was taken from the Biological Magnetic Resonance Data Bank BMRB entry 

2009 [186]. The extended conformation was created from the amino-acid sequence using the 

tleap module in AMBER.  

2.16 Simulation details HP5F 

 

 Simulations described here were run with the AMBER 12 package. The topology and 

coordinate files were built with the tleap module in AMBER. The time step was setup to 2 fs. 

Simulations were performed with parallel tempering also known as replica exchange molecular 

dynamics[249, 250] under the sander module in AMBER. Langevin dynamics and revised GB 

Neck implicit solvent model with mbondi 3 radii as specified in tleap were used for the 

minimization and production runs [193, 314]. For the minimization protocol, initially, hydrogen 

bonds were restrained for a thousand cycles while the rest of the structure was allowed to 

minimize, followed by 500 ps of gradual heating with decreasing restraints on hydrogen bonds. 
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Then, the backbone atoms were restrained for a thousand cycles while gradually heating to 

300K. The next three rounds of equilibration required gradually reducing restraints from 10 

kcal/mol.Å
2
 to 1 kcal/mol.Å

2
, then to 0.1 kcal/mol.Å

2
 to complete unrestrained dynamics. After 

this last step of equilibration, the coordinates were used for production runs of 50 ns long as this 

was the time were the deviations between the results obtained from the native and extended 

simulations were similar. The temperatures used for the REMD simulations were 280K, 300K, 

315K, 325K, 340K, 360K, 380K and 400K with a target exchange ratio of 20%. The native 

conformation was taken from an MD simulation with ff99SB that started from a fully extended 

conformation. The structure with the lowest potential energy that resembled the topology of a 

folded hairpin was chosen as “native”, although this assumption does not have experimental 

information such as NMR or X-ray crystal structures that support it. REMD simulations were 

carried out with this conformation and we chose the structure with the highest backbone RMSD 

from the 400K temperature replica (~ 8.0Å) as the extended conformation. 

2.17 Simulation details chignolin 

 

 Simulations were run with AMBER 12. The native conformations were built from NMR 

structure deposited in the Protein Data Bank known as 1UAO [185]. The semi-extended 

conformations were taken from snapshots of a REMD trajectory simulated with ff99SB for 75 ns 

where the temperature of the replica was 414K where the highest RMSD values were 6.0Å. 

These conformations were taken from these snapshots because after solvation both the native and 

semi-extended conformations would have around the same number of atoms. It was necessary to 

have the same number of atoms in order for the simulations to have similar trajectory times. The 

topology and coordinate files were built with the tleap module in AMBER. The time step was 2 

fs. Explicit water simulations were performed in a truncated octahedron box with the TIP3P 

[135] water model. The native and semi-extended conformations were solvated with the same 

number of waters and had the same number of atoms (7413). The systems were initially 

minimized while restraining the hydrogen atoms and the water molecules for ten thousand cycles 

followed by heating for 100 ps while keeping the restraints in the water molecules and hydrogen 

atoms. Then restrained molecular dynamics were performed while gradually reducing the 

constraints from10 kcal/mol.Å
2
 to 1 kcal/mol.Å

2
, then the restraints were lowered from 1 
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kcal/mol.Å
2
 to 0.1 kcal/mol.Å

2
 until they were eventually turned off completely through 350 ps 

cycles. The steps of equilibration were performed under constant pressure (1 atm). Both sets of 

simulations were run for approximately 100 ns at 300K in order to compare to the results from 

ff99SB simulation. In other words, the behavior of the force fields is compared to the behavior of 

ff99SB. The results presented here correspond to the mod1φ since it was the best performing 

force field overall. 

 

 

2.18 Simulation details GB1m3 

 

 Simulations were run with AMBER 12. The native conformation was taken from an MD 

simulation with ff99SB that started from a fully extended conformation. The structure with the 

lowest potential energy that resembled the topology of a folded hairpin was chosen as “native”, 

although this assumption does not have experimental information such as NMR or X-ray crystal 

structures that support it. The semi-extended conformations were taken from snapshots of a 

REMD trajectory simulated with ff99SB for 75 ns where the temperature of the replica was 

414K where the highest RMSD values were 12.0Å. These conformations were taken from these 

snapshots because after solvation both the native and semi-extended conformations would have 

around the same number of atoms. It was necessary to have the same number of atoms in order 

for the simulations to have similar trajectory times. The topology and coordinate files were built 

with the tleap module in AMBER. The time step was 2 fs. Explicit water simulations were 

performed in a truncated octahedron box with the TIP3P [135] water model. The native and 

semi-extended conformations were solvated with the same number of waters and had the same 

number of atoms (7413). The systems were initially minimized while restraining the hydrogen 

atoms and the water molecules for ten thousand cycles followed by heating for 100 ps while 

keeping the restraints in the water molecules and hydrogen atoms. Then restrained molecular 

dynamics were performed while gradually reducing the constraints from10 kcal/mol.Å
2
 to 1 

kcal/mol.Å
2
, then the restraints were lowered from 1 kcal/mol.Å

2
 to 0.1 kcal/mol.Å

2
 until they 

were eventually turned off completely through 350 ps cycles. The steps of equilibration were 



110 
 

performed under constant pressure (1 atm). Both sets of simulations were run for approximately 

120 ns at 300K in order to compare to the results from ff99SB simulation. In other words, the 

behavior of the force fields is compared to the behavior of ff99SB. The results presented here 

correspond to the mod1φ since it was the best performing force field overall. 
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3. Results 

 

 

3.1 Ala5 

3.1.1 Dihedral distribution of the second residue in Ala5 

 

 We began by plotting the dihedral populations for the second residue of Ala5, in order to 

determine how the modifications compared against the results obtained from ff99SB as seen in 

figure 42. The error bars from the graphs were obtained from the native and extended simulation 

runs. For clarity only ff99SB, mod1φ, mod2φ and mod5φ were plotted. 

 Following on the rationale that motivated the modifications, the sampling for the φ = -60º 

region increased, while the sampling of the -150º ≤ φ ≤ -120º region decreased. In the case of 

mod5φ the populations around this region increased in comparison to ff99SB which was 

expected based on dihedral energy function for this modification (see figure 19). In order to 

further investigate the full dihedral map we plotted the Ramachandran plot with the dihedral 

populations of φ and ψ (see figure 42-43). 

 

Figure 41 Dihedral populations for φ angle from the modifications to the φʹ backbone dihedral term. Error bars taken 

from native and extended simulations. 
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Figure 42 Comparison for backbone dihedral angle populations between ff99SB, mod1φ and mod2φ 
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Figure 43 Comparison of backbone dihedral angle populations between mod3φ, mod4φ and mod5φ. Ramachandran plots 

for the rest of the modifications can be found in the appendix section figure 1 

 

 

mod3phi 

mod4phi 
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 The Ramachandran maps show that sampling of the -150º ≤ φ ≤ -120º region decreased in 

comparison to ff99SB with the exception of mod5φ. Although, these are rough estimates for two 

reasons: First, there is still some dihedral sampling in the region next to the α-helical region. As 

mentioned previously, it is difficult to increase the sampling of the α-helical region without 

affecting the β-ppII equilibrium by only modifying the dihedral potentials for the φ angle (φʹ 

term). As seen from the graphs even if the potentials for the ψ angle are modified along with the 

φʹ term it is difficult to reduce the sampling in this region. To achieve this it would require that 

the sampling of the β region would be unfavorable in comparison to ppII which would 

destabilize β sheets in simulations of proteins.  

 Recent modifications to the force field have introduced “Gaussian” corrections that 

couple the φ and ψ terms of AMBER such as the work of Li et al. [155] [90] in order to correct 

for this problem without affecting the β - ppII equilibrium. This correction followed up on the 

CHARMM CMAP correction by Mackerell et al. in 2004 [148]. Although this type of 

corrections appear to solve some issues, there have been some concerns of over-stabilization of 

helices even at high temperatures [91]. It appears that these types of corrections are designed to 

fit particular regions in dihedral space without accounting for the effects in other parts of the 

force field function. Furthermore, for several years many groups have concentrated in changing 

backbone dihedral parameters of AMBER force fields, where the remainder of the force field 

terms, in particular the non-bonded terms (van der Waals and electrostatics) have been left 

untouched for almost 20 years. Recently, re-parameterization of the non-bonded terms have been 

attempted [157, 320] as well as the development of charge models [321] that required updated 

Lennard-Jones parameters that would fit the new charge model. It is known that the backbone 

dihedrals and non-bonded terms are influenced by each other [157] and only fitting the backbone 

dihedrals does not compensate for the deficiencies in the non-bonded terms of the force field. 

  Second, the rotamer library that is used for comparison is based on x-ray crystals and 

NMR structures deposited in the Protein Databank (PDB); effects such as crystal packing 

artifacts, experimental conditions and the dihedral propensities of alanine in proteins [322] are 

different than the peptide system that is described in the simulations presented here. This is 

because dihedral propensities of amino-acids are influenced by their neighboring residues and 

environment [322]. Nevertheless, for our purposes this comparison serves as a qualitative test; if 
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the dihedral sampling would resemble the major regions in the Ramachandran map the 

modifications would be appropriate for simulations of proteins. 

  The Ramachandran maps for the rest of the modifications are included in figure 45. The 

maps correspond to the simulations of the native conformations; the graphs for the simulations of 

the extended conformations are in the Appendix section. This graph was included here in order 

to describe the dihedral populations obtained and how they compare to the energy differences 

between ff99SB and the modifications (figure 46).  

 

Figure 44 Backbone dihedral populations for all modifications and ff99SB 

 The backbone energy differences were calculated by subtracting the total dihedral energy 

for the backbone angles between ff99SB and modifications. These maps show how the set of 

modifications termed mod1-5φ were designed to make the region around φ = -60º favorable for 

sampling. This stabilizing effect was also observed for the φ = +60° (left handed α-helix) to a 

less extent, although some of the modifications (mod5φ) appear to make the region around φ = 
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+60º considerably more favorable than the rest. This effect is enhanced when the modifications 

to the ψ/ψ΄ were introduced where the modifications mod5φ-mod3ψ and mod5φ-mod4ψ show 

that the φ = +60° region is slightly more stable than the φ = -60° (figure 46); although this effect 

cannot be clearly established from the dihedral populations shown in figure 45. The 

modifications known as mod3φ-mod1ψ, mod3φ-mod3ψ, mod3φ-mod4ψ, mod4φ-mod2ψ, 

mod4φ-mod3ψ appear to have more sampling in the φ = +60°. To further investigate how the 

dihedral sampling of the simulations is being influenced by the modifications, we decided to 

measure the populations of the secondary structure basins. In order to define these basins, we 

used the definition previously used by Wickstrom et al [151] explained in the next section. 

 

 

Figure 45 Backbone energy differences between ff99SB and the modifications. Each of the squares correspond to a 

dihedral map were the horizontal axis is the φ angle (-180º to 180º) and the vertical axis is the ψ angle (-180º to 180º). 

Graph generated by James Maier. 
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3.1.2 Secondary structure basin definitions 

In order to determine how the secondary structure propensities were being affected by the 

modifications, we calculated the basin populations from simulations according to the definition 

given by Wickstrom et al. The definitions of the four principle regions were as follows: right 

handed helix (αR), (φ,ψ) ~ (-160° to -20°, -120° to +50°); extended β-strand conformation, (-180° 

to -110°, 50° to 240°; or 160° to 180°, 110° to 180°); and poly-proline II, (-90° to -20°, 50° to 

240°). The number of structures in individual regions were summed and divided by the total 

number of structures. Then, they were multiplied by 100 to get the percentages in each basin. 

Error bars were taken from native and extended runs (table 10 -13).   

3.1.2.1 Basin populations with deviations for second and third residues in Ala5 

Table10 αL basin percentages 

Exp = 0 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 16.47± 4.98 23.02±3.91 20.50±3.18 19.93±1.97 18.96 3.55 

Mod1υ 5.65±5.59 14.12±3.49 12.01±2.67 13.54±1.54 24.98±0.72 

Mod2υ 10.36±1.36 19.26±1.56 14.10±1.22 17.30±2.27 19.52±0.55 

Mod3υ 15.29±6.32 13.13±3.21 11.97±0.63 15.48±4.73 17.48±3.23 

Mod4υ 7.05±5.83 14.07±3.07 13.82±1.49 15.58±0.75 18.92±0.12 

Mod5υ 8.03±0.72 15.17±0.3 12.58±0.68 12.32±0.33 16.71±0.2 

Table 10 αR basins for residue 2 of Ala5 

 From the basin populations of the α-helical region we can see that the least populated 

basin is mod1φ. According to the experimental results taken from vicinal scalar coupling 

measurements (Graf et al. [172]), where the authors reported fitting from these values to each of 

the major secondary structure regions in the Ramachandran plots (αR, β, ppII and αL); mod1φ has 

the best agreement with experiments. Although this comparison cannot be done directly because 

the basins measured here come from simulations of Ala5 where there are more conformations 

than what is obtained from NMR measurements which is an ensemble average of conformations 

obtained at the given time. Furthermore, the vicinal scalar couplings are converted to φ/ψ angles 

using Karplus functions that have uncertainties as previously discussed. Nevertheless the trends 



118 
 

from the results of the modifications when compared to ff99SB show if the sampling of the given 

regions improved or got worse. The results for mod1φ were highlighted because this force field 

had the biggest population for the ppII basin as expected due to the rationale behind the 

modifications. 

