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Abstract of the Dissertation 

Computational Protein Folding Studies with  

Implicit and Explicit Solvent Models 

by 

Bentley Strockbine 

in 

Molecular and Cellular Pharmacology 
Stony Brook University 

2005 
 

 

The simplicity of the composition of proteins belies the complexity of their 

structure. Intense effort from the scientific community has been spent on improving 

experimental and theoretical methods to determine the native structure of proteins and 

model folding pathways to aid in the understanding of how proteins fold to their native 

state.  

For molecular mechanical tools to be useful, they must accurately evaluate the 

relative energies of different structures. In the first part of this dissertation we present a 

modified parameter set for the AMBER molecular modeling package aimed at improving 

predictions of the relative energies of alternate protein conformations.  

Next we describe results from using these parameters in all-atom fully 

unrestrained ab initio folding simulations for trp-cage, a stable protein with non-trivial 

secondary structure elements and a hydrophobic core. The first successful prediction of 
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the atomic-resolution structure of a protein (prior to release of experimental data) is 

presented. The predicted structure displays features that are suggested by experimental 

data, yet are not evident in NMR derived family of structures. 

Last, we will discuss the details of the progression of events during the folding of 

the trp-cage protein in reproducible unrestrained folding simulations with explicit 

inclusion of solvent molecules and extend our previous results to the study of the folding 

pathway. A specific partially folded intermediate is described and the results are 

compared directly to the available experimental data. 
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Chapter 1. Introduction 

 

1.1 The Importance of Protein Structure 

Proteins are fundamental biological macromolecules that perform many 

essential functions. Every protein can be assembled from a limited set of 20 different 

amino acids. The simplicity of their composition belies the complexity of their 

structure and function. Understanding the structure of a protein is essential for 

understanding the mechanics of the functioning of the protein. Understanding the 

functioning of proteins is a necessary prerequisite to understanding ourselves.  
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1.1.1 Proteins’ Role in Cellular Processes 

Proteins play a myriad of roles in cellular processes including enzymatic 

catalysis, transport, immune recognition, cellular control, mechanical structure, 

growth, replication, communication, and differentiation. Because proteins play so 

many roles and because they are so central to so many of the functions of a cell, it is 

of our utmost interest to understand them. 

Understanding proteins is also central to understanding of many disease 

processes[1]. Essentially every disease, in some way, involves protein function or 

malfunction. 

 

1.1.2 Elements of Protein Structure 

Proteins are made up of one or more polymeric macromolecules consisting of 

linear assemblies of amino acids.  Amino acids are composed of a central carbon 

atom, called the α-carbon, that is attached to a hydrogen atom, an amino group, a 

carboxyl group, and a variable side chain that is commonly referred to as an R-group. 

The carboxyl group of one amino acid is connected to the amino group of the next 

amino acid by a peptide bond. The numbering of the sequence of amino acids 

traditionally starts at the free amino terminus.   

Because carbon atoms are tetravalent there can be two absolute spatial 

conformations of the groups attached to the α-carbon. The two isomeric 

conformations are called the l-isomer and the d-isomer. The “l” and “d” refer to the 

levorotary and dextrorotary optical activity of the different isomers. With few natural 

exceptions, only l-isomer amino acids are found in biologically relevant proteins.    
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Traditionally, protein structure is divided into four levels; primary, secondary, 

tertiary, and quaternary. The primary structure is the linear order of the amino acids 

that comprise the polypeptide. The primary structure of a protein contains all the 

information necessary to determine the other levels of protein structure[2].  

The secondary structure describes small repeating elements of structure that 

are usually held together with hydrogen bonds[3]. The two most common elements of 

secondary structure are the α helices and β sheets[4]. α Helices are defined by their 

tight right handed coil-like structure and hydrogen bonds between the carbonyl 

oxygen of residue i and the amide hydrogen of residue i+4. Thus each main chain 

carboxyl and amine group of an α helix participates in hydrogen bonding. In β sheets 

the backbone is in a linear conformation and the hydrogen bonds are made between 

different strands of the peptide that do not need to be sequentially local to each other. 

The strands that form a β sheet can be either parallel in sequence or anti-parallel; in 

both forms each backbone carbonyl and amine group is involved in an interstrand 

hydrogen bond. There are several other less common forms of secondary structure 

including 310 helices, π helices, and polyproline helices[4].  

Intermediate autonomously folding elements between secondary structure and 

tertiary structure are called domains. Some domains are capable of a differentiable 

portion of the activity of a protein.  

The tertiary structure of a protein is the global three dimensional structure of 

an individual polypeptide. For a protein to be functional it is generally required that 

the protein is folded into at least the tertiary level of structure. The functional tertiary 

structure of a protein is commonly called the native state. When a protein is not 



 4

folded to the tertiary level of structure it is usually described as unfolded or 

denatured.  Many proteins are composed of only one polypeptide so it is not 

uncommon for the tertiary structure to be the ultimate level of structure.  

Some proteins are composed of several polypeptides and the quaternary 

structure represents the unified spatial arrangement off all the polypeptides required 

to form the complete protein. In the context of a protein that has more than one 

polypeptide, each peptide is called a subunit.  

 

1.1.3 The Protein Folding Problem 

The work of Anfinsen[2] in the 1960s showed that all the information 

necessary to determine the three-dimensional structure of a protein, in physiological 

conditions, is contained in the primary sequence. A corollary to this work known as 

Anfinsen’s hypothesis, states that the native conformation of a protein in 

physiological conditions is the conformation with the lowest global free energy.  This 

suggests the tantalizing possibility that if the relative free energies of all the different 

molecular conformations can be determined then the native structure of a protein can 

be identified. 

The main conformational degrees of freedom in the backbone of a protein are 

the rotation around the main chain bonds on either side of the α carbon. These are the 

φ and ϕ angles and they are defined by the angular difference between the planes 

created by the first and last three atoms in the backbone series C-N-Cα-C and N-Cα-

C-N respectively. Flory suggested that each pair of φ and ϕ angles is independent of 

the other pairs [5]. This implies that the number of conformations available to a 
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polypeptide chain increases exponentially with the number of amino acids. The 

number of conformations available for even small proteins quickly becomes too large 

for a complete search of all the possible structures. This is true for in vivo protein 

folding as well as for in silico computational studies; Levinthal’s paradox[6] states 

that there are many more possible structural states than a protein can visit in the time 

it has to fold. Levinthal concluded that proteins must fold by a sequence of events or 

pathway[7] that leads to the folded protein. Recent studies suggest that there may be 

more than one pathway, potentially many[8], which lead from a disordered state to a 

folded protein.  

 

 

1.2 Structural Biology 

1.2.1 Sources of Structural Information 

Information in the field of structural biology can come from several sources. 

Each of these sources, whether they are experimental or theoretical, aim to add 

information about the structure and function of biomolecules. X-ray crystallography 

was the first technique used to determine the structure of a biological macromolecule. 

In 1957 John Kendrew used the technique to determine the structure of myoglobin. 

This seminal event can be used to mark the beginning of the field of structural 

biology[9]. 

Electromagnetic radiation is a key tool in most experimental methods used to 

derive structural information at the atomic level. The maximum resolution of an 
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image is restricted by the wavelength of the radiation used to produce the image. The 

wavelength of visible light is too long to be used to determine the atomic level details 

of a biomolecule; techniques other than direct imaging must be used to derive 

biomolecular-structural information. 

Two primary sources of structural information are x-ray crystallography and 

nuclear magnetic resonance (NMR) spectroscopy. In x-ray crystallographic studies, 

highly pure crystals of a protein, or other molecules of interest, can be used to 

determine the structure of the molecule[10]. Because electrons scatter x-rays and the 

scattering can be related to the local density of the electrons, x-rays can be used to 

calculate a three dimensional map of the distribution of electron density. The density 

map can then be used to determine the position of the atomic nuclei, and thus the 

structure of a protein, in the repeating unit cells of the crystal. 

NMR spectroscopy measures the energetic difference between atomic spin 

states in an applied magnetic field to provide information about number and 

environment of magnetically distinct atoms in the structure of the molecule being 

studied[11]. Correlation spectroscopy (COSY), which gives information about 

hydrogen atoms that are covalently connected by one or two atoms, and nuclear 

Overhauser effect (NOE) experiments, which give information about sequence 

remote hydrogen distances, can be used together to determine sets of restraints that 

describe the distances between hydrogen atoms that near each other in space. The 

Wüthrich sequential assignment technique[12] can then be used to recreate the 

relative locations of the hydrogens in the protein structure. Unlike x-ray 

crystallography, NMR studies can be conducted on molecules that are in solution. For 
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biomolecules the solution state is generally a better approximation of the native 

environment of the molecule.  

Further, the local environment around a magnetic nucleus generates very 

small magnetic fields that oppose the applied magnetic field. The counteractive effect 

of the local field relative to the applied magnetic field is called shielding, and this 

shielding shifts the resonance frequency of the absorbed energy. This shift, known as 

the chemical shift (δ), is measured and used to describe the local environment of the 

atoms.  

There are many other techniques that provide important structural information 

including atomic force microscopy[13-15], infra-red spectroscopy[16, 17], circular 

dichroism[18] and fluorescence resonance energy transfer[19-21]. It is worth noting 

that structural information would be of little value without concomitant molecular and 

cellular biology techniques that provide the context for structural information. 

  

1.2.2 Rationale for Computational Modeling 

The majority of structural information that is gained about proteins from 

experiments is used to create static models. These models are averaged over many 

molecules and long time frames. This has the benefit of producing models that most 

likely represent the thermodynamically relevant structures. The disadvantages of 

these techniques are that proteins are not static and fast events in the life of a protein, 

often including folding, are too fast to be investigated with standard experimental 

techniques. Atoms in proteins are continually moving in small ways relative to each 
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other and are also often moving in large global motions, in coordination with each 

other, that include folding, breathing motions, and domain motions.  