Table 11 β basin percentages 

Exp =14 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 25.01±3.19 24.19±0.14 23.30±0.24 23.95±0.20 24.81±2.48 

Mod1υ 16.37±3.84 12.76±0.10 12.49±1.27 12.82±1.75 11.59±1.14 

Mod2υ 21.12±4.73 14.48±0.46 14.39±0.41 15.00±0.87 15.19±0.97 

Mod3υ 15.41±1.60 21.14±1.27 18.11±0.61 17.42±1.52 17.43±0.29 

Mod4υ 28.26±3.96 23.55±1.70 22.26±0.97 21.60±0.95 20.79±0.65 

Mod5υ 36.85±0.81 32.46±0.44 33.50±0.37 34.16±0.11 32.32±0.50 

Table 11 β basins for residues 2 of Ala5 

 The β basins for mod1φ, mod2φ, mod3φ, mod1φ-mod1ψ, mod1φ-mod2ψ, mod1φ-

mod3ψ, mod1φ-mod4ψ, mod2φ-mod1ψ, mod2φ-mod2ψ, mod2φ-mod3ψ, mod2φ-mod4ψ, 

mod3φ-mod1ψ, mod3φ-mod2ψ, mod3φ-mod3ψ and mod3φ-mod4ψ have comparable results. 

Table 12 αL basin percentages 

Exp = 0 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 0.87±0.43 1.13±0.52 0.36±0.65 2.37±0.18 1.72±1.6 

Mod1υ 1.04± 0.50 0.80±0.80 1.27±1.27 1.45±0.95 0.69±0.69 

Mod2υ 0.77±0.18 0.88±0.88 2.50±2.34 0.83±0.64 1.36±0.85 

Mod3υ 0.07±0.01 2.49±2.49 3.15±3.06 6.59±4.13 3.86±2.12 

Mod4υ 0.00±0.00 1.35±1.99 4.42±0.06 4.48±0.22 4.34±0.03 

Mod5υ 0.41±0.44 0.47± 0.14 0.28±0.59 0.12±0.52 0.17±0.48 

Table 12 αL basins for residue 2 of Ala5 
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 Similar to the results of the β basins, the results for the αL basins are comparable between 

modifications which indicate that the modifications are performing similarly in the β and αL 

regions. The only regions that can help to distinguish between the modifications are the ppII and 

αR regions where is clear that mod1φ had one of the best samplings for the ppII region. It is 

known that poly-alanine peptides have ppII secondary structure as reported experimentally [256] 

although as they elongate they adopt helical secondary structure [242], which indicates good 

agreement with experiments. 

Table 13 ppII basin percentages 

 

Exp = 86 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 51.53±2.01 48.83±3.38 51.78±4.14 47.37±3.04 48.59±2.55 

Mod1υ 71.78±2.20 68.11±3.07 69.69±2.90 66.21±4.09 55.40±0.5 

Mod2υ 61.88±4.39 60.90±2.8 63.72±4.73 59.73±1.75 56.67±0.36 

Mod3υ 63.98±3.82 58.70±4.94 61.50±3.28 52.3±3.09 53.64±6.2 

Mod4υ 59.14±2.01 56.52±0.61 53.39±2.86 50.59±1.05 48.09±1.19 

Mod5υ 46.89±0.95 48.42±0.67 48.70±0.43 44.92±0.70 41.88±0.40 

Table 13 ppII basins for residue 2 of Ala5. The force field that had the most ppII percentage was mod1φ (highlighted) 

   

 We also investigated the secondary structure basins for the central residue (residue 3) in 

Ala5. Although the results were different than what was observed for residue 2, the populations 

for the ppII region of mod1φ, mod2φ, mod1φ-mod1ψ, mod1φ-mod2ψ, mod1φ-mod3ψ, mod1φ-

mod4ψ, mod2φ-mod1ψ, and mod2υ-mod2ψ were comparable. In the case of the helical content, 

the values were similar between all the modifications. 
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Table 14 αR basin percentages 

Exp=0 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 15.63± 1.66 17.30±3.67 20.50±3.18 19.93±1.97 18.96 3.55 

Mod1υ 16.02±1.85 17.62±3.49 12.01±2.67 13.54±1.54 24.98±0.72 

Mod2υ 14.52±0.15 17.70±1.56 14.10±1.22 17.30±2.27 19.52±0.55 

Mod3υ 20.55±5.87 9.92±3.21 11.97±0.63 15.48±4.73 17.48±3.23 

Mod4υ 7.49±10.56 10.99±3.07 13.82±1.49 15.58±0.75 18.92±0.12 

Mod5υ 23.75±1.27 13.95±0.33 12.58±0.68 12.32±0.33 16.71±0.2 
Table 14  αR basins for central residue of Ala5 

Table 15 β basin percentages 

Exp=16 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 25.23±1.55 24.19±0.14 23.30±0.24 23.95±0.2 24.81±2.48 

Mod1υ 11.66±1.16 12.76±0.10 12.49±1.27 12.82±1.75 11.59±1.14 

Mod2υ 14.80±2.87 14.48±0.46 14.39±0.41 15.00±0.87 15.19±0.97 

Mod3υ 12.78±0.38 21.14±1.27 18.11±0.61 17.42±1.52 17.43±0.29 

Mod4υ 19.59±0.22 23.55±1.7 22.26±0.97 21.60±0.95 20.79±0.65 

Mod5υ 31.09±1.50 32.46±0.44 33.50±0.37 34.16±0.11 32.32±0.50 
Table 15 β basins for central residue of Ala5 

 Similar to the results observed from residue 2, the results for the β basins for mod1φ, 

mod2φ, mod3φ, mod1φ-mod1ψ, mod1φ-mod2ψ, mod1φ-mod3ψ, mod1φ-mod4ψ, mod2φ-

mod1ψ, mod2φ-mod2ψ, mod2φ-mod3ψ, mod2φ-mod4ψ, mod3φ-mod1ψ, mod3φ-mod2ψ, 

mod3φ-mod3ψ and mod3φ-mod4ψ were close to each other. The αL basins also had comparable 

results to the results from residue 2.  

Table 16 αL basin percentages 

Exp=0 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 7.25±2.64 1.13±0.52 0.36±0.65 2.37±0.18 1.72±1.6 

Mod1υ 2.28± 1.56 0.80±0.80 1.27±1.27 1.45±0.95 0.69±0.69 

Mod2υ 4.16±0.90 0.88±0.88 2.50±2.34 0.83±0.64 1.36±0.85 

Mod3υ 1.68±1.12 2.49±2.49 3.15±3.06 6.59±4.13 3.86±2.12 

Mod4υ 1.68±3.57 1.35±1.99 4.42±0.06 4.48±0.22 4.34±0.03 

Mod5υ 2.91±0.39 0.47± 0.14 0.28±0.59 0.12±0.52 0.17±0.48 
Table 16 αL basins for central residue of Ala5 
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 The results for the ppII basins from the central residue of Ala5 were similar to the residue 

2 results. The mod1φ through mod3φ results were comparable, as well as mod1φ-mod1ψ, 

mod1φ-mod2ψ, and mod1υ-mod3ψ results. This trend was also observed for the results of 

residue 2. 

 

 

Table 17 ppII basin percentages 

Exp =84 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 44.84±3.93 48.83±3.38 51.78±4.14 47.37±3.04 48.59±2.55 

Mod1υ 63.84±2.69 68.11±3.07 69.69±2.90 66.21±4.09 55.40±0.5 

Mod2υ 61.55±2.06 60.90±2.80 63.72±4.73 59.73±1.75 56.67±0.36 

Mod3υ 60.10±7.43 58.70±4.94 61.50±3.28 52.3±3.09 53.64±6.2 

Mod4υ 65.71±13.81 56.52±0.61 53.39±2.86 50.59±1.05 48.09±1.19 

Mod5υ 35.24±0.28 48.42±0.67 48.70±0.43 44.92±0.70 41.88±0.40 
Table 17 ppII basins for central residue of Ala5 

 

 

3.1.3 Potential Mean Force (PMF) energy maps for alanine dipeptide 

 

 In order to further investigate the regions of the Ramachandran map we built Potential 

Mean Force (PMF) energy maps for alanine dipeptide (N-acetyl alanyl-N-methyl-amide) using 

umbrella sampling calculations. This was done in order compare how the modifications were 

refining the secondary structure regions for some of the force fields that had the best results for 

the ppII basin percentages calculations. Here we are plotting mod1φ and mod2φ and comparing 

them to the results of ff99SB (figures 47-49). 
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Figure 46 Potential Mean Force (PMF) dihedral map for Alanine dipeptide (N-acetyl alanyl-N-methyl-amide) calculated 

using umbrella sampling calculations. 

 

 

Figure 47 Potential Mean Force (PMF) energy maps for alanine dipeptide (N-acetyl alanyl-N-methyl-amide) calculated 

using umbrella sampling calculations. 

 

kcal/mol 
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Figure 48 Potential Mean Force (PMF) energy maps for alanine dipeptide (N-acetyl alanyl-N-methyl-amide) calculated 

using umbrella sampling calculations 

 The energy maps show how the modifications define the β/ppII regions more than 

ff99SB. The helical region is also more defined than ff99SB. The modifications increased the 

energy barrier between these two regions by approximately 1 kcal/mol. The αL region is also 

more defined and restricted to the 0 ≤ ψ ≤ 60 region than ff99SB. These estimates are useful to 

determine how the energy barriers between the basins were affected with the introduction of the 

modifications; nevertheless, they cannot be quantitatively compared to experimental results 

directly. In order to have a quantitative way of describing how the dihedral populations were 

affected by these modifications we used the vicinal scalar coupling analysis against the 

experimental values.  

 

3.1.4 Scalar coupling values for Ala5 

 

 Initially we tested the agreement with the 
3
J (HN, Hα) scalar coupling that probes for the φ 

angle. Figure 45 shows how the overlap between the dihedral populations for the modifications 

of the φʹ angle and the 
3
J (HN, Hα) scalar coupling function. We can see that the dihedral 

populations for the φ angle increase in the φ = -60º region. This region has coupling values from 

2 to 5 Hz as indicated in the figure 45. The average value obtained for simulations with ff99SB 
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was 6.99 Hz which is higher than the experimental value of 5.59 Hz described by Graf et al. 

[172].  

 

 

 

 

Figure 49 Comparison between dihedral populations for some of the modifications of φ'. The Karplus curve is included 

here in order to see how the sampling in the φ = -60 region increases the scalar coupling values in the range 2-5 Hz. 

  

 The 
3
J (HN, Hα) scalar coupling was chosen for this testing because it has a wide range 

that defines the angles between the β and the ppII/α-helix regions. Table 18 shows the calculated 

vicinal scalar coupling values for all the simulations of the modifications proposed here. The 

results indicated that the simulation with mod1φ-mod1ψ had the least disagreement with 

experiments. Simulations with mod1φ, mod1φ-mod2ψ, mod1φ-mod3ψ and mod1φ-mod4ψ had 

similar results to mod1φ-mod1ψ. 

 

 

• ff99SB dihedral 
populations 

• mod1phi dihedral 
populations 

• mod2phi dihedral 
populations 

• mod3phi dihedral 
populations 

• mod4phi dihedral 
populations 
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Table 18 

3
J(HN,Hα) values for residue 2 of Ala5 

 

Table 18 3J (HN, Hα) values calculated from simulations using the modifications proposed. The best values were mod1φ, 

mod1φ-mod1ψ, mod1φ-mod2ψ, mod1φ-mod3ψ and mod1φ-mod4ψ. Uncertainties were taken from native and extended 

simulations. 

 

3.1.4.1 Caveats of using 
3
J (HN, Hα) scalar couplings to judge secondary structure 

propensities of force fields 

 

 Some of the disadvantages of using scalar couplings and Karplus functions to benchmark 

force fields have been discussed here previously; however it is important to re-visit these 

concepts in order to clarify the significance of the results shown here. Karplus functions have 

been used for evaluating the quality of force fields, however, Karplus functions attempt to 

represent spin/spin interactions of nuclei in a two dimensional manner. As described by Karplus 

et al. there are a significant amount of uncertainties and caveats that need to be taken into 

account [174], in our case we are interested in the uncertainties of the 
3
J (HN, Hα) scalar 

couplings because they are used to benchmark the modifications described here. For this purpose 

we used the work of Salvador et al.[323] where they calculated J-coupling constants using 

density functional theory [323] for acetyl-(Ala)3-NH2 capped tri-alanine peptide. As shown in 

figure 51, a scalar coupling value of 9 Hz can cover a wide range of dihedral angles in the 
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dihedral map and small changes of 0.5 Hz between the values can be associated with different 

secondary structure regions. This graph shows that 
3
J (HN, Hα) scalar couplings are not only 

dependent on the φ dihedral angle, but on the ψ angle as well. Therefore the uncertainties of the 

values calculated here can be as significant as the differences in the scalar coupling values 

between the modifications. 