Computational modeling can provide complimentary information that is often 

inaccessible by experiment alone. Because computational models can simulate the 

action of every atom in a protein and they necessarily take time steps that are smaller 

than the timescales of protein motions, they can provide information, at the atomic 

level, about dynamics of single molecules and about protein motions that would 

otherwise be too fast to observe.  

Because the time steps in the calculations involved in computational modeling 

are on the order of femtoseconds, even relatively short simulations, on the order of 

nanoseconds, require a tremendous number of individual calculations. Also, the 

number of calculations is related to the number of pairs of atoms in the system that is 

being modeled. These facts limit the timescales available to computational modeling 

and the size of the systems that are feasible to model. Experimental techniques and 

computational techniques are well matched to complement each other. Where 

experimental techniques average over large numbers of molecules and relatively long 

timeframes, computational techniques generally investigate single molecules over 

relatively short timeframes. 

  



 9

 

Chapter 2. Molecular Modeling 

Overview 

2.1 Molecular Dynamics 

Molecular modeling is the use of mathematical models to describe and predict 

the actions of molecules[23, 24]. Molecular dynamics (MD) is a type of molecular 

modeling where atomic motions are described in the terms of Newtonian mechanics. 

In other words, molecular dynamics simulates the temporal evolution of a series of 

interacting atoms by solving the equations of motion. In a system of N particles of 

known masses mi, where the particles positioned at r1, …, rN are affected by inter-

particle interactions defined by the energy function U(r1, …, rN) the force Fi on each 

particle can be determined. See equation 2.1. 

 

Equation 2.1 Equation of Force  
i

n
i r

rrUF
∂

∂
−=

),...( 1  

 

As the force, Fi, acting on the particle and the mass, mi, of the particle is 

known, Newton’s second law of motion[25] can be used to determine the 

acceleration, ai, and thus the velocity of each particle. See equation 2.2. 
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Equation 2.2 Newton’s Second Law  Fi=miai 
 

In molecular dynamics it is assumed that if the time step is small enough 

(finite differences method[26]) the resultant trajectory will accurately represent a true 

molecular trajectory. Thus MD can be used to calculate a molecular trajectory based 

on the energy of the system.  

 

2.1.1 The Force Field 

To describe the interactions between the atoms, molecular mechanics treats 

the interactions between atoms with simple mechanical models (i.e. springs). Thus 

simple mathematical models (i.e. Hooke’s Law) can be used to describe those 

interactions. 

It is clear that for a molecular mechanics model to correctly identify the native 

conformation of a protein it has to be able to correctly determine the relative free 

energies of the conformations of the molecule. Toward this aim, molecular mechanics 

techniques rely on equations that determine the potential energy of a conformation of 

a molecule by summing the energies of the components and interactions that 

comprise the molecule. In particular, the Amber force field, a component of the 

AMBER[27] suite of molecular dynamics simulation tools (by convention “AMBER” 

is used to refer to the program suite while “Amber” is used to refer to the force field 

that is part of that suite), is a widely used force field that is composed of a molecular 
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mechanical equation (see equation 2.3) and a set of constants, the parameters set, that 

are used together to calculate the energies of molecular conformations.  

 

2.1.1.1 The Force Field Equation 

The Amber[27] force field is based on a set of classical molecular mechanical 

functions for modeling the interactions in a molecular system. The force field has four 

main components: a bond stretching term, an angle bending term, a bond rotation 

(dihedral) term, and a term for electrostatic and van der Waals non-bonded 

interactions.  See equation 2.3. 

 

 

Equation 2.3 The Force Field Equation 
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The first term of the force field equation, the bond stretching term, defines the 

energetic consequence of deviation of the bond length, r, from the reference bond 

length, req, with a functional form based on Hooke’s law.  The reference bond length 

is the length at which the energetic consequence is zero. Kr is the force constant.  

The second term, the angle term, again uses a Hooke’s law formula to 

determine the energetic consequence of angular deviation of an observed angle, θ, of 

three atoms connected by two bonds from the reference value, θeq. Kθ is the force 

constant. 
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The dihedral term uses a cosine series expansion to determine the energetic 

consequence of rotation around a bond. Because the atoms are described as single 

points and the electrons are not explicitly defined, these terms are necessary to 

replace the interactions between the electrons of neighboring atoms that would affect 

the rotations around the bonds; a double bond between two carbon atoms would be an 

example of such an interaction. This rotation is defined by a series of four bonded 

atoms with the bond being rotated around between the second and third atom. To 

calculate the energetic barrier to rotation, a dihedral angle, φ, is multiplied by n, the 

periodicity parameter, which allows for more than one potential barrier per 360 

degrees of rotation. Next the phase parameter,γ , is subtracted to shift the relative 

position of the minima and maxima of the potential. The cosine is taken of the 

angular measure, one is added and the result is divided by two. This changes the 

angular measure to a value that can range from zero to one as the dihedral angle 

rotates from -180° through to 180°. This value is then multiplied by a constant, Vn, 

which represents the maximum potential barrier for that term. It is important to note 

that “barrier” represents only the portion of the energy penalty due to the individual 

term, several terms may be employed for each rotatable bond and other components 

of force field (i.e. electrostatic interactions) may contribute the total energetic 

impediment to rotation around a bond.[27] See figure 2.1.  

The remaining term in the force field equation is used to calculate the non-

bonded interactions for atom pairs i and j, where atoms i and j are considered to be 

“non-bonded” if they are separated by more than three bonds or are not connected by 

bonding at all. The interactions calculated by these terms include the van der Waals 
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interactions and the electrostatic interactions. The pairwise electrostatic interaction is 

calculated as a function of the charges, q; the charge separation, R; and the dielectric 

constant, ε0, using Coulomb’s law. The van der Waals interactions are calculated 

pairwise with a Lennard-Jones 12-6 function where R is the separation, σ is the 

separation where the energy value is defined to be zero, and εij is the well depth for 

the pair of charges.   
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Figure 2.1 Parm99 Psi Term Summation. 
 A set of parameters for a φ or ψ angle defines one or more functions, which in turn 
determine an energetic penalty for the given dihedral angle. This graph depicts the 
values for the ψ angle terms from Parm99. As an example, function one, in green, has 
a periodicity parameter of 1, a phase of 0º, and a barrier height of 3.5 Kcal/mol. The 
summation of term one (green) and term two (blue) is shown in red. The angles from 
the tetrapeptide training set used to develop Mod2 are indicated by circles (described 
in chapter 3). 
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2.1.1.2 Parameter Sets 

The parameter set is the set of constants that are used in the Amber equation. 

The parameter set for the Amber force field has undergone several generations of 

improvements and continues to evolve. The charges used in the Amber force field 

were derived with restrained electrostatic potential (RESP)[28, 29] charge fitting to 

quantum mechanical calculations. Many of the parameters were derived directly from 

experimental data, like the reference bond lengths in the bond stretching term, that 

were derived directly x-ray crystallographic structural data[30]. Other parameters like 

the φ and ϕ torsional terms were developed to reproduce dipeptide energies derived 

from high level quantum mechanical calculations[31]. The parameters for the φ and ϕ 

dihedral terms are especially important for the study of protein folding. As the peptide 

unit is rigid, the rotations of the peptide units around the α carbon atoms are the main 

conformational degrees of freedom in a protein backbone. If all of the φ and ϕ angles 

in a protein are determined, the structure of the backbone is essentially defined.  

Furthermore, because the parameters for the φ and ϕ angles in the parameter sets were 

developed to match structural energies they have been used as a corrective term to 

adjust the performance of the force field. The set of parameters that is currently 

commonly used with the Amber force field is Parm99[32]. 

 

2.1.2 Trajectory Analysis 

The calculated trajectory is strictly a series of coordinate sets. The useful 

meaning from a trajectory comes from the emergent properties that are found in the 
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relationships between the coordinates that were not explicitly defined by the force 

field. These properties can be investigated in several ways. The coordinates can be 

compared to each other, they can be compared to another model, or they can be 

compared to direct experimental observations.  

To compare two entire models the models must be overlaid, or fit, in such a 

way as to minimize the differences between the structures. The most common method 

for fitting two molecules is by minimizing a function that reports the difference 

between two structures. A common method of making this comparison is to calculate 

the root mean squared deviation (RMSD) between the structures. If N is the number 

of atoms to be compared, and d is the distance between the atoms, the RMSD can be 

calculated as seen in equation 2.4[33, 34].  

 

Equation 2.4 RMSD 
N

d
RMSD

N

i
i∑

== 1

2

 

 

 

There are many other possible analyses that can be used to evaluate structures 

including simple distance measurements, fraction of native contacts (Q), hydrogen 

bond populations, salt bridge populations, and energy analyses. It is important to note 

that many of these analyses use a model built from experimental observations. The 

analyses are not directly compared to the original experimental data. Often a 

molecular modeling force field is used in the process of model building from 

experimental data, thus biases from a force field may be present in the reference 
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model. It is also often possible, and usually worthwhile, to compare computational 

models directly to the primary experimental data.  

 

2.2 Solvent Models 

Proteins and other biomacromolecules assume their native state in solution. 

To correctly model the behavior of proteins we must accurately model the effect of 

the solvent. To balance the competing computational expense of simulation with the 

need for realistic replication of solvent effects there are several different solvent 

models that are used for different purposes[35].   