 

 

Figure 50 Dihedral map that shows the relation between 3 J (HN , Hα) coupling values and the φ/ψ dihedral angles. Graph 

taken from the work of Salvador, Tsan and Dannenberg [323] 

 

 

3.1.4.2 χ
2
 values calculated from J-coupling constants values for residues 2-4 of Ala5 

 

 In order to use more J-coupling constants besides 
3
J (HN , Hα), we calculated χ

2
 values 

using equation 30. The J-coupling constants used for the calculation were 
3
J(HN,Hα), 

3
J(HN,Cβ), 

3
J(HN,C’), 

3
J(C’,Hα) and 

3
J(C’,C’) that probe for the φ angle and 

1
J(N,Cα) and 

2
J(N,Cα) that 

probe for ψ. The uncertainties were taken from native and extended runs. 
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Table 19 χ
2
 values for residues 2-4 of Ala5 

  

 

 

 From these results we can conclude that the mod1φ and mod2φ had the lowest χ
2
 values 

for all the modifications. Although, as discussed previously, these results have significant 

uncertainties since Karplus functions were used for the derivation of the J-coupling values 

shown here. We also used other Karplus function methods known as DFT1 and DFT2 where the 

parameters are given in detail in tables 5-8. From these calculations we could see that the lowest 

χ
2
 values were obtained with the Original Karplus parameters, followed by the DFT2 parameters. 

The DFT1 parameters had the highest χ
2
 values overall. As previously reported by Best et al 

[152] the results are dependent on the Karplus parameters used for the calculations. 

 

 

 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 1.80±0.1 1.80±0.1 1.90±0.05 1.80±0.1 2.00±0.1 

Mod1υ 0.84±0.02 1.00±0.01 0.91±0.05 1.00±0.07 1.40±0.07 

Mod2υ 0.89±0.02 1.10±0.1 1.10±0.00 1.20±0.03 1.50±0.01 

Mod3υ 1.23±0.05 1.20±0.01 1.30±0.07 1.40±0.01 1.70±0.1 

Mod4υ 1.30±0.00 1.50±0.04 1.70±0.07 1.70±0.02 1.80±0.02 

Mod5υ 1.60±0.04 1.70±0.07 2.5±0.29 1.70±0.06 2.00±0.08 

Table 19 χ2 values for residues 2-4 of Ala5. Uncertainties were taken from native and extended simulations 
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Table 20 χ
2
 values calculated with DFT1, DFT2 and Original parameters 

 

Force Field DFT1 DFT2 Original 

99SB 1.44±0.02 1.62±0.02 1.81±0.00 

99SB_mod1ψ 1.64±0.38 1.75±0.11 1.80±0.10 

99SB_mod2ψ 1.67±0.04 1.83±0.08 1.90±0.05 

99SB_mod3ψ 1.60±0.05 1.83±0.13 1.80±0.10 

99SB-mod4ψ 1.80±0.06 2.03±0.12 2.00±0.10 

Mod1υ_ff99SB 2.64±0.05 1.17±0.02 0.84±0.02 

Mod2υ_ff99SB 1.68±0.14 1.12±0.02 0.89±0.02 

Mod3υ_ff99SB 2.27±0.01 1.08±0.01 1.23±0.05 

Mod4υ_ff99SB 1.48±0.01 1.21±0.03 1.38±0.05 

Mod5υ_ff99SB 2.04±0.03 1.92±0.02 1.60±0.04 

Mod1υ_mod1ψ 3.09±0.02 1.45±0.01 1.00±0.01 

Mod1υ_mod2ψ 2.92±0.07 1.31±0.01 0.91±0.05 

Mod1υ_mod3ψ 2.69±0.13 1.30±0.07 1.00±0.07 

Mod1υ_mod4ψ 3.03±0.11 1.66±0.07 1.40±0.07 

Mod2υ_mod1ψ 2.44±0.22 1.24±0.12 1.10±0.10 

Mod2υ_mod2ψ 2.28±0.14 1.20±0.00 1.10±0.00 

Mod2υ_mod3ψ 2.32±0.03 1.25±0.02 1.20±0.03 

Mod2υ_mod4ψ 2.24±0.14 1.44±0.01 1.50±0.01 
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Mod3υ_mod1ψ 2.08±0.03 1.18±0.00 1.20±0.01 

Mod3υ_mod2ψ 1.62±0.04 1.13±0.01 1.30±0.00 

Mod3υ_mod3ψ 1.93±0.14 1.22±0.06 1.40±0.01 

Mod3υ_mod4ψ 1.92±0.02 1.29±0.19 1.70±0.10 

Mod4υ_mod1ψ 1.79±0.02 1.39±0.05 1.50±0.04 

Mod4υ_mod2ψ 1.60±0.03 1.49±0.06 1.70±0.07 

Mod4υ_mod3ψ 1.51±0.02 1.45±0.03 1.70±0.02 

Mod4υ_mod4ψ 1.84±0.02 1.65±0.01 1.80±0.02 

Mod5υ_mod1ψ 2.35±0.01 1.82±0.04 1.70±0.07 

Mod5υ_mod2ψ 2.19±0.07 1.80±0.00 2.50±0.29 

Mod5υ_mod3ψ 2.37±0.00 2.01±0.02 1.70±0.06 

Mod5υ_mod4ψ 2.58±0.01 2.16±0.02 2.00±0.08 

 

Table 20 χ2 values calculated with DFT1, DFT2 and Original parameters. Deviations are calculated from native and 

extended simulations. The highlighted values indicate the modifications that had the best agreement with experimental 

scalar coupling values. 

  

 As seen on Table 20 the χ
2
 results vary among the different Karplus coefficients used. 

The reason for this discrepancy is due to the differences among the Karplus curves. In certain 

cases these curves can differ by as much as 2 Hz in the amplitude of the function as seen in 

figures 52-55. This effect was previously reported[235] and is related to the dihedral 

conformations of the peptides used for the parameterization of the DFT1 and DFT2 coefficients. 

Interestingly the regions were some of the curves differ the most as in the case of the 
3
J(HN,Cβ) 

coupling value is the φ = -60º region where the modifications are increasing the sampling. 
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Figure 51 Karplus functions for DFT1 (blue), DFT2 (red) and Original (black) for 3J (C, C') vicinal scalar coupling. The 

other curves (magenta, dark purple, green, brown and orange) correspond to the dihedral populations of φ for ff99SB, 

mod4φ, mod3φ, mod2φand mod1φ respectively. The dihedral populations were included here as a reference to indicate 

how the dihedral sampling is being influenced by the modifications. The actual values for the populations of ff99SB, 

mod1φ and  mod2φ obtained from simulations with error bars are included in figure 42. 

  

 Figure 52 illustrates how the Karplus functions differ among them, especially the 

DFT1/DFT2 curves compared to the original parameters. In certain regions like around φ = 0° 

the curves can differ from each other by almost 1 Hz. For our purposes, this region does not have 

significant populations in our simulations. For the regions of interest such as φ = -60° and -150 ≤ 

φ ≤ -120° the curves do not differ significantly. Likewise we investigated the results for the 
3
J 

(HN , Hα) Karplus curve shown in figure 53. 

        

φ 
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Figure 52 Karplus curves for DFT1 (blue), DFT2 (red) and Original (black) of 3J (HN, Hα) vicinal scalar coupling. The 

other curves (magenta, dark purple, green, brown and orange) correspond to the dihedral populations of φ for ff99SB, 

mod4φ, mod3φ, mod2φand mod1φ respectively. The Karplus curves were smoothed between the data points, therefore 

they appear to have values below the zero mark which is not the case for DFT1 and DFT2 parameters. The dihedral 

populations were included here as a reference to indicate how the dihedral sampling is being influenced by the 

modifications. The actual values for the populations of ff99SB, mod1φ and  mod2φ obtained from simulations with error 

bars are included in figure 42. 

 

  

The Karplus curves for the 
3
J (HN, Hα) vicinal scalar coupling also appear to differ 

significantly in certain regions in particular in the φ = -120°, -30° and 150° where the curves are 

at maxima and minima. The results obtained from these dihedral regions in particular the region 

where φ = -30°, can be misleading because the curves differ by almost 2 Hz. Nevertheless the 

reason why the experimental values for the residues of Ala5 do not agree well with the results 

from simulations with ff99SB is due to the sampling of the -150 ≤ φ ≤ -120° where the scalar 

values are 8 – 11Hz. Having significant sampling in this region would make the average of the 

scalar coupling high in comparison to experimental values (5.5 – 5.7 Hz). In the region where φ 

= -30° the scalar coupling values range is 0 -2 Hz where increased sampling in this region would 

lower the average of the scalar coupling values.  

Similarly to this case, the 
3
J (Hα, C΄) shown in figure 54 the curves differed at the 

maxima and minima. This scalar coupling is sensitive in the αL and αR regions where the 
3
J (HN, 

 

φ 
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Hα) is not as sensitive. The differences for this curve were not as significant as the rest of the 

scalar coupling curves. 

 

 

 

Figure 53 Karplus curves for DFT1 (blue), DFT2 (red) and original (black) for the 3J(Hα, Cʹ) vicinal scalar coupling. The 

other curves (magenta, dark purple, green, brown and orange) correspond to the dihedral populations of φ for ff99SB, 

mod4φ, mod3φ, mod2φand mod1φ respectively. Contrary to the results shown for the rest of the curves the dihedral 

populations shown here correspond to the simulations of the extended conformations. The dihedral populations shown for 

the other Karplus curves were the results from the native conformation simulations. The dihedral populations were 

included here as a reference to indicate how the dihedral sampling is being influenced by the modifications. The actual 

values for the populations of ff99SB, mod1φ and  mod2φ obtained from simulations with error bars are included in figure 

42. 

  

 In the case of the 
3
J(HN,Cβ) the differences were significantly noticeable in particular in 

the φ = -60° region. This feature was previously discussed in the simulation methods section. 

Nevertheless, is necessary to re-visit this concept because this scalar coupling is the major 

contributor to the differences in the χ
2
 values between the DFT1, DFT2 and Original parameters. 

As seen in figure 55, in the φ = -60° region the difference between the curves can be as much as 

3 Hz. These differences contribute significantly to the deviation calculation which affects the χ
2
 

comparison between the parameters because the modifications are designed to increase the 

sampling of the φ = -60° region. 

 

φ 
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Figure 54 Karplus curves for DFT1 (blue), DFT2 (red) and Original (black) for the 3J(HN, Cβ) vicinal scalar coupling. The 

other curves (magenta, dark purple, green, brown and orange) correspond to the dihedral populations of phi for ff99SB, 

mod4phi, mod3phi, mod2 

 

Case et al. [235] reported that most of the quantum-calculated Karplus functions (DFT1 

and DFT2) agree well with empirically derived Karplus functions with the exception of 

3
J(HN,Cβ) that couples φ at -60°. The deviations between the empirical and quantum Karplus 

functions can be as high as 3 Hz as shown in figure 55. The authors argue that these 

discrepancies are due to motional averaging effects and to the size/identity of the side-chain used 

for the quantum calculation. Calculations with serine and higher basis set gave better agreement 

between the empirical, DFT1 and DFT2 parameters. 

The lowest χ
2
 values were obtained with the DFT2 and original parameters. Overall the 

best results were obtained with mod1φ, mod2φ, mod3φ mod1φ-mod1ψ, mod1φ-mod2ψ and 

mod1φ-mod3ψ. We also ran molecular dynamic simulations of Ala5 because of the long range 

electrostatics cutoff used in the REMD simulations. The REMD simulations were ran with a 

6.0Å cutoff, since the protocol published by Wickstrom et al. [151] used an 8.0Å cutoff for their 

simulations. We investigated the impact of the cutoff differences in the calculation of the χ
2
 

values. The results were comparable to what was observed from the REMD simulation (figures 

56-60). 
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 The graphs were plotted by sets of ψ/ψʹ modifications, the error bars were obtained from 

native and extended MD simulations. 

 

Figure 55 Comparison between χ2 values for REMD and MD simulations of the modifications 99SB and mod1φ through 

mod5φ. The old data is the REMD data where the new data is the MD data. 

  

Figure 56 Comparison between χ2 values for REMD and MD simulations of the modifications 99SB_mod1ψ through 

mod5φ_mod1ψ. The old data is the REMD data where the new data is the MD data. 
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Figure 57 Comparison between χ2 values for REMD and MD simulations of the modifications 99SB_mod2ψ through 

mod5φ_mod2ψ. The old data is the REMD data where the new data is the MD data. 

 

Figure 58 Comparison between χ2 values for REMD and MD simulations of the modifications 99SB_mod3ψ through 

mod5φ_mod3ψ. The old data is the REMD data where the new data is the MD data. 
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Figure 59 Comparison between χ2 values for REMD and MD simulations of the modifications 99SB_mod4ψ through 

mod5φ_mod4ψ. The old data is the REMD data where the new data is the MD data. 

  

 Overall the MD data has good agreement with the REMD data for the χ
2
 values, the 

highest discrepancies from the REMD data are found in mod5φ-mod2ψ, mod5φ-mod3ψ and 

mod5φ-mod4ψ. In the case of mod5φ-mod4ψ we extended the simulations and re-calculated the 

χ
2
 values. The new value obtained was 3.36± 0.33 which is higher than the value obtained from 

the REMD simulation. We think that this is due to the sampling between the αR and αL regions 

that is taking long time to converge, because when we investigated which scalar coupling was 

causing the largest deviations we discovered that it was the 
3
J (Hα, C’) scalar coupling that is 

sensitive to this transition (see figure 54). As seen in figure 61-63, the simulation is sampling the 

αL region often.  
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Figure 60 3J (Hα, C') scalar coupling values as a function of time for mod5φ-mod4ψ for the central residue of Ala5. The 

data shown here is from the extended simulation. 

 

Figure 61 3J (Hα, C') scalar coupling values as a function of time for mod5φ-mod4ψ for the central residue of Ala5. The 

data shown here is from the native simulation. 
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 We also investigated the Ramachandran dihedral map and we corroborated that the αL 

region is being considerably populated for the mod5φ-mod4ψ simulations.  

 

 

 

 As seen in figure 46, the mod5φ-modψ family of modifications appears to stabilize the αR 

helical region in comparison to the other modifications. This effect was not so evident in REMD 

simulations because of the enhanced sampling of the method; however this is more evident in the 

MD simulations. 

3.2 Dihedral distributions for central residue in Val3  

 Similar to the results from the Ala5 simulations, the results for the simulations show that 

AMBER ff99SB force field sample a broad distribution in the region -150° < φ < -60°, which 

gets more localized with mod1φ force field. The ppII region and the αR region are more defined 

than with ff99SB (see figure 64). The sampling of the β region is considerably reduced; this is 

contradictory to what the experiments indicate for this peptide’s secondary structure. The 

experiments indicate that this peptide has β extended conformation [195, 196]. The modifications 

were intended to reproduce the secondary structure propensities for all amino-acid residues; 

however the modifications did not show this effect on Val3. 

Figure 62 Ramachandran plot for the dihedral distributions of mod5φ-mod4ψ for the central residue of Ala5. The data 

shown here is from the extended MD simulation. 
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Figure 63 Ramachandran maps for the dihedral distributions of the central residue of Val3. The left panel corresponds to 

the native simulation with ff99SB and the right panel corresponds to the native simulation with mod1φ 

 We further investigated this effect by plotting the dihedral propensities of alanine and 

valine from the dihedral library of Lovell et al. [149] to determine if both residues have similar 

dihedral propensities. As seen in figure 65 this is not the case, in fact alanine has a peculiar 

dihedral distribution in comparison to other amino-acids (figure 66). 

 

Figure 64 Dihedral propensities of alanine and valine from the dihedral library of Lovell et al. [149] for proteins from the 

Protein Databank (PDB). Most of the dihedral populations for alanine are located around the φ = -60º whereas the 

dihedral populations for valine have two major peaks around the φ = -150º and φ = -60º regions. The average value for 3 J 

(HN , Hα) scalar coupling were also calculated from the dihedral angles using the original parameters for the Karplus 

function. Graph generated by James Maier. 

[

Residue 2 

Mod1phi 
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Figure 65 Dihedral propensities for all amino-acids with the exception of glycine and proline. The dihedral populations 

were taken from the dihedral library of Lovell et al. [149] for proteins from the Protein Databank (PDB). The dihedral 

distributions are different from alanine for most of the amino-acids with the exception of glutamic acid and serine. Higher 

branched amino-acids had the highest differences. Graph generated by James Maier. 

 The differences between the dihedral populations of alanine and the rest of the amino-

acids except glycine and proline are due to the effects of side-chains on the backbone. As seen 

from figure 66 the higher branched amino-acids have the highest dihedral deviations for φ angle. 

Amino-acid residues such as aspartic acid, glutamic acid and serine resemble the propensities of 

alanine, whereas amino-acids such as asparagine, glutamine, tyrosine, tryptophan, histidine, 

phenylalanine, methionine, cysteine, threonine, isoleucine, leucine, lysine, arginine and valine 

are different from alanine. From the dihedral angle populations we also calculated the average 
3
J 

(HN, Hα) scalar coupling value for each of the amino-acid residues. As shown in figure 66 most 

of the values are higher than 7 Hz, only alanine, glutamic acid and serine have values lower or 

close to 7 Hz. 
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3.3 Comparison between implicit solvent and explicit solvent results 

 

 One of the advantages of using implicit solvent models is that the solvent molecules 

surrounding the solute are not explicitly accounted for. Instead, they are treated as a continuum 

which makes the calculations simpler when compared to explicit solvent models. Implicit solvent 

models are useful to speed up simulations at a fraction of computational cost in contrast to 

explicitly including solvent molecules [324, 325]. Initially we used the revised GB Neck model 

[193] for the simulations of Val3. We used this solvent model because we wanted to investigate 

if this model could qualitatively and quantitatively reproduce the dihedral propensities and 

vicinal scalar coupling data obtained with TIP3P explicit solvent model for this small peptide. If 

the solvent model was able to reproduce these results, then this model solvent could be used for 

the calculations for the other model peptides required for testing. We began by plotting the 

dihedral populations from simulations as indicated in table 21. The information shown here 

corresponds to the data for mod1φ which was the force field that had the closest agreement with 

experiment for Ala5.  

Table 21 Val3 secondary structure basin comparison between TIP3P and revised GB neck 

model [193] for ff99SB and mod1φ 

Method α
R
 β ppII α

L
 

ff99SB (TIP3P) 16.80±0.60 29.50±2.00 50.40±2.60 0.19±0.00 

ff99SB (rev. GB 

Neck) 

6.91±1.31 40.17±2.22 48.95±3.73 0.01±0.09 

Mod1υ (TIP3P) 12.70±4.10 13.90±0.80 70.00±2.90 0.20±0.20 

Mod1υ (rev.GB 

Neck) 

5.15±2.62 22.42±0.13 68.59±2.41 0.01±0.02 

Exp 19±0.70 52±0.50 29±0.60 0±0.00 

Table 21 Secondary structure comparison between TIP3P and revised GB neck model for ff99SB and mod1φ. The results 

indicate that the αL populations of mod1φ are comparable for both solvent models while the results for ff99SB show that 

the revised GB neck model had less population than TIP3P. The β populations were less for TIP3P than revised GB neck 

model while the results for ppII and αL populations were comparable between both solvent models. Error bars were taken 

from native and extended conformations. 
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 The results for the dihedral populations between the solvent models indicate that the 

revised GB neck model only reproduces the dihedral propensities for the ppII basin for ff99SB 

and mod1φ. The β populations were higher for the implicit solvent model than the explicit one, 

while the αR populations were not consistent between force fields; in the case of ff99SB the 

populations were less for revised GB neck model than TIP3P while for mod1φ the results were 

comparable. To further investigate this, we also compared the results for the vicinal scalar 

couplings following the same methodology described for Ala5. The results shown here were 

calculated with the original Karplus parameters reported by Hu et al. [175]. As in the case of 

Ala5 we began by calculating the 
3
J (HN, Hα) scalar couplings which are shown in table 22 for 

TIP3P explicit solvent model and table 23 for revised GB Neck model [193].  

 

Table 22 
3
J(HN, Hα) Value Comparison Val3 

 

Exp 7.94 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 8.04±0.02 7.94±0.00 8.00±0.01 7.96±0.02 8.02±0.00 

Mod1υ 6.70±0.01 6.55±0.01 6.58±0.02 6.67±0.00 6.66±0.00 

Mod2υ 7.09±0.05 7.03±0.07 7.04±0.02 7.15±0.03 7.13±0.03 

Mod3υ 7.20±0.02 7.02±0.02 7.07±0.01 7.11±0.06 7.07±0.03 

Mod4υ 7.61±0.00 7.46±0.03 7.56±0.00 7.55±0.01 7.58±0.00 

Mod5υ 7.38±0.04 7.28±0.03 7.28±0.00 7.32±0.01 7.41±0.01 

Table 22 3J (HN, Hα) coupling values for all 30 force fields tested. The force field that had the best agreement with 

experiments was mod3ψ, modψ family of force fields also had good agreement with experiments (in bold). Error bars 

were taken from the native and extended simulations. 
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Table 23 
3
J (HN, Hα) values 

Exp  7.94 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 7.69±0.02 7.63±0.03 7.68±0.04 7.80±0.00 7.83±0.03 

Mod1υ 6.36±0.00 6.34±0.08 6.32±0.02 6.48±0.01 6.53±0.03 

Mod2υ 6.87±0.00 6.84±0.01 6.74±0.06 6.88±0.08 6.96±0.01 

Mod3υ 6.90±0.00 6.85±0.02 6.84±0.03 6.90±0.01 6.93±0.01 

Mod4υ 7.32±0.03 7.32±0.03 7.25±0.02 7.39±0.04 7.50±0.04 

Mod5υ 7.08±0.05 7.11±0.08 6.99±0.07 7.09±0.05 7.06±0.06 

Table 23 3J (HN, Hα) coupling values for all 30 force fields tested. Similarly to the TIP3P results, the force fields that had 

the closest agreement with experiments were mod3ψ and mod4ψ; the 99SB_modψ family of force fields also had good 

agreement with experiments (in bold). Error bars were taken from the native and extended simulations. 

 

The TIP3P results indicate that mod1ψ force field in this case has the best agreement with 

experiments. Other modifications to the ψ parameters performed comparably well such as 

mod2ψ, mod3ψ and mod4ψ. Similarly, in the case of the revised GB Neck results, the trend was 

observed, the 99SB_modψ family for modifications had the closest agreement with experiments, 

although the actual scalar coupling values were lower than in the TIP3P case. This trend was 

observed for the rest of the scalar coupling values when comparing the χ
2
 values between TIP3P 

and revised GB Neck model, although in the case of the implicit solvent model, the results are 

more comparable between the 99SB_modψ and the mod1φ families of force fields (see table 24 

and 25). This is due to the discrepancies between the calculated scalar coupling values for the 

solvent models. Nevertheless given the uncertainties in the Karplus functions used for the 

calculations, the implicit solvent model might be able to reproduce the trends observed for 

explicit solvent calculations but it does not reproduce the actual values exactly. Therefore, it is 

recommended to use explicit solvent models like TIP3P for simulations that require this type of 

calculation. 
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Table 24 χ
2
 values for Val3 for TIP3P explicit solvent model 

 

 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 1.72±0.03 1.46±0.03 1.62±0.01 1.74±0.13 1.64±0.00 

Mod1υ 1.83±0.06 1.83±0.04 1.86±0.05 1.79±0.02 1.74±0.05 

Mod2υ  1.49±0.02  1.39±0.01  1.37±0.04  1.38±0.01  1.43±0.01

Mod3υ 1.86±0.01 1.66±0.08 1.70±0.15 1.66±0.00 2.03±0.15 

Mod4υ 1.65±0.02 1.49±0.00 1.54±0.09 1.49±0.02 1.70±0.09 

Mod5υ 2.09±0.24 2.25±0.24 1.81±0.07 1.91±0.05 1.78±0.14 

 

Table 24 χ2 values for all 30 force fields tested. The force fields that had the best agreement with experiments were mod2φ 

and mod2φmodψ family of force fields. 

Table 25 χ
2 values for Val3 for revised implicit GB Neck model 

 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 2.07±0.13 1.93±0.04 1.73±0.02 2.04±0.01 1.93±0.04 

Mod1υ 2.84±0.24 2.74±0.09 2.79±0.19 2.60±0.02 2.24±0.06 

Mod2υ 2.09±0.00 2.27±0.18 2.16±0.21 1.97±0.08 2.14±0.18 

Mod3υ 2.23±0.24 2.46±0.03 2.14±0.23 2.18±0.00 2.41±0.06 

Mod4υ 2.08±0.03 2.03±0.01 1.95±0.15 2.08±0.15 2.05±0.10 

Mod5υ 2.40±0.09 1.93±0.03 2.10±0.01 2.14±0.06 2.01±0.06 

 

Table 25 χ2 values for all 30 force fields tested. The force fields that had the best agreement with experiments were mod2φ 

and mod2φmodψ family of force fields. 
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For the case of the χ
2
 values the best performing force fields were the family of mod2φ-

modψ force fields. Although the force fields that had the best χ
2
 values for Ala5 were not the best 

in this case, the results were close to each other within uncertainty of experimental values.  

3.4 Differences in secondary structure propensities for alanine and valine 

As previously discussed this small peptide is believed to have β strand partial character 

[195, 196]. The modifications proposed here were designed to increase the agreement with poly-

alanine peptides. The changes applied to the dihedral energies of ff99SB force field were 

intended to increase the populations in the φ = -60º region which would lower the sampling of 

the -150 ≤ φ ≤ -120° region. Therefore the scalar coupling values were lowered in order to have 

better agreement with the experimental values reported for Ala5. When we compared the dihedral 

propensities for valine against alanine, we could see that they were different, in particular in the 

regions described above (see figure 65). It appears that in the case of alanine most of the dihedral 

populations are concentrated in the φ = -60º region, whereas in the case of valine the populations 

are more equally distributed between these two regions (φ = -60º and -150 ≤ φ ≤ -120° regions). 

This effect appeared to be due to the side-chain group on the backbone propensities. In order to 

investigate this, we plotted the backbone dihedral populations from the Lovell et al. [149] amino-

acid library color coded by χ1 dihedral angles (see figure 67). The first graph from the left panel 

corresponds to the backbone conformations for valine where all the χ1 angles (trans, gauche- and 

gauche+) were included. The second graph from the left panel corresponds to the backbone 

conformations were the gauche- χ1 angles where included. Lovell et al. [149] defined gauche- to 

angles where χ1 = -60º. In this graph we included the backbone conformations for φ/ψ where -30º 

≥ χ1 ≥ -90º.  