 

2.2.1 Implicit Solvent Models 

Implicit solvent models dramatically reduce the degrees of freedom of a 

model system at the expense of interactions involving individual solvent molecules. 

The effect of the solvent is reproduced by representing the solvent as a continuum, 

presenting an approximation of an averaged solvent effect to the macromolecule. A 

further advantage of continuum models is the lack of solvent friction; the absence of 

solvent friction[36] removes an impediment to the search of conformational space 

and effectively speeds up simulations. Implicit solvent models are reviewed in 

reference [37]. 

    

2.2.1.1 Generalized Born Solvent Model 
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The generalized Born solvent model (GB)[38] is a continuum model used to 

approximate the electrostatic contribution to molecular solvation free energies of a 

high dielectric solvent like water (reviewed here [39].) The effect of the continuum 

model is to lower the computational cost of simulating molecular motions[40]. 

Simulations by Tsui and Case of unconstrained A-type DNA helices converge to B-

type helices in 20 ps with the GB solvent model as compared to 500 ps for similar 

simulations with explicitly included solvent. A drawback of GB is the necessary lack 

of specific water interactions. Small local effects such as structured waters and charge 

bridging cannot be directly modeled with GB[40-42]. Despite this shortcoming, 

simulations employing GB have reproduced complicated protein movements[43], 

including protein folding as this dissertation will describe.  

 

2.2.2 Explicit Solvent Models 

Explicit solvent models are exactly as they sound, each atom of the solvent, or 

an approximation thereof, is modeled along with the solute of interest (reviewed here 

[35].) Despite advances in implicit solvent modeling, there are still differences in the 

results of simulations with implicit and explicit solvent. Neymeyer and Garcia were 

able to show distinct differences in the ensembles of structures sampled with implicit 

and explicit solvent, both for structures near the native state and for unfolded 

structures[44]. Furthermore, continuum models are unable to reproduce short range 

effects such as charge bridging[40, 45, 46]. The most commonly used explicit solvent 

models are the transferable intermolecular potential (TIP) functions[47]. The simplest 

models of explicit water use three points (notably TIP3P described below) but there 
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are more accurate, and thus more computationally expensive, models that use more 

particles to simulate each water.  

 

2.2.2.1 TIP3P Explicit Solvent Model 

TIP3P[47] is a three particle water model that has been used successfully to 

model protein dynamics; reviewed in reference [48]. The bond lengths (0.9572Å) and 

angles (104.5°) of the described particles are fixed in the TIP3P model but there are 

other explicit solvent models where these degrees of freedom are flexible[49]. TIP3P 

was developed to reproduce water propertied and specifically tested for its ability to 

reproduce free energies of solvation. Relative to both experimental calculations and 

other more comprehensive solvent models, such as TIP5P, TIP3P underestimates 

density as a function of temperature for physiologically reasonable temperatures[50] 

and overestimates the diffusion constant. These approximations limit the properties 

that can be determined with the TIP3P model but in general the motions of proteins in 

molecular dynamics are slow enough that these approximations are valid. The 

computational expense of a more accurate treatment of the solvent must be weighed 

against the consequential loss of simulation time. In the simulations presented here, 

the inherent limitations of the TIP3P solvent model were outweighed by the 

efficiency, and thus it was chosen for these studies.   



 20

Chapter 3. Force Field Development 

3.1 Identification of the Bias in the Current Amber Force 

Field 

For molecular mechanical tools to be useful, they must accurately evaluate the 

relative energies of different structures.  

The dihedral terms and their associated parameters in the Amber force field 

are used to calculate energetic penalties for rotation around a bond. Our interest in the 

dihedral parameters in the Amber force field came from noting that α-helical 

conformations were over-stabilized in molecular dynamics simulations of proteins 

using the current set of parameters (Parm99[32]). This suggested that the Parm99 

force field was not accurately evaluating the relative energies of the different 

structures.  

In an 8 ns explicit solvent molecular dynamics simulation by Dr. Guanglei 

Cui, Parm99 turned an unstructured region of the peripheral subunit-binding domain 

P.S.B.D. peptide[51] to an α-helical conformation. Similarly, during high temperature 

simulations of a tryptophan zipper fragment trpzip2[52] conducted by Asim Okur 

with Parm99, an α-helical conformation became stable even though the native 

structure of the fragment is in a β hairpin conformation.  These results suggested that 

Parm99 energetically favors α-helical conformations. Finally an eleven amino acid 
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fragment of alpha lactalbumin[53], which is only partially 310 helical in the native 

conformation, was stable in a fully α-helical conformation during simulations with 

Parm99, further suggesting that the parameter set was favoring the α-helical 

conformations.  See figure 3.1. 

To confirm that it was the dihedral parameters that were responsible for the 

over-stabilization of the α-helices, a parameter set was constructed that was intended 

to have null values for the dihedral terms (ParmX.) It was later determined that not all 

of the terms that affect the dihedral terms in ParmX were zeroed. Refining the 

parameters with truly zeroed parameter terms will be one of the future goals of this 

project. No stabilization of α-helices was noted after extended molecular dynamics 

simulations with ParmX. This further suggested that it was the dihedral parameters in 

Parm99 that were responsible for the over-stabilization of the α-helices. ParmX also 

afforded the ability to test if the φ and ϕ dihedral parameters were necessary at all. By 

comparing the energies and RMSD values from simulations with and without the 

included φ and ϕ dihedral parameters the necessity of the parameters could be tested. 

Figure 3.2 shows the results of such simulations; the RMSD values were determined 

from the native structure as described by NMR. The lack of a gap between the 

energies of low RMSD structures and high RMSD structures in the ParmX graph 

suggests that the φ and ϕ terms are necessary for the force field to correctly identify 

the near native structures as the lowest in energy. Further, because ParmX has no φ 

and ϕ terms, it can be used as a baseline to measure the effect of different added φ 

and ϕ terms[54]. 
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As a means of clarifying the energetic contributions of terms that go into the 

energy calculation the individual components were calculated for a complete set of 

rotations around the φ and ϕ angles of an alanine dipeptide. These values were then 

plotted on a standard Ramachandran plot.  The contribution of the force field without 

the φ and ϕ dihedral terms was calculated (ParmX), the contribution of only the 

Parm99 φ and ϕ dihedral term was calculated, and the contribution of a GB implicit 

solvent model was added to further clarify the energies involved in the dipeptide 

system. These values can be seen separately and combined in figure 3.3. On the 

“combined” graph the relative energies of different conformations can be seen.  
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Figure 3.1 Protein Structures Before and After Simulation with Parm99 
 
Backbone traces of P.S.B.D., TrpZip2, and α-Lactalbumin 101-111 before and after 
simulations with the Parm99 parameter set. All three structures become either 
partially or wholly α helical in nature. The middle section of P.S.B.D. turns alpha 
helical after simulation. TrpZip shifts from a β-turn to an alpha helix. α-Lactalbumin 
101-111 turns from a linear structure to a stable ordered α helix while the native 
conformation of the fragment is a partially disordered 310 helix. These changes 
suggest an α-helical bias in the Parm99 parameter set.  

P.S.B.D. (Native) TRP (Native) α-Lactalbumin 101-111 

After Simulation
with Parm 99

Before MD 
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Figure 3.2 ParmX and Parm99 Energy vs. RMSD 
These graphs show the energies of 7500 structures of the α-lactalbumin fragment as 
evaluated by the ParmX and Parm99 parameter sets compared to the RMSD from the 
native structure as described by NMR. ParmX is a parameter set with no φ or ψ 
torsional terms. Parm99 shows a large energy gap between the native and non-native 
structures while ParmX shows no such gap at all. The energy gap provides an 
explanation for why Parm99 over-samples α-helical structures.  
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Figure 3.3 Energy Components of an Alanine Dipeptide 
The separate components of the ParmX, Parm99 φ and ϕ dihedral terms, and the GB 
implicit solvent model energy component calculated for all the φ and ϕ rotational 
values plotted on a Ramachandran plot. The large image is the summation of the 
smaller graphs. The color gradients represent 1 kcal/mol. 
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3.2 Training and Testing of Force Fields 

Historically, the most used parameter set with the AMBER force field is 

PARM94. Prior to Parm94, parameter sets, particularly the set of Wiener et al. [30], 

were developed for gas phase potential functions. Parm94 was developed with 

empirically derived and quantum mechanically derived parameters to balance solute-

solvent and solvent-solvent interactions[31]. The dihedral parameters of Parm94 were 

optimized to match a set of quantum mechanical energies[55] for a set of simple 

molecules with the hope that the parameters would be transferable to larger 

molecules. The Parm99 parameter set was an evolutionary development of the 

Parm94 force field. Notably, the fourier components of the dihedral parameters for 

the φ and ϕ were said to be improved.  

The dihedral parameters of the Parm99[32] parameter set were developed by a 

systematic search of parameter space. The parameter sets were evaluated on their 

ability to match the result of a previous HF/6-31G** quantum mechanical evaluation 

of the energies[55] of a seven member dipeptide training set. The trained parameter 

sets were tested based on their ability to similarly predict the quantum mechanically 

derived conformational energies of an eleven member tetrapeptide test set[56]. The 

members of the set are numbered 1-10 and alpha; the alpha conformation is so titled 

because of its φ and ϕ angles are in the alpha helical region of the Ramachandran 

plot. See Table 3.1.  The parameter sets that calculated relative energy values with the 

smallest average deviation from the values from the quantum mechanical analysis 
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were judged to be the best. The calculation with the lowest overall energy was 

assumed to have the smallest deviation and was set to be equal to the quantum 

mechanically derived energy for reference purposes. This introduced the deviation 

between the reference structure energy and the quantum mechanically derived energy 

as a systematic error. The effect of this error can be seen by subtracting the energies 

calculated with Parm99 for the eleven member test set from the energies calculated 

ab initio for the same conformations. See figure 3.4. The alpha helical bias is 

evidenced by the fact that the alpha helical conformation has the lowest energy 

difference between the ab initio calculations and the calculation made with Parm99. 

This suggests that all of the energies were overestimated by the Parm99 calculations 

but the energy calculations of the alpha helical conformation had the smallest error 

making in relatively lower in energy, as noted in figure 3.1.  
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Figure 3.4 Parm99 Energies Minus ab initio Energies 
The energies of the eleven member test set of structures of the alanine tetrapeptide 
derived with Parm99 minus the energies calculated ab initio, relative to the energy for 
the alpha helical (alpha) conformation. This graph demonstrates that the alpha helical 
conformation, as described by Parm99, has smallest difference between the ab initio 
calculations and energies derived with Parm99.  
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Table 3.1 φ and ϕ Angles of the Eleven Tetrapeptide Set 
 
 
 Conformation Phi and Psi Angles 
Conformation # Phi1 Psi1 Phi2 Psi2 Phi3 Psi3 

1 -158.50 163.50 -157.80 163.40 -156.20 160.80 
2 -158.60 163.90 -154.90 158.10 -86.00 79.20 
3 -81.70 93.40 76.30 -53.40 -80.50 85.10 
4 -156.90 161.30 -88.80 83.50 -156.00 152.80 
5 -157.20 170.00 -76.20 -19.60 -153.80 160.80 
6 -89.00 67.30 63.00 24.30 -165.00 149.80 
7 56.00 -158.50 -93.00 63.80 -163.30 -50.00 
8 72.80 -70.50 -58.10 134.70 62.00 25.70 
9 75.70 -59.50 76.10 -53.30 75.50 -53.00 

10 62.50 29.00 65.10 20.60 73.80 -51.50 
(alpha) 11 -52.00 -53.00 -52.00 -53.00 -52.00 -53.00 
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3.2.1 Parameter Set Development 

Because the dihedral parameters, which act on the torsional angles φ and φ 

and describe the energetic penalties to be attributed to those angles, are so critical for 

modeling proteins, the aim of this project was to develop an improved set of these 

parameters. It is specifically the parameters represented by Vn (the barrier height), n 

(the periodicity factor), and γ (the phase factor) of the dihedral parameters for the φ 

and φ torsional angles that we are investigating. 

 

3.2.2 Exhaustive Search Methods 

To identify a better set of dihedral parameters we performed a coarse search 

of a limited section of the possible parameter space. The search included both φ and ϕ 

parameters with a periodicity parameter of 1 or 2, a phase of 0 or 180, and barrier 

heights of 0 to 2 in steps of 0.1 kcal/mol. This entailed searching 3.1 million 

parameter sets ((21*2)4). All calculations were performed on the 92 processor (40 800 

mHz Pentium III, 52 1.4 gHz Athlon) Simmerling lab beowulf cluster “Ristra”. 

Molecular dynamics simulations were carried out using the SANDER module of the 

Amber 6 program suite[27]. Using the seven[56] dipeptide structures as a training[29] 

set, we evaluated the ability of each parameter set to match the results of the HF/6-

31G** quantum mechanical evaluation of the energies of the same structures.  
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Before the energy evaluations, the test structures were minimized with the 

Parm94 force field by 10 steps of steepest descent followed by 990 steps of conjugate 

gradient minimization using a convergence criterion of 0.1 kcal/mol-degree, phi and 

psi torsional angle restraints to the original angles with a +/- 5 degree, flat bottomed 

wells with 5 degree parabolic sides, and a 50 kcal/mol-rad2 force constant.  

Each parameter set evaluation was started with a re-minimization using the 

parameter set to be evaluated to a maximum of 15,000 steps (10 steepest descent 

steps followed by conjugate gradient). The convergence criterion was 0.1 kcal/mol-

degree and most minimizations continued for less than a total of 20 steps. Each 

minimization was restrained similarly to the original 1000 step minimization. For 

each set, following minimization, the average absolute energy differences and the 

maximum absolute energy differences of each of the 21 possible pairs of structures 

were calculated. The parameter sets that calculated relative energy values with the 

smallest absolute average deviation and the smallest maximum deviation from all the 

values from the quantum mechanical analyses were judged to be the best. This 

approach eliminated the systematic error that was introduced by using one structure 

as a reference structure. 

The set with the lowest average deviation was dubbed Mod1. Mod1 was 

identified as a parameter set that performed better than the current standard, Parm99. 

(See figure 3.5.) The small size of the test set limited the number of structure families 

that could be included and the limits on structure size due to the computational 

expenses of quantum mechanical evaluations which limit the potential transferability 
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of any identified sets. Limiting the phases to 0 and 180 degrees assured that the 

energy penalty was symmetrical around 0 degrees.  

Because the Mod1 parameter set was trained on the smaller set of dipeptides 

we were concerned there was insufficient data in the test set to accurately reproduce 

the correct energies. To rectify the situation we ran a similar search of parameter 

space, but instead of using the seven member tetrapeptide training set we trained on 

the eleven member tetrapeptide set that had been originally used as a test set for 

Mod1. The resultant parameter set was named Mod2. To test the new set we used the 

set to calculate the energies of a series of dipeptide structures that have all the 

possible φ and ϕ values in degree increments. These energies were the plotted on a 

Ramachandran plot to identify the energy basins. This type of plot can also be used to 

compare different force fields. See figure 3.6.    



 33

 

 

Figure 3.5 Parm99 and Mod1 Absolute Energies Relative to Conformation α 
The energies predicted using the Parm99 and Mod1 force fields for the eleven 
member tetrapeptide set.  On average, the deviations between the Mod1 energies and 
ab initio are lower than the deviations between the Parm99 energies and the ab initio 
energies. This helps to explain why Mod1 favors the alpha helical structures less, 
relative to Parm99, than the other structures in the test set.  
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Figure 3.6 Parm99 and Mod2 Energy Ramachandran Plots 
The graphs represent the summation of the GB energy, the ParmX energy, and the 
energies from either the Mod2 or the Parm99 φ and ϕ dihedral parameters for the 
alanine dipeptide plotted on a Ramachandran plot. The relative difference between 
the well for the alpha helical portion of the plot and the well for the β sheet portion of 
the plot is smaller in the Mod2 plot. This helps to explain why α helical structures are 
less favored with the Mod2 parameter set. The color gradients represent 1kcal/mol. 
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3.2.3 Genetic Algorithm Based Searches 

Another approach to searching parameter space for parameter sets that 

correctly identify low energy structures is with 

genetic algorithms[57]. Genetic algorithms are 

function optimization techniques that actively 

select functions based on fitness criteria. The 

fitness function in this search involves the 

ability to correctly identify relative 

conformational energies of the test set. A high 

scoring fraction of the original population 

(seed set) is carried into the next generation. To introduce diversity, a fraction of the 

high scoring population are mutated or recombined to fill the next generation. The 

algorithm is stopped after a designated time, a designated value is reached, or after a 

designated period in which no improvement is seen in the output from one generation 

to the next. Genetic algorithms have two large advantages: 1) Instead of searching all 

possible values of all possible dimensions of parameter space, genetic algorithms 

make one dimensional moves through the multidimensional parameter space which 

allows them to be faster and to search the parameter space at a much higher 

resolution. 2) The conservation of successful sets with the addition of random sets 

allows for thorough searches of successful areas of parameter space while not getting 

stuck in only those areas. The disadvantage of genetic algorithms is that they 

? Test ? 

Seed Set 

Final Set 

Prune 

Mate 

Mutate 

Yes 
No 

   A simple genetic algorithm. 
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necessarily do not search every portion of parameter space which leaves open the 

possibility of not finding the best possible parameter sets.  

 

3.2.3.1 Decoy Set Analysis 

The first search of parameter space with a genetic algorithm was trained on 

the same set of eleven tetrapeptides (see table 3.1) as the previous comprehensive 

search. The algorithm can be written to output as many of the best parameter sets as 

desired. Because the training set is limited in its capability to represent secondary and 

tertiary structure we wanted to further evaluate the sets that were output from the 

genetic algorithm. To test each of the output sets, we used the parameters to evaluate 

the energies of a large body of structures over a large range of RMSD values of two 

peptides that had previously been described experimentally[54]. These structures are 

called decoy sets. The two peptides were trpzip2[58], a peptide that forms a β hairpin 

in its native state, and α lactalbumin fragment 101-111, a predominantly helical 

structure[52]. The sets were derived from simulations that were restrained to the 

native conformation, unrestrained, and forced to fold and unfold with targeted MD 

simulations[54]. Together, there were more than 7.5x105 structures in the decoy sets. 

This guaranteed significant sampling of the native state, a large population of 

unfolded structures, and a significant population of structures from the folding path. 

Decoy sets can be used to quickly evaluate the ability of the force field to correctly 

identify native-like structures as those with low energies because the computational 

expense of evaluating the energy of a structure is trivial as compared to the generation 

of a trajectory. This process is called decoy analysis.   



 37

The parameter set that resulted from the genetic algorithm search with the 

tetrapeptide set and decoy analysis of the decoy sets was dubbed ParmGA2. See 

Figure 3.7.  ParmGA2 showed a larger helical bias than Parm99. Because the initial 

search was performed on the eleven tetrapeptides set of structures, it is possible the 

training process would be irrevocably biased toward the structures in that small set. 

To address this problem we decided to use the decoy sets as the training sets.    