For the right panel the upper graph corresponds to the backbone conformations of φ/ψ 

where the trans χ1 angles are included. The definition of Lovell et al. for trans is χ1= 180º, 

therefore the backbone conformations for φ/ψ  where -150º ≥ χ1 ≥ -180º and 180º ≥ χ1 ≥ 150º 

were plotted in the graph. The lower graph corresponds to the backbone conformations of φ/ψ 

where χ1 = gauche+. Lovell et al. defined the gauche+ conformation as χ1 = +60º, therefore the 

conformations for φ/ψ where 90º ≥ χ1 ≥ 30º were plotted. 
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Figure 66 Ramachandran maps for valine taken from the Lovell et al. [149] dihedral maps. The upper left graph 

corresponds to φ/ψ conformations where all the χ1 conformations were included (trans, gauche+ and gauche-). The lower 

left graph corresponds to the φ/ψ conformations where -30º ≥ χ1 ≥ -90º. The upper right graph corresponds to φ/ψ 

conformations where -150º ≥ χ1 ≥ -180º and 180º ≥ χ1 ≥ 150º. The lower right graph corresponds to φ/ψ conformations 

where 90º ≥ χ1 ≥ 30º. Graph generated by James Maier. 

 

 
From the dihedral populations we also calculated the 

3
J (HN, Hα) values. From the graph 

we can see that values in the region of -30º ≥ χ1 ≥ -90º  make the 
3
J (HN, Hα) value around 6.2 Hz 

whereas values in the region 90º ≥ χ1 ≥ 30º make the 
3
J (HN, Hα) value around 8.4 Hz. Similarly, 

values in the regions -150º ≥ χ1 ≥ -180º and 180º ≥ χ1 ≥ 150º give a scalar value around 7.7 Hz. 

This information corroborates the notion that the backbone conformations are dependent upon 

side-chain preferences, especially for higher branched amino-acids as illustrated in figure 66. 

This suggests that it is necessary to investigate the side-chain dihedral propensities of ff99SB to 

determine if this force field is biasing a specific configuration such as the gauche- χ1 

conformation where the angles are restricted to the -30º ≥ χ1 ≥ -90 º regions. This effect was not 
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further investigated, because the work presented here was aimed at evaluating the effects of 

modifications to the backbone parameters. The side-chain parameters efforts will be covered in a 

separate report (Maier et al. [326]).  

3.5 Hydrogen Bond Surrogate (HBS) peptide helical propensities 

 After investigating the agreement between experiments and simulations for Ala5 and 

Val3, we decided to investigate how the modifications that had the best agreement for Ala5 were 

performing against ff99SB for helical propensities, which were mod1φ, mod2φ, mod1φmod1ψ, 

mod1φmod2ψ, mod1φmod3ψ and mod1φmod4ψ. We tested mod5φ since the agreement between 

experimental and simulated scalar couplings of 
3
J (HN, Hα) was in between the values of ff99SB 

and mod1φ. The metric for helical propensities shown here was Dictionary of Secondary 

Structure for Proteins (DSSP) analysis as described in section 2.1.10.3 from simulation methods. 

Figure 68 shows how the modifications increase the helical propensities in comparison to 

ff99SB.  

 

Figure 67 Comparison of helical propensities for the best performing force fields. Error bars were taken from native and 

semi-extended simulations as described in section 2.7. 
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The performance of some force fields such as mod1φ was comparable to experimental 

results that indicate this peptide is 46% folded at room temperature. However, in the case of this 

peptide simulations and experiments cannot be compared directly because this folded value was 

taken from CD spectra as the ratio [θ]222/[θ]max, where [θ]max = -23,400. The concentration of 

each peptide was determined by monitoring the absorbance of the tyrosine residue under 

denaturing conditions. Nevertheless this can serve as an indicator of the boundaries of the 

fraction folded region, where values close to this can be taken as a good resemblance to what is 

seen in experiment. Having said this, the force field that resembles this value the most is mod1φ 

followed by mod5φ and mod2φ.  The other force fields such as mod1φmod1ψ, mod1φmod2ψ, 

mod1φmod3ψ and mod1φmod4ψ had greater helical propensity in comparison to experiment, 

while mod1φmod3ψ (~40%) was the closest one to experiments. However, the upper limit of the 

mod1φmod3ψ data had considerably higher helical propensities (~0.6). Mod1φ (~0.25), mod2φ 

(~0.12) and mod5φ (~0.20) were further evaluated against 
3
J (HN, Hα) scalar couplings. The 

coefficients used for the Karplus curve were taken from Pardi [177] et al. since those were the 

parameters that Wang et al. [168] used to calculate the φ dihedral angles from the 
3
J (HN, Hα) 

scalar couplings that they measured (figures 69-70). We also used the DFT1, DFT2 and Original 

parameters as previously done for the Ala5, Val3 calculations (see figure 71-73). 

 

Figure 68 Comparison between ff99SB, modifications and experiment for 3J(HN,Hα) scalar couplings of HBS peptide. 

Error bars were taken from native and semi-extended simulation results. The force fields shown are mod1φ, mod2φ and 

mod5φ. The experimental values were taken from Wang et al. [168]  
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Figure 69 Comparison between ff99SB, modifications and experiment for the 3J (HN, Hα) scalar couplings of HBS peptide. 

The force fields shown here are mod1φ-mod1ψ, mod1φ-mod2ψ, mod1φ-mod3ψ and mod1φ-mod4ψ. The experimental 

values were taken from Wang et al. [168]. Error bars were taken from native and semi-extended simulations as described 

in section 2.7 

 

Although the deviations shown here overlap between the different force fields, the trends 

show that the results from mod1φ, mod2φ and the mod1φ-modψ family of force fields have the 

closest agreement with experiment. Although there are some discrepancies due to the methods 

used for the simulation. For instance, from experiments the first turn of the helix was stabilized 

by a covalent bond between 1C=1Cʹ--5C-5N covalent bond between residues 1 (cap) and 5 

(alanine) at the N terminus. In the case of the simulations, we restrained the length of the bond 

between the cap and Alanine 5 (1O-5H) to 1.522Å with a weight of 317 kcal mol
-1

Å
-2

. The 

1C=1O-5H angle was restrained to 120° with a weight of 80 kcal mol
-1

 rad
-2

 and the 1O-5H-5N 

angle was restrained to 110.1° with a weight of 63 kcal/mol/rad
2
. Therefore, it is expected that 

the results of the first five residues will disagree from experiments because the simulation and 

experimental conditions are not the same. Furthermore, this effect of the first five residues will 

also influence other parts of the helix as in the case of Alanine9 which appear to have lower 

scalar values due to the geometry of the Alanine5 residue that is hydrogen bonding  to. In the 
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case of the simulations this effect is not being reproduced because the geometry of the hydrogen 

bonding pattern of the helix is not the same given the differences between the restrained 

hydrogen bond portrayed in the simulations and the covalent C-C bond designed for the 

experiment. Nevertheless, the results show that the modifications increase the agreement with 

experiments for the other residues shown in figure 69 and 70. This trend was also seen when 

calculating the scalar couplings using the DFT1, DFT2 and original Karplus parameters 

previously used in the case of Ala5 and Val3 seen in figures 71-73 despite the differences in the 

parameters. 

 

 

 

Figure 70 Comparison between scalar coupling values for DFT1 parameters on Hydrogen Bond Surrogate (HBS) peptide. 

Error bars taken from native and semi-extended simulations as described in section 2.7 
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Figure 71 Comparison between scalar coupling values for DFT2 parameters of HBS peptide. Error bars taken from 

native and semi-extended simulations as described in section 2.7 

 

 
Figure 72 Comparison between scalar coupling values for original parameters of HBS peptide. Error bars taken from 

native and semi-extended simulations as described in section 2.7 
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3.6 Comparison between explicit TIP3P solvent simulations and revised GB Neck 

simulations 

 We wanted to investigate how the implicit solvent model was reproducing the trends 

observed with explicit TIP3P solvent. We used the revised GB Neck model system as described 

by Nguyen et al [193] and measured the helical propensities as described in section 2.1.10.3 from 

simulation methods. The results are shown in table 26. The trends show the same pattern for 

mod1φ (~0.69) mod2φ (~0.59), mod1φmod1ψ (~0.86) mod1φmod2ψ (~0.81), mod1φmod3ψ 

(~0.68) and mod1φmod4ψ (~0.76) as seen from the TIP3P simulations. Although the results are 

not exactly the same, as in the case of Val3 we could see that the fraction helical content 

increases in a similar manner as in the results for TIP3P explicit solvent. Primarily, these 

simulations were performed to roughly estimate the results for the TIP3P explicit solvent, in 

other words, it served as initial testing in the peptide in order to see if the trends observed from 

Ala5 and Val3 would be observed in the case of this peptide. After this testing was done, the 

TIP3P explicit solvent simulations were performed. 

 

Table 26 Helical fraction content for Hydrogen Bond Surrogate (HBS) peptide simulations 

with revised GB-Neck model 

 

Exp=0.46 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 0.40±0.05 0.70±0.06 0.56±0.05 0.46±0.04 0.50±0.08 

Mod1υ 0.69±0.07 0.86±0.1 0.81±0.07 0.68±0.07 0.76±0.08 

Mod2υ 0.59±0.03 

 

Table 26 Fraction helical content for Hydrogen Bond Surrogate (HBS) peptide simulations with revised GB-Neck model. 

The highlighted values in bold correspond to the best performing force fields for Ala5 and Val3. Initially this testing was 

done to determine if the force fields that had the best performance for the other peptides would yield similar results in 

this peptide. The error bars were taken from native and semi-extended simulations as described in section 2.8 
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3.7 K19 peptide helical propensities 

 

 In order to further investigate the helical propensities of the force fields we study another 

helical peptide known as K19. This peptide was chosen in order to evaluate the helical 

propensities in a larger system for which experimental information is available (CD and NMR), 

without the need to impose distance and angle restraints as in the case of the Hydrogen Bond 

Surrogate Peptide (HBS). This peptide has been studied previously with implicit solvent 

simulations [167]. However in the work described here, the simulations were done with explicit 

TIP3P solvent model. As seen in figure 74 the helical fraction increased significantly with the 

modifications previously studied in comparison to ff99SB (0.05). Force fields like mod1φ (0.33), 

mod2φ (0.16), mod1φmod1ψ (0.80), mod1φmod2ψ (0.68), mod1φmod3ψ (0.76) and 

mod1φmod4ψ (0.75) had more helical fraction content than ff99SB.  

 

Figure 73 Helical fraction statistics for best force fields compared against ff99SB. Helical content for most of the force 

fields increased with the exception of mod5φ where the helical fraction was comparable to ff99SB. 
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approximately 48% folded at room temperature. Even though this is the temperature used for the 

simulations presented here, we cannot directly compare the experimental results to our 

simulation results because they are two different metrics. Currently, it is possible to use chemical 

shift libraries for prediction measurements from simulations; the assignments for the peaks are 

usually done with software packages that are based on empirical assignment from these libraries. 

Furthermore, these software packages are trained to predict chemical shifts which are taken from 

NMR ensemble averages; therefore the method can become less sensitive to conformational 

variations that contribute to the experimentally measured average. In other words, the software 

package can prefer the static experimental conformation and incorrectly predict chemical shifts 

from conformational dynamics from simulations [262]. 

 

 However, as in the case of HBS peptide, they can provide an estimate of how folded is 

the peptide at this temperature. The results shown in figure 74 are taken from approximately 200 

ns of MD simulation, where the actual plotted values were calculated by taken the average 

between the native and extended simulations at the time where the curves meet as shown in 

figure 75. The error bars were taken from the native and extended simulations. It is important to 

note that these simulations are not considered converged; rather they are used to evaluate the 

folding behavior of the peptide for this given period of time (200 ns). The simulation behavior, 

as indicated in figure 75 shows that the simulation with ff99SB does not seem to attempt to re-

fold after the first unfolding event, whereas the simulation of mod1φ unfolds and attempts to re-

fold. The simulations for the other force fields such as mod2φ and mod5φ unfold as well and 

attempt to re-fold, although the helical content is less than in the case of mod1φ. Similarly to the 

results seen for HBS peptide, the helical propensities of mod1φ-mod1ψ, mod1φ-mod2ψ, mod1φ-

mod3ψ and mod1φ-mod4ψ were significantly higher than mod1φ, mod2φ and mod5φ. As 

previously described in section 2.1 these force fields had modifications to the φʹ and ψ /ψʹ 

parameters designed to improve the agreement with alanine vicinal scalar couplings and to 

increase the helical propensities of helical peptides. The helical effect can be seen here more than 

in the other tests previously described. Although according to the experimental information 

reported for Hydrogen Bond Surrogate and K19 these propensities seem higher. To further 

investigate the properties of these force fields (mod1φ-mod1ψ, mod1φ-mod2ψ, mod1φ-mod3ψ 
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and mod1φ-mod4ψ) we evaluated their performance against NMR order parameters for 

Lysozyme in order as it is usually done when validating new force field parameters [90, 142, 

266]  

 

 

 

 

Figure 74 Helical propensity averages as a function of time for K19 
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3.8 Calculated NMR order parameters for Lysozyme 

 

 

The modifications that had some of the best results from the testing performed were 

mod1φ, mod2φ, mod5φ, mod1φ-mod1ψ, mod1φ-mod2ψ, mod1φ-mod3ψ and mod1φ-mod4ψ. 