Using the decoy set as a training set requires a different approach to 

measuring the fitness for the genetic algorithm. A new fitness function using two 

measurements to evaluate each set was developed by Asim Okur in our lab. The first 

component is the energy gap between the RMSD of the native structures and the non-

native structures. The native structures were defined as those structures with RMSD 

values below 1.0 angstroms and conformations were defined as non-native if their 

RMSD values from the native were greater than 1.7 angstroms. To calculate the gap, 

the 1000 lowest energies of both the native and non-native populations were averaged 

and the native average was subtracted from the non-native average. Thus positive 

values indicate that the native structures are lower in energy (on average) than the 

non-native structures. The energy gap measures how favored the native structures are 

relative to all the non-native structures. The second component of the fitness function 

is the Energy vs. RMSD slope. The slope was calculated as a vertical offset least 

squares linear fit. The slope of the fit line was taken to represent the energetic 

compulsion toward the native state. The fitness function of the genetic algorithm was 

the geometric mean of the two values.  
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The size of the test set, now 7.5 x 105 structures, necessitated that the energy 

calculations be optimized for speed. As only the φ and ϕ terms were changing, only 

the evaluations that involved those terms were calculated at each step.  

The resultant force field was named ParmGA12. Energy/RMSD plots of the 

decoy sets evaluated with Parm99, and ParmGa12 are shown in Figure 3.8. The 

energy of high RMSD structures of the trpzip2 fragment as evaluated in Parm99 are 

lower in energy than the native structures, explaining why simulations using Parm99 

did not populate native structures. The native structures of the same decoy set 

evaluated with ParmGA12 are lower in energy than the non-native structures 

suggesting the force field would favor the native structures. This effect was evidenced 

by simulations of trpzip2 using the ParmGA12 parameter set that had native like 

population fractions similar to that of experimental observations. In contrast, the 

slope of the energies for the α-lactalbumin decoy set is very steep when evaluated 

with Parm99 and less severe when evaluated with ParmGA12. This may help to 

explain why the Parm99 simulations over-stabilize helical conformations. The native 

structure is favored by both simulations but the non-native structures may be over-

penalized in the Parm99 simulations[54]. 

For the sake of comparison, each of the parameter sets is described in Table 

3.2.  
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Figure 3.7 ParmGA2 Compared to ParmX and Parm99 
These graphs show the energies of 7500 structures of the α-lactalbumin fragment as 
evaluated by ParmX, Parm99, and ParmGA2. Parm99 demonstrated a significant 
alpha helical bias (see figure 3.1) and ParmGA2, as shown by the third graph, shows 
an even larger bias. RMSD values are determined from the native structure as 
described by NMR. 
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Figure 3.8 Decoy Analyses with Parm99 and Ga12 
Each of the graphs represents an energy/RMSD plot of a decoy set. The top graphs 
are the trpzip2 and α-lactalbumin decoy plots evaluated with the Parm99 parameter 
set while the bottom plots are the same decoy sets evaluated with the ParmGA12 
parameter set. For trpzip2 ParmGA12 produces an energy gap that favors native-like 
structure while Parm99 favors non-native structures. For α-lactalbumin the energy 
gap produced by Parm99 suggests that Parm99 will over-stabilize the native 
structures while ParmGA12 produces a smaller energetic difference between the 
native and non-native structures.  

 

Trp-zip2 α- Lactalbumin 
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ParameterSet 

Name   
Periodicity   P94 P99 PX Mod1 Mod2 GA12 
PHI 1 Barrier  0.80  0.20 1.00 0.40
  Phase   0.00   0.00 0.00 262.00
PHI 2 Barrier 0.20 0.85  0.70  0.41
  Phase 180.00 180.00   0.00   303.00
PHI 3 Barrier      0.02
  Phase           287.00
PHI 4 Barrier      0.02
  Phase           333.00
                
PSI 1 Barrier 0.75 1.70  0.30 0.70 0.48
  Phase 180.00 180.00   0.00 180.00 274.00
PSI 2 Barrier 1.35 2.00  2.00 1.10 0.45
  Phase 180.00 180.00   180.00 180.00 309.00
PSI 3 Barrier      0.12
  Phase           330.00
PSI 4 Barrier 0.40     0.45
  Phase 180.00         316.00

 
 

 

Table 3.2 Parameter Sets 
The different parameter sets described in this document are presented with the values 
for the barrier, phase, and periodicity terms. The periodicity must be a positive integer 
and was limited to a maximum periodicity of four for each φ and ϕ.  
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3.3 Discussion 

Ultimately, at the time these simulations were run, the ParmMod2 parameter 

set most accurately reproduced the energies of the structures in our test sets. The 

work of developing parameter sets is by no means complete and ParmMod2 

represents and incremental improvement on its predecessors. New force field 

parameter sets continue to be developed in the Simmerling lab and elsewhere.  In 

particular, ParmMod2 doesn’t discriminate between glycine and other amino acids 

and newer parameter sets will make treat glycine separately because glycine can 

reach a larger area of phi/psi space.  
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Chapter 4. Structure Prediction and 

Implicit Solvent Simulations of Trp-

Cage  

4.1 Exendin-4 

Exendin-4 is a protein that was originally isolated in 1992[59] from the saliva 

of Heloderma Horridum, more commonly known as the Gila Monster[60]. In 2001 

the structure of Exendin-4 was solved by the Anderson laboratory at the University of 

Washington[61]. The structure revealed a novel protein motif which they called the 

tryptophan cage. The cage involves the side chain of a tryptophan pi stacked between 

two residues from other parts of the molecule with a Trp-εNH hydrogen bond to a 

backbone carbonyl[62]. A small number of other instances of the motif were 

identified, including instances where the tryptophan belongs to a separate peptide 

leading to the suggestion that the motif might be important for protein-protein 

interactions.  

 

4.2 Trp-Cage 
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With the specific intention of designing a small, ultra-fast folding protein to 

aid in structural and computational studies, the Anderson group truncated and 

mutated Exendin-4 to produce the series of trp-cage cage proteins[63]. See table 6.1.   

In the scientific literature the name trp-cage has become synonymous with TC5b, a 

particularly fast folding mutant with the amino acid sequence 

NLYIQ5WLKDG10GPSSG15RPPPS20. The rest of this document will follow that 

convention. This peptide is the smallest peptide that displays two-state folding 

kinetics and has significant secondary and tertiary structure. At the time of its 

introduction trp-cage was the fastest known folding protein, folding in 4 μs[64]. The 

size of this construct, the rapidity of its folding, and presence of  protein-like features 

mark the design of this mini-protein as a significant milestone[65].  

 

 
 
 
4.3 Predicting the Structure of Trp-Cage 

The ultimate goal of these studies is to be able to use force fields in 

simulations to provide new information. In particular, we would like to address two 

questions 1) can we find the native state, and 2) can we help explain the folding 

process. To address the first question we used the ParmMod2 force field to try and 

predict the structure of trp-cage. Prior to the release of the experimentally derived 

structure coordinates of trp-cage we ran simulations from a fully extended non-native 

state. We intended to test both the ParmMod2 force field and ourselves to see if we 
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could identify the native state without the advantage of the experimentally derived 

molecular coordinates.   

 

4.3.1 Simulation Details 

The only trp-cage information that was used in each simulation was the amino 

acid sequence. With that information we used the LEaP module of the AMBER 

program suite to build a zwitterionic structure of the molecule. The starting structure 

was fully extended and primarily linear; the φ and ϕ angles were each set to 180° with 

the exception of the proline φ angle which was set to  -61.5° and the ϕ angle  which 

was set to -176.6° because of the constraints of the pyrrolidine ring. The trajectories 

were calculated with the ParmMod2 parameter set (see chapter 3) in the Sander 

module of AMBER 6. The simulations were unrestrained and the effects of the 

solvent were calculated with the GB solvent model[38]. Simulations were carried out 

at 300K, 325K and at 400K. The calculations were carried out on the local 

Simmerling Lab beowulf cluster “Ristra”. 

 

4.3.2 Identifying the Native State 

When an experimentally determined structure is not available, it is difficult to 

evaluate the conformations sampled during a simulation. The convergence of 

predictions from multiple simulations is a reasonable approach to identify a “folded” 

state, but this can be misleading if the protein is not completely structured at the 

temperature of interest (generally physiologically relevant temperatures). We decided 

to also monitor potential energy (including solvation free energy) during simulations 
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of this peptide. MD simulations of 100ns were performed at 300K, but all were 

kinetically trapped on this timescale, showing strong dependence on initial conditions 

and failing to converge to similar conformational ensembles. We therefore increased 

the temperature to 325K. The potential energy as a function of time during this 

simulation is shown in Figure 1a. A decrease of approximately 40 kcal/mol is seen 

over the course of ~10ns, after which no further improvement is noted. Two 

independent simulations converged to essentially identical families of structures after 

5ns and 20ns.  

We assigned this family as our “folded” state, and selected the snapshot with 

the lowest potential energy across the simulation as our representative structure. In 

Figure 4.1b, we show the backbone RMSD relative to this structure during the course 

of the same simulation from Figure 4.1a. A clear correlation between energy and 

RMSD is present; the energy plateau is reached at the same time as the convergence 

to the final structure family with RMSD values of ~1-2Å. The simulation was 

extended to 50ns, and no significant change in energy or RMSD profiles was 

observed.  

Since folding was not reversible during these simulations, we performed a 

20ns simulation at 400K which showed extensive sampling of conformations with 

RMSD values from <1.0Å to 7Å; even under these conditions the “native” family 

was transiently located on 6 different occasions and was the lowest energy sampled, 

although it comprised only 3% of all structures at this elevated T. These data provide 

additional evidence that the 325K simulations are not trapped in high-energy basins.



 47

 

 

 

Figure 4.1 Evaluations of the trp-cage during simulation 
(A) Potential energy of the trpcage as a function of time during MD. The solid line is 
a running average over 10ps. (B) Backbone RMSD during the same MD, compared to 
the lowest energy conformation. These graphs together suggest that as the simulation 
was arriving at lower energy structures it was populating only one structure family. 
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4.3.3 Comparisons of the Theoretical Prediction to the Experimental Data 

Based on this analysis, the low-energy structure was given to the experimental 

group as our prediction prior to the release of the coordinates of their family of 38 

solution state NMR models. The NMR-based coordinates are now available (PDB 

code 1L2Y), and the similarity of the NMR models to our low-energy snapshot is 

quite remarkable (Figure 4.2), the Cα RMSD between the structures was 0.97Å. 

NMR and theoretical structures share all of the following characteristics: residues 2-8 

form a short α helix, a single turn of 310 helix is present at residues 11-14, and the rest 

of the chain wraps back along the helical axis toward the N-terminus of the chain. 

The indole ring of Trp6 forms the center of a hydrophobic core, flanked by the side 

chains of Tyr3, Leu7 and 2 non-neighboring prolines (12 and 18). The Pro3 triplet 

exhibits a polyproline II helix (which is the first native-like element established 

during the simulations, reducing the entropic penalty for formation of the cage), with 

the central Pro18 forming part of the cage. Two unusual intramolecular hydrogen 

bonds that are present in the NMR structure, between the Trp6 indole NHε1 and the 

backbone carbonyl of residue i+10 (Arg16) and between Gly11 HN and the carbonyl 

of residue i-5 (Trp6),  are highly populated in the MD structures after folding (92% 

and 75%, respectively). 
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Figure 4.2 Trp-Cage Experimental Structure and Theoretical Prediction 
The low energy MD (blue backbone) structure and NMR (gray backbone) structure 
shown after a best fit overlap. Only key side chains for the trp-cage are shown.  
 

NMR 
Ab Initio Prediction 
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4.3.3.1 Root Mean Square Deviation 

Neglecting the first and last residues and 3 side chains (all poorly defined in 

the NMR models, discussed below), the heavy atom RMSD between the experimental 

model and our low-energy structure is 1.4Å. Due to the large fluctuations observed 

using the continuum solvent, we carried out refinement of our model using 2ns 300K 

MD in explicit water. This resulted in further improvement, and the average over the 

final 500ps has a heavy atom RMSD of only 1.1Å compared to the NMR model. 

The RMSD values were calculated between the model structure and the first 

structure of the family of NMR structures. The first structure of the NMR family was 

chosen because that structure is traditionally the best representative of the ensemble. 

The final RMSD values of the simulation are particularly remarkable because pair-

wise RMSD values of the NMR ensemble range from 1.6Å to 2.8Å with a standard 

deviation of 0.3Å[66]. This suggests that our low-energy structure would be 

essentially indistinguishable from the NMR ensemble.  

 

4.3.3.1 SHIFTS Calculations 

In analogy to calculations reported[67] for the experimental model, 

collaborators from the Roitberg Lab at the Univeristy of Florida performed ring 

current shift calculations for our structure using SHIFTS[68] 4.1 

(http://www.scripps.edu/case). The correspondence between the chemical shift 

deviations (CSDs) for theoretical and NMR-based models is excellent, with root 

mean square error of 0.22 ppm and correlation coefficient of 0.99 for the 2 data sets. 
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These include the highly stereospecific CSDs for Gly30 Hα (-3.43/-0.96 for model 1 

and -3.00/-0.54 for our structure), but we have excluded the outlier Pro18, which is in 

close contact with Trp6. The experimental structures assigned these prolines in the 

down pucker [69], and result in a Hβ3 shift of 0.34 ppm. During our simulations 

however, the down and up puckers are nearly equally populated with rapid sub-ns 

exchange, and representative structures give Hβ3 shifts of –0.22 and 1.22 ppm, 

respectively. Because the NMR structure data is necessarily derived from a large 

number of structures the experimental data may reflect averaging from two proline 

pucker populations that the simulations are able to distinguish.  

 

4.3.3.2 Structure Ensembles  

While it is important for an accurate structure prediction to correctly locate 

structured atoms, it is also important to predict the available conformational 

flexibility of a molecule. Consistent with the NMR-based models, the charged 

terminal residues, the sidechain of Leu2, and the sidechain of Lys8 sample multiple 

conformations during the simulations (see figure 4.3). In contrast, flexibility of the 

Arg16 sidechain is markedly reduced in the simulation compared to the NMR 

models.  A potential explanation for this incongruence is described in the following 

section. 
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Figure 4.3 Structure Families from NMR and Native-like from MD  
The structure families of NMR and the MD simulation show similar stability, notably 
in the backbone, and similar disorder, notably in the sidechain atoms of the terminal 
residues.   
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4.3.3.3 Salt Bridge 

While Arg16 shows large variation for nearly all χ dihedral angles in the 

NMR models, this region exhibits relatively small fluctuations during the simulation. 

Closer examination of the MD data revealed that Arg16 participates in a solvent 

exposed salt bridge with the γ-carboxyl group of Asp9. The pairing was stable but 

transiently lost on multiple occasions. In this case the simulations likely provide the 

more reliable picture; a lack of NOEs and absence of prochiral assignments for Arg16 

β and γ protons may have led to the poor convergence [69] of the NMR-based 

models. In fact, creation of this salt bridge was the motivation for mutating these 

residues during trpcage design. Further, our collaborators in the Anderson group at 

the University of Washington (who are the experimentalists who designed trp-cage 

and the authors of the original trp-cage paper) suggest that while there have never 

been enough diagnostic NOEs to produce this as a consistent feature in NMR 

structure ensembles, there is significant evidence to suggest the presence of the Asp9-

Arg16 salt bridge. This includes pH titration experiments of trp-cage that show a 

large stability dependence coupled to Asp9 protonation[67] and mutants of trp-cage 

and other similar proteins that lack Asp9 or Arg16 do not display similar pH 

sensitivity in their melting temperatures. Also, TC10b (amino acid sequence: 

1DAYAQ5WLKDG10GPSSG15RPPPS), an exceptionally stable variant of trp-cage 

melts at 57°C at pH 7 and approximately 18°C lower at pH 2.5. In contrast, the 

TC10b:Arg16Nva mutant (where Nva is norvaline), that cannot form the salt 
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bridge, melts at 32°C at pH 7 and displayed essentially the same extent of folding 

throughout the pH range 2.5 – 7. This provides strong suggestive evidence for a 

stabilizing Asp9-Arg16 salt bridge.  

After the simulations were analyzed it was suggested that salt bridges in 

general are over-stabilized in the Amber force fields. The experimental evidence for 

the presence of the salt bridge and the concordance the computationally and 

experimentally derived structures suggests the validity of the hypothesis that the salt 

bridge is important for the structure but discovering how important remains an area 

for future studies of this molecule. Accurately representing the stability of salt bridges 

continues to be an area of difficulty for computational simulations as evidenced by 

the results presented in Chapter 6 of this dissertation.      

The only remaining significant difference between our model and that 

determined by NMR is the orientation of the side chain of Leu7; which may reveal 

limitations of our model.  

One native simulation unfolded, resulting in loss of all elements of the 

hydrophobic core except a Trp6-Pro12 pair. A reduction in distances between the 

indole ring and Gly11/Pro12 was observed, consistent with experimental evidence for 

more negative chemical shift deviations (CSDs) at this T. Due to the complex nature 

of the unfolded ensemble, further simulations and analyses were warranted and are 

discussed in the following chapter.   

Experimental data also suggests that a 16-residue sequence obtained from 

truncation of the C-terminal PPPS in trpcage does not significantly populate a single 

fold[67]; a 40ns simulation of this construct did not converge to any single structure, 
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further strengthening the hypothesis that the cage motif contributes to the stability of 

this protein.  
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4.4 Discussion 

While the CASP competitions[70] offer the opportunity for verifiable blind 

predictions of protein structure, we undertook this study due to the creation of the 

small and unusually stable mini-protein. The simulations we have described did not 

include any structural or other experimental data for the trp-cage but still converged 

to a highly similar family of conformations. In addition, our simulations suggest 

plausible structural details beyond those available from NMR models, such as the 

Asp9-Arg16 salt bridge. This demonstrates that MD simulations have reached the 

point where accurate structure refinement and prediction through direct simulation are 

not only becoming possible, but may soon be routine enough to contribute 

significantly to our understanding of the factors that determine folding. 

These simulations were described in the first publication of Trp-cage 

simulations[43]. Because of its folding speed and stability Trp-cage has become an 

important tool for both enhancing our understanding of protein folding and for 

evaluating simulation tools[66, 71, 72]. While this work highlights the abilities of 

current force fields to accurately fold the trp-cage peptide, it does not suggest that the 

force field will be able to fold all proteins. (Specific limitations of the force field are 

discussed further in chapter 6.)  
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Chapter 5. Explicit Solvent Simulations 

of Trp-Cage 

5.1 Folding Proteins with an Explicit Solvent Model 

As discussed previously, in these studies we would like to address two 

questions 1) can we find the native state (structure prediction)? and 2) can we help 

explain the folding process (protein folding)? Studies of trp-cage with implicit 

solvation suggested that the force fields we used were indeed able to find the native 

state. It is the aim of this section to address the second, more difficult question. In 

particular, this section will discuss the details of folding simulations of trp-cage with 

explicit inclusion of solvent molecules and extend our previous results to the study of 

the folding pathway. Further, here we compare our simulations directly to the 

available experimental data. 
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In the past several years, the study of peptide and protein folding has 

advanced considerably[9, 23]. Recent complementary advances in experimental 

techniques and computational simulations are enabling both tools to be applied to the 

same model systems. Experimentally, single molecule techniques such as atomic 

force microscopy[13, 14] and single-pair fluorescence resonance energy transfer[19] 

allow direct measurements of single molecules, while ultra fast spectroscopic 

techniques, such as two dimensional infrared spectroscopy, measure protein 

conformational fluctuations in time scales of femtoseconds[16, 17].  