We tested these force fields and compared the results to ff99SB as indicated in figures 76 and 77.  

Mod1φ had similar results to ff99SB, mod2φ and mod5φ when compared to experimental NMR 

order parameters [4]. Although in certain regions mod1φ had better agreement with experiments 

than ff99SB, this was seen particularly for residues 65-73. For certain residues such as Asn 103 

mod1φ, mod2φ, mod5φ, mod1φ-mod1ψ and mod1φ-mod2ψ had discrepancies with experiment. 

This residue has been reported by Clore et al. to have fast and slow internal correlation times[4]. 

The authors mentioned that the method appears to reproduce the data within the experimental 

error, however for some residues in both proteins the internal re-orientational correlation 

function that is probed by NMR is not exponential with slow correlation times that are not in the 

extreme narrow limit as described by Lipari-Szabo [206]. This effect was particularly seen when 

comparing the 
1
H-

15
N NOE data from experiment to the fitted data using equation 6. The fitted 

values were significantly small or negative whereas the experimental values were positive. The 

issue is due to fast and slow correlation times for the relaxation motion of these bond vectors, 

when these differ by more than one order of magnitude the function does not decay 

exponentially. Instead, the function decays to a plateau intermediate before reaching the S
2
 value. 

It is possible that the deviation between the runs for this residue’s order parameter is related to 

this effect. 
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158 
 

 

Figure 75 Lysozyme NMR order parameters for mod1φ, mod2φ and mod5φ. Error bars were taken from two 

independent runs with different random seeds. 

 

 

Figure 76 Lysozyme order parameters for mod1φ-mod1ψ, mod1φ-mod2ψ, mod1φ-mod3ψ and mod1φ-mod4ψ. Error bars 

are taken from two independent runs with different random seeds 
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 The results for mod1φ-mod1ψ, mod1φ-mod2ψ, mod1φ-mod3ψ and mod1φ-mod4ψ 

showed increased flexibility in regions where ff99SB had good agreement with experiments, 

whereas mod1φ, mod2φ and mod5φ had better or comparable results to ff99SB. Since the results 

for the helical content of HBS and K19 peptide indicated that these force fields had elevated 

helical propensities that were atypical from experiments, we decided that these force fields 

would introduce undesired effects on the results from simulations that would go against the 

initial goal of having modifications that would have good agreement with transient helical 

peptides as well as reproducing backbone dynamics reported from NMR order parameters. 

Therefore, these force fields were not further evaluated against other test systems like ubiquitin 

and hairpins. 

 

3.9 Calculated NMR order parameters for Ubiquitin 

Mod1φ, mod2φ and mod5φ were evaluated against experimental values. The results 

indicated that there is no significant difference between them, with the exception of mod2φ 

which appears to be slightly more flexible for residues 52 and 53 of the sequence as seen in 

figures 78 and 79. 

 
Figure 77 Ubiquitin NMR order parameters for mod1φ. Error bars were taken from two independent runs with different 

random seeds 

 



160 
 

 

    

Figure 78 Ubiquitin order parameters for mod2φ and mod5φ. Error bars were taken from two independent runs with 

different random seeds. 

 NMR order parameters for ubiquitin have become a standard for the quality of force 

fields. Just like in the case of lysozyme, several groups have used these two systems for this 

purpose [90, 142, 154] . Nerenberg et al. [154] used this protein to validate their modification to 

the φʹ potential and they observed root-mean-square errors of 0.044 between the experimental 

and simulated S
2
 values for their modification and ff99SB. Hornak et al. [142] also used it to 

validate the parameters of ff99SB against ff94 and ff03. They reported that overall ff03 had the 

best agreement with experiments closely followed by ff99SB. Apparently the deviations are due 

to the magnitude of the fluctuations on the average conformations. Li et al [90] validated their 

modification to the backbone parameters using ubiquitin, lysozyme and interleukin-4 obtaining 
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results comparable to what is seen here. Overall the results shown here indicate that the 

modifications perform comparably when calculating NMR order parameters, although mod2φ 

showed increased flexibility for residues 52 and 53 (Aspartic acid and glycine) which are located 

near turn T4 region. 

3.10 Evaluating β secondary structure propensities for modifications 

3.10.1 CLN025 

 The results from simulations of small homologous and helical peptides as well as proteins 

indicated the best performing force fields; therefore we decided to test these force fields in β 

hairpins to determine how the modifications to the dihedral potentials were affecting the 

equilibrium between the β and ppII regions. Initially we tested mod1φ since it was the 

modification that had given the most promising results for all the tests performed here with the 

exception of Val3 peptide. The reason, as previously stated is believed to be related to the 

influence of the side-chain dynamics on the backbone. As illustrated in figure 67 and described 

in section 3.4 the conformations of the χ1 angle influence the dihedral propensities of φ/ψ angles. 

For the modifications described here we have only introduced changes to the φʹ, ψ/ψʹ backbone 

terms leaving the side-chain parameters untouched. Nevertheless, figure 67 indicates that the 

side-chain parameters for χ1 of valine prefer the gauche- conformation (where -30º ≥ χ1 ≥ -90º) 

therefore the backbone angles are sampling regions in φ dihedral space that are lowering the 
3
J 

(HN, Hα) vicinal scalar coupling and perhaps other scalar coupling values causing the χ
2
 values to 

be larger for mod1φ. As shown in figure 80 we simulated CLN025, a 10 residue hairpin with 

faster  folding properties [272] than its ancestor chignolin [185]. This peptide was chosen as a 

good model system because of its size making it suitable for implicit solvent simulations [193] 

using Replica Exchange Molecular Dynamics (REMD) [249, 250]. The reason why it was 

necessary to use REMD simulations was because we intended to study the folded populations for 

different temperatures.  As seen in figure 80 we plotted the fraction folded populations for 

ff99SB (red) and mod1φ (black). The fraction folded populations were generated by calculating 

the backbone RMSD for N, Cα and C atoms and defining as folded the conformations that were 

less or equal to 2.0Å. We chose this cutoff based on the analysis described in section 2.3.5.3.1. 

Then we counted those structures and divided them by the total number of structures taken from 

the specific temperature replica trajectory in order to obtain the populations. 
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Figure 79 Melting curve for CLN025 from simulations with revised GB Neck model [193]. Error bars were taken from 

native and extended simulations for both force fields. 

 

Mod1φ had low fraction folded (~ 0.15) when compared to ff99SB (~0.6). These results 

were concerning because it appeared as if this modification which had good agreement with the 

experimental information previously compared did not perform comparably to ff99SB. These 

results were taken from a simulation where the solvent accessible surface area (SASA) term was 

omitted from the calculations because the method has limitations. As previously reported by 

Chen et al. [327] the non-polar model was inclined to bias non-polar interactions that shifted 

conformations to non-native states. Others such as Levy et al. [328] indicated that solvent-

accessible surface area models yield results based on the protein models used for their 

parameterization. For instance, solute-solvent energies of native protein conformations do not 

reproduce the solute-solvent energies of extended conformations as well as failing to reproduce 

this type of energies for mis-folded proteins. Wagoner et al. [329] also reported that these models 

cannot accurately discriminate between conformational fluctuations which could bias the 

calculation of thermodynamic properties from simulations. Chen et al. [330] also reported that 

the fallacies of the solvent accessible surface area model are due to the lack of proper estimation 

K 
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of the length-scale dependence of hydrophobic solvation. In principle, neglecting this would 

over-stabilize the pairwise interactions and predict the wrong sign in the contributions.  

 Nguyen et al. [193] reported that the solvent accessible surface area method is a rough 

approximation of the non-polar term used for implicit solvent calculations. Partly, due to its 

over-estimation of the non-hydrogen term which biases other conformations than the native state. 

Furthermore, the performance of the implicit solvent model is not only dependent on the solvent 

accessible surface area term but on the radii set as well, since the radii defines the boundary 

between solute and solvent. To further investigate this, Nguyen et al. (personal communication) 

simulated CLN025 using the mod1φ modification with original Bondi radii [331] parameter for 

the oxygen atom of aspartic /glutamic acid and the solvent accessible surface area term. As seen 

in figure 81, including the solvent accessible surface area (SASA) term and changing the radii 

from mbondi 3 as described by Nguyen et al. [193] to the original Bondi et al. parameter set 

[331] for aspartic/glutamic acid increases the fraction folded for this hairpin in comparison to 

what is observed in figure 80 for mod1φ.  

 

Figure 80 Melting curve for CLN025 from simulations of mod1φ with revised GB Neck model changing the oxygen radii 

from mBondi 3 [193] to Bondi [331] and including the solvent accessible surface area term (black) and excluding it from 

the calculation (red) 

 As seen in figure 81, the results of the simulation are not only dependent on the force 

field used but they are also dependent on the parameters used for the GB implicit solvent 

calculation. Even though as discussed previously the solvent accessible surface area term 
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(SASA) has many limitations for which it should not be included in the calculation, the radii 

terms used for the GB implicit solvent calculation also influences the folded populations 

obtained from simulations. The reason why this effect is observed in this case is due to the 

stabilization of  salt bridges previously reported by Geney et al. [281]. In particular in the case of 

CLN025 the presence of glutamic acid (at the third position) and aspartic acid (at the fifth 

position) having increased oxygen radii stabilize hydrogen bonding to the neighboring threonine 

residues (the sixth and eight positions in the sequence). According to Nguyen et al. (personal 

communication) this stabilizing effect is approximately 1 kcal/mol. Although the results shown 

here do not justify modifying the existing parameters for the revised GB Neck model as 

described by Nguyen et al. [193]; on the contrary they highlight the limitations of the 

combination of methods used for the simulations such as force field and solvent model.  

 

3.10.2 HP5F 

 Following up on the results observed from CLN025 peptide, we decided to use this 16 

residue hairpin as a test system as Nguyen et al. [193] had done previously for the validation of 

their implicit solvent parameters. For HP5F we tested mod1φ, mod2φ and mod5φ in order to 

investigate how the combination of force field parameters with the revised GB Neck model [193] 

would affect the results. Similarly to the case of CLN025 we used REMD [249, 250] in order to 

calculate the melting profiles from backbone RMSD populations (figure 82) as Nguyen et al. 

[193] had done for the validation of their parameters. 

Our simulations showed that the modified force fields are able to fold this hairpin, 

however the force field that had the most percent folded was mod5φ, followed by mod2φ and 

mod1φ had the least percent folded. In terms of convergence we also noticed that mod2φ had the 

longest simulation runs, requiring 300 ns to converge between native and extended simulations. 

Mod1φ was second with 240 ns and mod5φ was third requiring 180 ns simulation time. On the 

other hand, ff99SB had the least required simulation time, folding at 70 ns and having the most 

percent folded populations in comparison to the other force fields (see figure 82). An analog 

hairpin discussed in section 2.3.5.2 where tyrosine 3 was mutated to tryptophan and tryptophan 5 
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was mutated to tyrosine known as GB1m3[194] was simulated with similar results (see figure 

83). 

 

 

Figure 81 Melting curves for mod1φ, mod2φ, mod5φ modifications (right panel) from simulations of HP5F (left panel). 

The error bars were taken from two independent simulations (native and extended) using revised GB Neck model [193] as 

implicit solvent model. The melting curves were generated from backbone RMSD calculations for each post-processed 

temperature trajectory in the range of the simulation (280-400K). Experimentally, the melting curve was generated from 

NMR Chemical Shift Deviation (CSD) profiles. According to experiments the fraction folded for HP5F at 298K is 0.82 

[191]  

 As previously discussed for CLN025, the results shown are dependent on the implicit 

solvent model parameters chosen for the calculation such as radii and solvent accessible surface 

area. Although Nguyen et al. [193]  described these deficiencies, the propensities of the 

modifications for both hairpins (HP5F and GB1m3) show results that are expected. As seen in 

figures 82 and 83 the force field that has the least amount of fraction folded is mod1φ. Although 

the effect is more pronounced at room temperature for HP5F (0.2) than GB1m3 (0.4) and the 

folded populations were higher for GB1m3 than HP5F the trends were the same. Mod1φ the 

force field that had the greatest populations at the φ = -60º region and the lowest populations for 

-150º ≤ φ ≤ -120º as indicated from the simulations of Ala5, had the lowest folded populations for 

these hairpins. Similarly mod2φ, which had comparable results to mod1φ, had less folded 

populations than ff99SB, although slightly higher. Mod5φ which had similar populations as 

K 

 

F
ra

ct
io

n
 F

o
ld

ed
 

 
 

 mod2phi 



166 
 

ff99SB but greater sampling for the -150º ≤ φ ≤ -120º region (see figure 42) had the highest 

folded populations for the modifications simulated here.  

 

Figure 82 Melting curves for different modifications from simulations performed with GB1m3. The error bars were taken 

from two independent simulations (native and extended). The melting profiles were generated from backbone RMSD 

calculations for each post-processed temperature trajectory in the range of the simulation (280-400K). Experimentally, 

the melting curve was generated from NMR Chemical Shift Deviation (CSD) profiles. According to experiments this 

hairpin is 50% folded at 54-60ºC [194]. 

  

 Even though the modification that had the best performance for this test was mod5φ we 

continued to consider mod1φ as the best modification overall because it had the best results for 

the systems studied here. For the testing of these hairpins in explicit solvent we chose mod1φ 

and compared its performance to ff99SB for chignolin and GB1m3. 

3.11 Stability of hairpin simulations in explicit TIP3P solvent model 

3.11.1 Chignolin 

 

 In the case of chignolin only the backbone RMSD of the MD trajectories was measured 

as a way to determine how the simulation was sampling the different RMSD values for 100 ns. 

This was done to the native and extended structures of both hairpins in order to determine how 

the backbone of the hairpin were behaving in this given time and not intended to define folded 

K 
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states; instead this measurement was used to conclude the stability of the hairpin structure during 

this time. The simulations indicated that for one of the structures, mod1φ was able to find the 

simulated native conformation faster than ff99SB. This cannot be considered folded because it 

would require more simulation statistics in order conclude that the simulation has reached the 

native state, however it is encouraging that the simulations are sampling folded and unfolded 

conformations without preferring a single conformation. Furthermore, the starting native 

conformation simulation is not unfolding completely. More semi-extended conformations were 

evaluated in order to have more statistics where folded and unfolded conformations were 

happening. 

 

Figure 83 Comparison between mod1φ (left panel) and ff99SB (right panel) panel backbone RMSD values. Mod1φ 

appears to reach the same RMSD value for the native and semi-extended conformations faster than ff99SB. Simulations 

were run at 300K in explicit TIP3P waters. The backbone RMSD was calculated for the N, Cα, C atoms for residues 2-9. 

The termini residues were excluded from the calculation. 

 The results from the simulations of the multiple structures of chignolin indicated that 3 

out of the 5 conformations simulated here reached a common point for backbone RMSD values 

faster than the simulation of ff99SB. It appears that the native conformation of ff99SB stays 

closer to 1Å than the native conformation of mod1φ (2Å or more). Furthermore, it is unknown if 

this effect could be observed for different conformations of ff99SB or if these conformations of 

ff99SB would reach the native conformation just as fast as mod1φ. We only simulated different 

conformations of mod1φ in order to have more than one simulation where this effect was 

observed, further analysis would require to extend the ff99SB simulation longer or to simulate 

the same conformations used for the simulations of mod1φ using ff99SB as force field. 
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Figure 84 Different conformations for chignolin generated from snapshots of a trajectory generated at 400K (black 

curves). The native conformation (red) was the same for all graphs. Simulations were run at 300K in explicit TIP3P 

waters. The backbone RMSD was calculated for the N, Cα, C atoms for residues 2-9. The termini residues were excluded 

from the calculation. 

 The fact that mod1φ was able to reach low backbone RMSD values close to the native 

conformation was encouraging because it indicates that this modification can be applied to 

simulations of hairpins in explicit water. As simulations in the microsecond and millisecond time 

scales have become increasingly feasible, longer simulation times would be required to establish 

the ability of this modification to preserve the stability of this hairpin.  

 Since this metric is not quantitative enough to describe the conformations obtained from 

simulations of hairpins, other methods can be implemented for the validation of force field 

parameters as in the case of Best et al. [59] who compared experimental and calculated scalar 

coupling values from simulations of chignolin and Nuclear Overhauser effects. Although we 

know that calculating scalar coupling values from dihedral angles requires Karplus functions and 

that they have many caveats previously described this approach could be useful for force field 
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assessment; provided that the estimates for the uncertainties in the Karplus methods are 

accounted for in the calculations. 

3.11.2 GB1m3 

 Similarly to the approach followed for the simulations of chignolin, we ran simulations of 

4 semi-extended conformations of GB1m3 hairpin. As seen in figure 86, ff99SB seems to reach a 

state that resembles the native conformation faster than mod1φ. Furthermore, the native 

simulation of mod1φ appear to reach an alternative conformation around 3-4Å as seen in figure 

87 while the ff99SB simulation did not display this behavior. When visually inspecting these 

structures we noticed the strands of the hairpin become curled up and the hydrogen bonding 

pattern is disrupted (figure 87). 

 

Figure 85 Results from MD simulations for semi-extended and native structures with mod1φ (left graph) and ff99SB 

(right graph). The backbone RMSD was calculated for the N, Cα, C atoms for residues 2-15. The termini residues were 

excluded from the calculation. 

 

Nevertheless, it is unknown if the simulation would be trapped at this conformation, and 

how much more time it will be required to obtain enough folding and unfolding statistics. 99SB 

seems to need more time in order to have more folding-unfolding events. Other conformations 

were also simulated for shorter simulation time; however, results are not conclusive enough to 

determine which force field is better at folding this hairpin (see figure 88) 
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Figure 86 Snapshots of alternate native structure for GB1m3. The backbone RMSD for this structure is 3.26 Å 

 

Figure 87 GB1m3 semi-extended conformations in explicit TIP3P waters using mod1φ. The backbone RMSD was 

calculated for the N, Cα, C atoms for residues 2-15. The termini residues were excluded from the calculation. 
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Although we know that the modifications are designed to increase the sampling of the 

ppII region which in turn would slightly decrease the sampling of the β region, we are not certain 

if this effect is only dependent on the modifications proposed here or if the side-chain parameters 

could play a role in the sampling of the backbone conformations. As previously described in the 

case of Val3 the side-chain preferences of the force field influence the backbone conformations 

which justify the fitting of the side-chain parameters accordingly. Previous work by Lindorff-

Larsen et al. [158] described re-parameterization of the side-chain dihedral functions of ff99SB 

for Leucine, Isoleucine, Asparagine and Aspartic acid as they were reportedly the amino-acids 

with the greatest deficiencies. However it would be good to evaluate all of the amino-acid side-

chain parameters as they have not been re-fitted since Cornell et al. [134] did it with ff94. 

Recently, the work by Maier et al. [326] provides revisions to the backbone and side-chain 

parameters for all amino-acid parameters with the exception of Lysine and Arginine of  ff99SB 

that address these issues. 
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4. Discussion and Conclusions 

 

 

 Among the goals that drove the work presented here was to increase the agreement 

between simulated and experimental vicinal scalar couplings for poly-alanine peptides. In order 

to do this it was necessary to increase the energy barrier between the ppII and β secondary 

structure basins. Doing this would increase the sampling of the ppII dihedral region of the 

Ramachandran plot which would improve the results obtained from the simulations. 

Furthermore, we aimed at improving the helical propensities from simulations as well as 

applying modifications to the ψ/ψ’ backbone energy terms. Increasing the energy barrier between 

the ppII and β secondary structure basins would also correct the energy function for the helical 

basin because the helical and ppII secondary structure basins are located in the -60º ≥ φ ≥ -90º 

dihedral region. Therefore, augmenting the sampling of this region and the 60º > ψ > -60º region 

would achieve these two purposes. 

 Following this procedure we generated 29 modifications that were tested  on a small 

peptide system known as Ala5 for which experimental data has been reported by Graf et al. 

[172]. This peptide has been used previously by other groups[89, 173] for this type of testing. 

This homologous peptide is appropriate for this purpose because it has enough residues to match 

the turn of a helix (i, i+4). Since helical propensities for small peptides are primarily governed 

by dipole interactions, having the hydrogen bonding of a helical turn would define the dihedral 

populations for this secondary structure region more accurately than for shorter homologous 

peptides. Furthermore, it is known that poly-alanine peptides have mainly PPII character; 

although as the number of residues increases, the helical content increases as well[234]. 

  Initially we concentrated in calculating the agreement for the 
3
 J (HN , Hα) coupling value 

because this is one of the scalar coupling values that simulations with ff99SB did not reproduce 

well. Then we continued at evaluating the agreement with other scalar couplings that Graf et al. 

[172] measured as well. From the modifications tested we noticed that mod1φ, mod2φ, mod1φ-
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mod1ψ, mod1φ-mod2ψ, mod1φ-mod3ψ and mod1φ-mod4ψ improved the agreement for 
3
 J (HN , 

Hα) and the rest of the scalar couplings measured by Graf et al. We calculated this agreement for 

all the scalar couplings in the form of χ
2
 values using the original Karplus parameters described 

in table 7. The actual calculated values can be seen in tables 18 and 19. It is important to note 

that these calculated scalar coupling values are obtained from Karplus functions obtained by 

fitting NMR and X-ray crystallographic structural data. As mentioned previously, the Karplus 

function attempts to fit complex chemical effects such as spin-spin interactions that are 

dependent on many more variables than just the dihedral angles between the nuclei. Furthermore 

it was shown that some of the scalar coupling values in particular 
3
J (HN , Hα) that probes for the 

φ angle is dependent not only on the φ angle values but on the ψ angles as well, and the regions 

that define specific scalar coupling values are so broad that they can sometimes overlap different 

secondary structure regions (see figure 51). Primarily we used the 
3
 J (HN , Hα) scalar coupling 

because it has a wide range of values which would allow to distinguish the different regions in φ 

dihedral space, mainly the ppII and β regions. However it is apparent that the relation between 

the dihedral angles and the scalar couplings taken from NMR spin-spin interactions is more 

complex than initially thought [323]. Besides this, as mentioned previously there are many 

different flavors of Karplus function parameters available for this type of calculations. Some 

experimentally derived[175] and some obtained from quantum calculations [235]. As illustrated 

in table 20 the results obtained depend on the set of parameters used for the calculations which 

could mislead the interpretation of the results obtained from simulations. For our purpose we 

chose the original Karplus parameters for the validation of the modifications because these 

parameters were obtained from fitting to experimental ubiquitin data. In the case of the other 

parameters known as DFT1 and DFT2 they were fitted to the backbone conformations of small 

alanine peptides where side-chain effects on the backbone dihedrals present in higher branched 

amino-acids are not being accounted for. A comparison between the χ
2
 values obtained from 

DFT1, DFT2 and original parameters is shown in table 20 for all 29 modifications. 

 We also evaluated the modifications against Val3 another small homologous peptide with 

vicinal scalar coupling data published by Graf et al [172]. We followed a similar approach as the 

one used for Ala5 where initially we calculated 
3
J (HN , Hα) scalar coupling values from φ 

dihedral angles and then the agreement with the other scalar coupling values was reported in the 
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form of χ
2
 values. In this case however the results seen for mod1φ, mod1φ-mod1ψ, mod1φ-

mod2ψ, mod1φ-mod3ψ and mod1φ-mod4ψ were not indicative of the best agreement. Instead 

they were some of the force fields that had the worst agreement with experiments. The only 

modification that had fairly good agreement was mod2φ (χ
2
 = 1.49±0.02). We decided to 

investigate this by examining the backbone dihedral propensities for all the amino-acids with the 

exception of glycine and proline based on the dihedral libraries taken from the protein data bank 

by Lovell et al. [149]. We discovered that the backbone dihedral propensities for most of the 

amino-acids are different than alanine, especially for higher branched amino-acids where the 

differences are significant, being valine one of these cases. Furthermore, when plotting the φ/ψ 

dihedral angles based on the χ1 dihedral conformations defined by Lovell et al. as gauche-, 

gauche+ and trans we discovered that the results were remarkably different. To quantify this we 

re-calculated the 
3
J (HN , Hα) scalar coupling values and the results are seen in figure 67. This 

indicates that the backbone dihedrals are influenced by the side-chain propensities and this needs 

to be taken into account when evaluating the performance of force fields especially for higher 

branched amino-acids. 

In terms of the helical propensities we simulated two helical peptides (Hydrogen Bond 

Surrogate Peptide and K19) and noticed that the modifications to the φʹ dihedral term, 

particularly mod1φ, mod2φ and mod5φ increased the fraction helical propensities in comparison 

to ff99SB from approximately 0.06 to 0.25. Other modifications that performed well for Ala5 

showing improvement in the agreement with scalar couplings such as mod1φ-mod1ψ, mod1φ-

mod2ψ, mod1φ-mod3ψ and mod1φ-mod4ψ also demonstrated significant proliferation of the 

helical conformations (fraction helicities of 0.5 to 0.7); however the helical propensities were 

slightly larger than those observed from experiments (figures 68 and 74). Although the results 

shown here cannot be compared directly to the experimental values because our definition of 

helical content is based on the hydrogen bond definition given by Dictionary of Secondary 

Structure (DSSP) analysis whereas the experimental helical content definition is based on 

circular dichroism and chemical shift deviation analysis. Nevertheless it was encouraging to see 

that these modifications were performing better than ff99SB for these systems. 

NMR order parameters for lysozyme were calculated from simulations in order to 

determine how the backbone flexibility was affected. It was observed that mod1φ-mod1ψ, 
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mod1φ-mod2ψ, mod1φ-mod3ψ and mod1φ-mod4ψ were adding significant flexibility to the 

backbone in regions where ff99SB had good agreement with experiments (figure 77). Overall, 

mod1φ had one of the best agreements closely followed by mod2φ and mod5φ was the last in the 

series. In the case of ubiquitin, mod1φ, mod2φ and mod5φ were used for the calculation of NMR 

order parameters from simulations. The results indicated that there is no significant difference 

between them, with the exception of mod2φ which appears to be slightly more flexible for 

residues 52 and 53 of the sequence as seen in figures 78 and 79. 