Simulations that reach timescales that permit direct observation of folding 

events of even the fastest folding proteins have only recently become computationally 

feasible [73]. These simulations can supplement experimental observations by 

describing the nature and distribution of barriers and intermediates encountered 

during folding. Early reports focused on unfolding events and assumed reversibility 

of paths[74] or incompletely sampled the folding pathway[75]. Duan et al. published 

the first, and so far only, simulation to reach the microsecond timescale with a single 

continuous simulation[75]. This simulation of the Villain Headpiece sub-domain, 

published in 1998, started from the extended state but never found as many as 50% of 

the native contacts.  Recent reports of extensive sampling of trp-cage using replica 

exchange molecular dynamics (REMD)[76] have described thermodynamically 

relevant structural ensembles [72, 77]. REMD simulations sample various 

temperatures to enhance the sampling of free energy basins but they cannot, by 

construction, study issues related to how a protein folds because the method breaks 
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time-continuity at single temperatures. Pitera and Swope[72] described the folding 

trp-cage with REMD to within 2Å of the native state    

Enhanced sampling techniques like REMD and increases in computer power 

have made possible all-atom simulations that are long enough to encompass full 

protein folding events; chapter 4 in this document provides one example. This success 

is also due to small proteins purposefully designed to fold extremely fast that 

effectively reduce the computational expense of folding simulations. Among these, 

trp-cage has become an important model system for protein folding studies. 

 

5.1.1 Methods 

With the intent of simulating the folding process of trp-cage we started several 

simulations at various temperatures with explicitly included solvent. These 

simulations were started from both fully extended and collapsed non-native 

structures. We simulated the folding of the trp-cage TC5b zwitterionic sequence 

NLYIQ5WLKDG10GPSSG15RPPPS20 as described by Neidigh et al.[67].  The LEaP 

module of AMBER was used to generate an extended conformation for TC5b using 

only the amino acid sequence. Backbone φ and ψ angles were set to 180˚ for all 

residues except proline, which were initially set to -61.5˚ and -176.6˚ respectively. 

This extended structure was solvated in a 64.7 x 35.7 x 35.7Å periodic box with at 

least a 2Å water buffer and 1744 water molecules. Because the protein molecule was 

oriented along the longest diagonal in the box, with the intent of keeping the solvation 

box and thus the number of waters as small as possible, only a small fraction of the 

surface of the protein is within 2Å of the edge of the box; for the majority of the 
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structure there was a considerably larger water buffer between the repeating copies 

(see figure 5.1). All simulations were carried out using AMBER 7.0[78] and the 

TIP3P[48] explicit water model, with the Particle Mesh Ewald[79] approach for  

calculating long-range electrostatics. The ParmMod2 parameter set was used in place 

of the AMBER 7 default force field (Parm94).  

An MD simulation with constant pressure, and thus a variable box size, was 

performed at 350K, during which the extended conformation (see conformation B, 

figure 5.3) collapsed to a compact structure. After collapse, a smaller periodic box 

with 941 water molecules was used to reduce computational requirements. This 

structure was used as the initial structure for a simulation at 350K and 3 simulations 

around 325K (324K, 325K, and 326K). Two other simulations were started from two 

independent initial conformations (conformation A, 3.3Å and conformation C, 4.7Å 

RMSD from the native, see figure 5.3) that were generated through constant volume 

simulations of the native conformation at 600K and 800K, each solvated with 947 

waters. Each of these conformations was subjected to further simulation at 350K. 

Backbone RMSDs are evaluated relative to the first structure of the published NMR 

ensemble for TC5b (PDB ID 1L2Y). The simulation temperatures were chosen to be 

above the experimentally determined melting transition state (315K) to encourage 

increased conformation sampling.  

Zhou et al. [77] defined a native contact as any pairwise distance of 

sequentially non-adjacent α-carbons that is less than 6.5 Å in the first NMR structure. 

To directly compare our work with theirs we kept that definition. With this definition 
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there are 34 native contacts in the native conformation (see table 5.1). Q is defined as 

the fraction of native contacts satisfied in an individual structure.  

With the intent of using the same NOE-based distance restraints that were 

used to construct the NMR structures[67] to test our simulations, we used a set of 29 

key restraints that our experimental collaborators determined to be necessary and 

sufficient to define the native structure (vide infra). See table 5.2. The fraction of 

restraints satisfied was used as a measure of the accuracy of the folded structure.  
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Figure 5.1 Solvated Trp-cage 
The linear structure of trp-cage that was used to start the simulations. The protein is 
shown in standard molecular colors; the water filling the periodic box is presented as 
a transparent blue surface. This image is of the extended non-native structure before 
minimization and the uncollapsed water surface can be seen surrounding the protein 
structure. 
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 Native Contacts in the First Trp-Cage NMR Structure  
       Residue i         
  1                  

 3 5.6 2                 

 4 5 5.5 3                

 5 6.3 5.2 5.4 4               

 6   6.4 4.9 5.4 5              

 7     6.1 5.1 5.6 6             

 8       6.1 5.4 5.7 7            

 9           5.6 5.4 8           

 10             5.2 5.5 9          

Residue 11           5.5 4.3   5.9 10         

 i+x, x>1 12                   6.3 11        

 13                   5.3 5.5 12       

 14                 6.0 5.2 5.8 5.6 13      

 15                         6 14     

 16                       6.5   5.6 15    

 17                               16   

 18                                 17  

 19     6.3                             18 

 20                                   6.5 

 
Table 5.1 Native Contacts 
Pairwise distances in the first NMR structure in Å; a native contact is defined as a 
distance of less than 6.5Å between non-sequential α carbons in the first NMR 
structure.  Empty boxes reflect distances between α carbons that are greater than 6.5 
Å.  
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   Atom1   Atom2    d   d-  d+    
         
N-terminal helix 
residue  4 atom hn   residue  5 atom hn     3.00  0.50  0.50 
residue  5 atom hn   residue  7 atom hn     4.00  0.70  1.00 
residue  3 atom hn   residue  4 atom hn     2.50  0.50  0.50 
residue  4 atom ha   residue  5 atom hn     3.50  0.60  0.50 
residue  5 atom ha   residue  6 atom hn     3.50  0.60  0.50 
residue  6 atom hn   residue  7 atom hn     3.00  0.50  0.50 
residue  6 atom ha   residue  7 atom hn     3.50  0.60  0.50 
residue  7 atom hn   residue  8 atom hn     3.00  0.50  0.50 
residue  7 atom ha   residue  8 atom hn     3.50  0.60  0.50 
residue  2 atom ha   residue  5 atom hb*    3.50  0.60  0.70 
residue  3 atom ha   residue  6 atom hn     3.50  0.60  0.50 
residue  3 atom ha   residue  6 atom hb2    3.50  0.60  0.50 
residue  4 atom ha   residue  7 atom hn     3.00  0.50  0.50 
residue  5 atom ha   residue  8 atom hn     3.00  0.50  0.50 
residue  5 atom ha   residue  8 atom hb*    3.50  0.60  0.70 
 
Local Structuring  
residue  7 atom ha   residue 10 atom hn     4.00  0.70  1.00 
residue  7 atom ha   residue 11 atom hn     2.50  0.50  0.50 
residue 12 atom ha   residue 15 atom hn     4.00  0.70  1.00 
 
Core Packing 
residue  3 atom ha   residue 19 atom hg*    3.50  0.60  0.50 
residue  6 atom hz2  residue 12 atom ha     2.50  0.50  0.60 
residue  6 atom he1  residue 17 atom ha     3.50  0.60  0.50 
residue  6 atom hz2  residue 18 atom hd1    3.50  0.60  0.50 
residue  6 atom he1  residue 18 atom ha     3.50  0.60  0.50 
residue  7 atom hd2* residue 12 atom hd1    3.50  0.60  0.70 
residue  6 atom hh2  residue 12 atom hd1    3.00  0.50  0.50 
residue  6 atom hz2  residue 18 atom hb1    4.00  0.70  1.00 
residue  6 atom hh2  residue 18 atom hb1    4.00  0.70  1.00 
residue  6 atom hd1  residue 16 atom hb*    3.50  0.60  0.70 
residue  6 atom hz2  residue 18 atom hd2    4.00  0.70  1.00 
 

Table 5.2 Key NMR Restraints 
29 Key restraints deemed necessary and sufficient for the determination of the NMR 
derived native structure by the Anderson Group at the University of Washington. “d” 
is the distance between the atoms, “d-“ is the amount subtracted from “d “ to arrive at 
the lower bound, “d+” is the distance added to “d” to arrive at the upper bound for the 
distance range. * Signifies that the protons attached to the carbon were 
indistinguishable.  
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5.2 Comparing Simulation to Experimental Data 

We compare here our theoretically derived simulation data to the experimental 

data from our collaborators in the Anderson Group at the University of Washington 

that define the structural elements of the trp-cage fold. The NMR data of the protein 

define the key diagnostics for judging the extent to which our unrestrained dynamics 

trajectories can reproduce the trp-cage fold.  