The results from the hairpin simulations (GB1m3 and HP5F) in implicit solvent reveal 

that the ff99SB had the closest agreement with experiments for the melting curves, followed by 

mod5φ, mod2φ and last mod1φ (see figures 82 and 83) . The simulations for the modifications 

also took longer time to converge between the native and extended conformations following the 

same trend as the melting curves populations (ff99SB > mod5φ > mod2φ > mod1φ). Although 

the experimental and simulation results cannot be directly compared because they do not have 

the same metrics in both cases; the melting curves were obtained from thermal denaturation 

followed by chemical shift deviations whereas in the case of the simulations the folded 

populations were obtained from RMSD calculations for the N, Cα, C backbone atoms taking the 

native conformation as the reference point. Nevertheless, the experimental results can serve as a 

qualitative metric to have an estimate as to how much fold the structures should be.  

Furthermore, the simulation results are dependent on many more factors than the force field 

backbone parameters being tested. As seen in figure 81 and discussed in section 3.10.1 the 

implicit solvent parameters play a crucial role in the results obtained. As illustrated in figure 81 

changing parameters such as the atomic radii can stabilize the structure and yield significantly 

higher folded populations because the atomic radii defines the boundaries between the solute and 

solvent interactions. For the simulations shown, we did not include the solvent accessible surface 

area term in the calculation because it has been previously reported that this method does not 

accurately reproduce the intrinsic conformations of the systems being studied because they 

“bias” alternate conformations based on the parameters used for their fitting. However as shown 

in figure 81, including this term can significantly increase the fraction folded populations by a 

four-fold. Therefore careful attention must be paid when analyzing the results obtained from 

implicit solvent simulations. 
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 We also tested other hairpin structures known as chignolin[185] and GB1m3 [194] in 

TIP3P waters to determine if the stability of the MD simulations would be compromised by 

using mod1φ. We chose this force field because it had the best performance for most of the test 

systems evaluated. We ran MD simulations of native and semi-extended structures of both 

hairpins in order to determine how the backbone of the hairpin was behaving in this given 

simulation time to determine the stability of the hairpin structure. 

  Surprisingly, when mod1φ was compared to ff99SB; the simulations with mod1φ 

reached a common state that resembled the folded structure faster than ff99SB. Furthermore, the 

native simulation did not completely unfold in the time scale simulated. We also simulated 4 

other semi-extended conformations and two out of the four simulations had similar behavior. 

Since we did not simulated more semi-extended conformations for ff99SB we do not know if 

similar behavior could be seen in the simulations of ff99SB. However, it is encouraging to see 

that 3 out of the 5 conformations can reach a common state that resembles the folded structure. 

Furthermore, the simulations fold and unfold without preferring the random-coil state.  

 In the case of the GB1m3 simulations, mod1φ encountered alternative semi-folded 

conformations with 3-4Å backbone RMSD from native sequence as shown in figure 86. It is 

unknown if the simulations are trapped in this alternative conformation, therefore longer 

simulation time is required to make further determinations. Furthermore, the chignolin 

simulations should also be run longer in order to have robust statistics of behavior.  

As mentioned previously, using calculations such as Root Mean Square Deviations from 

backbone atoms is not a robust metric that can quantitatively benchmark the quality of the 

modifications proposed. Recently, Best et al. [59] reported the comparison for vicinal scalar 

couplings between experiments and simulations for chignolin. They measured the same scalar 

coupling values that Graf et al. [172] had reported earlier for Ala5 and reported the improvement 

in the agreement in the form of χ
2
 values calculated from Karplus functions. Although we know 

that Karplus functions have many caveats that directly affect the results obtained, this method 

could be useful for benchmarking the results obtained from simulations in a more quantitative 

way, provided that the uncertainties in the Karplus functions are accounted for. 
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Overall, mod1φ showed improvement in the agreement with scalar couplings for Ala5 

and higher helical propensities for transient helical peptides such as Baldwin-type peptide known 

as K19[167] and a smaller peptide derived from the Bak BH3 domains [168] . Furthermore, 

improved agreement with NMR order parameters for Lysozyme was also observed. In the case 

of the hairpins, the implicit solvent simulations indicate that mod1φ had considerably less 

fraction folded than ff99SB. However the results are dependent on many more aspects than just 

the backbone parameters tested here, the parameters for the implicit GB solvent model also play 

an essential role in the calculations. In the case of the explicit TIP3P solvent simulations, they 

are not certain enough to determine if mod1φ is better or worse than ff99SB. Longer simulations 

are required to address these questions. 

 

 The force field is a key factor in the simulation of biomolecules since they are the 

description of the molecule being studied and careful attention must be paid to the choice of 

force field. We present a variant of the widely used ff99SB AMBER force field. The 

recommended force field only includes marginal changes to the existing energy function of 

ff99SB aiming to preserve some of the qualities of this force field while enhancing the areas in 

which the force field was lacking. The criteria for improvement were based on the agreement 

with scalar couplings for Ala5 and helical content for HBS as well as K19. The results for mod1φ 

showed improvement in the agreement with scalar couplings of Ala5 and helical content 

propensity of the force field, furthermore it also showed better agreement with the results 

obtained from NMR relaxation experiments for lysozyme. The results from hairpin simulations 

are not yet conclusive to determine if mod1φ performs better or worse than ff99SB. However, in 

the case of Ala5, Hydrogen Bond Surrogate, K19, lysozyme and ubiquitin mod1φ showed 

significant increased ppII and helical propensities when compared to ff99SB. Furthermore, the 

calculated vicinal scalar coupling values of Ala5 from simulation improved significantly. 

 Although the modifications presented here are based on changing the backbone dihedral 

parameters of ff99SB there are other terms in the force field that are coupled to the dihedral 

propensities such as the non-bonded electrostatics and van der Waals terms that have been 

recently re-fitted. Nerenberg et al. [157] recently reported development of the van der Waals 

terms by re-parameterization to small hydrocarbon molecules without changing the electrostatics 

that were published by Cornell et al. [134]. Cerutti et al. [321] also reported the development of a 
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new polarizable charge model for amino-acids. These are few efforts attempting to revise these 

terms as they have been left untouched for many years; most of the efforts for improving force 

fields including the AMBER ones have been concentrated in improving the backbone dihedral 

terms while leaving the non-bonded terms untouched. Future improvement would require to 

couple the effects of these terms to the dihedral parameters as well as developing better methods 

to benchmark the results obtained from simulations since the current methods have many 

limitations that can hinder the correct assessment of force field quality. 
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Appendix 
 

 

 

Table 27 ppII secondary basin populations for the central residue of Val3 

Exp = 29 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 48.95±3.73 50.45±2.11 47.97±1.50 45.40±0.93 43.69±0.95 

Mod1υ 68.59±2.41 69.07±0.84 67.34±1.07 65.64±2.80 59.17±1.13 

Mod2υ 63.42±1.01 59.78±1.37 60.55±2.33 60.27±2.67 56.31±0.50 

Mod3υ 57.97±0.75 58.21±2.75 57.66±0.40 53.26±0.00 52.50±0.85 

Mod4υ 53.90±1.17 51.28±0.17 52.47±0.09 50.40±0.75 48.71±0.63 

Mod5υ 52.95±1.83 55.11±4.20 54.20±3.28 54.35±0.65 47.42±1.10 

Table 27 ppII secondary basin populations for the central residue of Val3. Experimental data obtained from fitting to 

vicinal scalar couplings by Graf et al. Results taken from revised GB neck model simulations. Uncertainties calculated 

from native and extended simulations 

 

Table 28 β secondary basin populations for the central residue of Val3 

Exp = 52 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 40.17±2.22 39.76±0.03 39.26±0.59 38.82±1.31 38.76±0.69 

Mod1υ 22.42±0.13 20.78±0.35 21.85±1.67 20.26±0.30 18.87±0.81 

Mod2υ 25.82±0.97 23.95±2.91 24.59±0.30 25.32±0.56 23.29±2.57 

Mod3υ 32.91±0.01 28.41±2.24 30.66±1.16 30.22±0.00 26.54±1.51 

Mod4υ 36.18±0.51 32.21±2.02 34.69±2.38 34.98±2.33 33.18±0.45 

Mod5υ 26.29±2.07 21.27±1.02 22.02±0.26 24.20±1.21 21.57±2.63 

Table 28 β secondary basin populations for the central residue of Val3. Experimental data obtained from fitting to vicinal 

scalar couplings by Graf et al. Results taken from revised GB neck model simulations. Uncertainties calculated from 

native and extended simulations 
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Table 29 αR basin populations for the central residue of Val3 

Exp = 19 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψi 

99SB 6.91±1.31 6.97±2.59 8.83±1.76 11.52±0.01 13.60±1.91 

Mod1υ 5.15±2.62 7.85±1.10 7.65±0.74 9.28±3.40 17.55±1.53 

Mod2υ 6.59±1.27 13.75±4.17 11.05±2.05 10.40±2.73 16.35±1.84 

Mod3υ 5.61±0.90 10.91±0.50 8.64±0.04 10.95±0.00 16.05±2.71 

Mod4υ 6.22±0.99 12.33±1.31 9.15±1.72 10.77±0.23 14.10±0.04 

Mod5υ 16.02±0.45 20.59±1.21 20.50±1.3 17.73±2.60 26.49±4.24 

Table 29 αR basin populations for the central residue of Val3. Experimental data obtained from fitting to vicinal scalar 

couplings by Graf et al. Results taken from revised GB neck model simulations. Uncertainties calculated from native and 

extended simulations. 

 

 

 

Table 30 αL basin populations for the central residue of Val3 

 

Exp = 0 99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 0.01±0.09 0.03±0.03 0.04±0.05 0.04±0.02 0.02±0.01 

Mod1υ 0.01±0.02 0.00±0.01 0.00±0.00 0.08±0.08 0.00±0.03 

Mod2υ 0.03±0.00 0.00±0.00 0.04±0.03 0.00±0.03 0.00±0.01 

Mod3υ 0.00±0.00 0.00±0.01 0.00±0.02 0.15±0.00 0.15±0.08 

Mod4υ 0.01±0.14 0.13±0.07 0.03±0.03 0.00±0.19 0.00±0.00 

Mod5υ 0.96±0.13 0.61±1.39 0.00±1.99 0.28±0.67 1.11±0.35 

Table 30 αL basin populations for the central residue of Val3. Experimental data obtained from fitting to vicinal scalar 

couplings by Graf et al. Results taken from revised GB neck model simulations. 



197 
 

 

 

 

Table 31 
3
J (H

N
, H

α
) values for central residue of Val3 

Exp  

7.94±0.02 

99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 7.69±0.02 7.63±0.03 7.68±0.04 7.80±0.00 7.83±0.03 

Mod1υ 6.36±0.00 6.34±0.08 6.32±0.02 6.48±0.01 6.53±0.03 

Mod2υ 6.87±0.00 6.84±0.01 6.74±0.06 6.88±0.08 6.96±0.01 

Mod3υ 6.90±0.00 6.85±0.02 6.84±0.03 6.90±0.01 6.93±0.01 

Mod4υ 7.32±0.03 7.32±0.03 7.25±0.02 7.39±0.04 7.50±0.04 

Mod5υ 7.11±0.02 7.03±0.08 7.03±0.01 7.11±0.01 7.18±0.00 

Table 31 3J (HN, Hα) values for the central residue of Val3. Uncertainties calculated from native and extended simulations. 

 

Table 32 
3J (HN, Cβ) values for central residue of Val3 

 

 

99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 2.22±0.02 2.19±0.01 2.21±0.00 2.20±0.00 2.21±0.00 

Mod1υ 1.83±0.00 1.79±0.00 1.79±0.00 1.83±0.02 1.82±0.00 

Mod2υ 1.96±0.00 1.92±0.02 1.94±0.00 1.95±0.00 1.95±0.01 

Mod3υ 1.97±0.00 1.92±0.01 1.94±0.01 2.04±0.00 1.99±0.02 

Mod4υ 2.10±0.02 2.11±0.01 2.08±0.01 2.10±0.03 2.07±0.00 

Mod5υ 3.14±0.17 3.33±0.17 2.98±0.14 3.01±0.07 2.87±0.17 

Table 32 3J (HN, Cβ) values for the central residue of Val3. Uncertainties calculated from native and extended simulations 
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Table 33 
3
J (Hα, C’) values for central residue of Val3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exp 

1.38±0.06 

99SB Mod1ψ Mod2ψ Mod3ψ Mod4ψ 

99SB 1.24±0.03 1.28±0.00 1.27±0.00 1.28±0.01 1.26±0.00 

Mod1υ 1.72±0.00 1.78±0.00 1.76±0.02 1.75±0.00 1.77±0.01 

Mod2υ 1.60±0.01 1.63±0.03 1.64±0.00 1.61±0.01 1.62±0.02 

Mod3υ 1.48±0.00 1.56±0.02 1.54±0.01 1.51±0.01 1.57±0.02 

Mod4υ 1.38±0.00 1.44±0.02 1.39±0.02 1.41±0.02 1.41±0.01 

Mod5υ 1.12±0.03 1.08±0.02 1.08±0.02 1.15±0.00 1.11±0.04 

Table 33 3J (Hα, C’) values for the central residue of Val3. Uncertainties calculated from native and extended simulations   