 

5.2.1 Defining the Folded State  

Any discussion of protein folding must be carried out in the context of a 

definition of the folded state. With such a reference condition one can then study how 

this state is located and what types of structures are populated that do not fall under 

this definition. Direct comparisons of experimental data with the spectroscopic 

observations predicted for a dynamics-derived fold represents the most direct method 

for verifying the validity of a folding simulation.  

The three NMR observations discussed herein that fall in this category are: 

chemical shifts deviations (CSD’s, particularly those that reflect ring-current effects 

on sequence-remote hydrogens), NH exchange protection factors (which reflects 

sequestration from bulk water interactions due to persistent H-bonding), and 

interatomic distances obtained from NOE observations.  These experiments observe 

folded (or unfolded) ensembles of structures, not on any one structure. This means the 

data can be used to help define the folded state but it cannot be directly used to 

describe the folding process.  
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To compare our results to the experimental data that represents a folded 

ensemble, we needed to select a group of structures from the simulation trajectories to 

act as a folded ensemble. We selected the first one thousand structures (1ns) from the 

326K simulation starting with the structure with the lowest 3-19 cα RMSD (0.49Å) 

from the first NMR model (native). The ensemble has an average 3-19 cα RMSD to 

the native of 0.76Å with a standard deviation of .15Å. 

 

5.2.1.1 SHIFTS Analyses 

To address the question of whether the structures that we are considering 

folded are consistent with the NMR observations, we predicted the chemical shift 

deviations (CSD), using Shifts 4.1 [68], for the representative folded ensembles 

derived from the contiguous portions of the 326K dynamics trajectories maintaining 

RMSDs similar to the first NMR structure (see table 5.3). This also allows us to 

compare these results to the shifts calculated for the NMR ensemble with the same 

program as the Anderson group. Both sets of values were then compared to the 

experimentally calculated values. The experimental values were observed at pH 7.0 in 

water at 280K.  

There are two significant disagreements from the experimental values in the 

shift predictions from the NMR structure ensemble. The first was a slight over-

estimation of the upfield shifts of sites in Pro18 and Pro19, which may indicate the 

NMR structure places these two core units too close to the indole ring. The simulation 

is in close agreement with the experimental Pro18 and Pro19 CSD data. Additionally, 

the simulation shift calculations estimate the Pro12Hδ3 shift to be upfield while the 
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shift is experimentally measured to be downfield. This shift was previously identified 

to be particularly sensitive to temperature change[63] so the reported difference may 

be due to the difference in the temperatures between the experimental system (280K) 

and the simulation temperature (326K.)   

The remaining shifts were accurately reproduced by both the NMR ensemble 

and the simulation ensemble. Notably, both ensembles predict the large diastereotopic 

difference in ring current effects at the two α hydrogens of Gly11.  
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Table 5.3 NMR Chemical Shift Deviations 
Chemical shift deviations experimentally observed, calculated for the NMR derived 
native ensemble, and calculated for the molecular dynamics simulation derived native 
ensemble. Values are expressed in parts per million. The NMR and MD values are 
averaged over their respective entire ensembles and are followed by the standard 
deviations of that ensemble. The CSDs are calculated for the ring current effects 
alone. *The 19Hδ CSDs are reported as an average as the protons displayed very 
similar CSDs both experimentally and in the theoretical models. 
 
 
Atom Exp. Observed NMR s.d. MD s.d. 
11Hα2 -2.97 -2.70 0.29 -2.45 0.56 
11Hα3 -0.88 -0.92 0.20 -0.84 0.24 
12Hβ3 0.23 0.12 0.02 0.11 0.08 
12Hδ2 -0.31 -0.14 0.05 -0.23 0.08 
12Hδ3 0.19 -0.15 0.12 -0.25 0.20 
18Hα -2.04 -2.58 0.18 -2.09 0.41 
18Hβ3 -1.82 -2.07 0.43 -1.62 0.71 
19Hδ* -0.58 -0.92 0.32 -0.70 0.42 
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5.2.1.2 NH Protection Factors 

Amide proton (NH) exchange rates can be used as an experimental measure of 

the fraction of the folded ensemble that affords the proton protection [80]. In trp-cage 

two NH groups were measurably protected from exchange in the folded ensemble. In 

the folded state the Gly11 amide hydrogen and Trp6-NHε1 were protected suggesting 

hydrogen bonding to the backbone carbonyl of Trp6 and Arg16 respectively. Because 

the amide protons were not protected from exchange in the unfolded states, the 

protection can be used to define the fraction of the folded ensemble that has the 

presumed hydrogen bond. The Anderson group found that the interactions that afford 

protection in the experimental trp-cage structures are present in 98.4% of the 

structures. We would expect that if our selection of native structure was accurately 

representing this folded ensemble we would find a similar percent of structures that 

have the same hydrogen bonds. In the NMR ensembles, the two key hydrogen bonds 

were observed by our collaborators to be present in greater than 80% of the structures 

even though these structures were defined from the NOE distances and without the 

exchange information.  

To measure the hydrogen bond populations in the simulation structures, we 

counted a hydrogen bond as being present in all cases where the distance between the 

hydrogen and heavy atom in question was less than or equal to 2.8Å; no angular 

parameter was used. 2.8Å was chosen because it is near the end of the range of 

hydrogen bond and it separated the first peak in the distribution of distances between 

the atoms over the course of the entire simulation. In the ensemble of folded 

structures from the simulation we observed the Gly11-Trp6O hydrogen bond to be 
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present in 98.8% of the structures with a mean distance of 2.03Å and a standard 

deviation of 0.18Å.   The Trp6NHε1-Arg16O hydrogen bond was found to be present 

in 94.5% of the structures with a mean distance of 2.11Å and a standard deviation of 

0.24. The standard deviation is included as a rough measure of the spread of the 

distances despite the fact that data is biased towards longer distances and thus does 

not present in a standard normal distribution.  

 

5.2.1.3 Violation of NOE-Based Distance Restraints 

Because the NOE-based distance restraints were directly used to build the 

experimental model, we were interested in comparing our model directly to that data. 

This technique has been used by Zhou for both simulations of trp-cage[77] and other 

proteins (protein G) [45]. This technique also affords the opportunity to evaluate the 

utility of RMSD as a measure of folding. Published accounts of trp-cage folding 

simulations defined the cutoff for the folded state by Cα RMSD in the 2.0 [72] to 2.5 

[71] Å or violations around 20%  [66] of the 169 NOE distance restraints. Our 

collaborators from the University of Washington note that of the NOEs, only 64 

(38%) are for i/i+n distances with n > 1 and that 50 – 75% of random unfolded 

structures yield folded structures that agree with all of these NOE distances 

(maximum restraint violation < 0.12 Å).  To evaluate the folding simulations, they 

were able to reduce the set of 169 NOE distances to a set of 29 (see table 5.2) that 

were necessary and sufficient to reproduce NMR structures with a pairwise backbone 

RMSD of 1.34 Å versus the first published NMR structure.   
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To evaluate the folding simulations we evaluated the 326K trajectory of 

structures with the distance restraints. Each of the restraints was satisfied over time 

but no one structure satisfied every restraint. This is not entirely unexpected because 

the NOE restraint data reflects a time average over a number of protein molecules on 

the order of Avagadro’s number while our data is for an individual structure with no 

range of structural fluctuations. To account for this we extended the NOE restraints 

by .5Å and compared the 326K simulation running fraction of NOE violations to the 

running 3-19 backbone heavy atom RMSD from the first NMR structure. (See figure 

5.2) With the extended NOE range, the trajectory structures satisfy all of the NOE 

restraints on several occasions. 

In less than 10ns the simulation reaches structures that satisfy more than half 

of the experimental data, followed by a period of fluctuation at ~75% and eventually 

a very rapid transition into a native-like ensemble shortly after 50ns. This transition 

into the native conformation is more apparent using the NOE violations than any of 

the other folding measures that we employed. The transition to the folded state as 

measured by NOE restraint violations also occurred at essentially the exact time the 

transition occurred as described by RMSD measurements.  
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Figure 5.2 Fraction of Key NOE Restraints Satisfied 
The fraction of NOE restraints satisfied for each structure during the 326K simulation 
is plotted in blue and described on the left y-axis while the 3-29 backbone RMSD 
from the NMR derived native structure is plotted in black and described on the right 
y-axis. Both data sets are plotted vs. time in ps. As the structure folds to more native-
like conformations the fraction of key NOE restraints that is satisfied increases until 
structures that satisfy all the they key NOE restraints are reached.  
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5.3 Examining the Folding Process 

Using the criteria described above, we saw complete folding events in three 

independent simulations. With simulations of the entire folding process we can use 

the advantages of molecular dynamics and investigate the fine details of the folding 

process. They also allow us to make many measurements beyond those we are 

capable of in experiments. While the limited simulation time and number of folding 

events precludes any discussion of thermodynamics or kinetics, they do allow for a 

discussion about the temporal order and commonality of proceedings during the 

observed folding events.  

 

5.3.1 Which Simulations Folded 

A total of seven simulations of trp-cage in explicit solvent were run. One 

simulation at 350K started from the fully extended state, collapsed within 10ns to a 

compact state with ~5Å Cα RMSD from the native. The size of the water box was 

reduced after collapse to reduce the number of waters used in the calculations that 

were no longer necessary to surround the compact structure. The simulation was 

continued and the structure folded to the native state, unfolded, and subsequently 

refolded on two occasions. A simulation at 326K, started from the same collapsed 

state, also folded to the native state. Another simulation at 350K, in a different water 

box, started from a different collapsed conformation, folded to the native state. Again, 

unfolding and refolding was observed, suggesting the simulations were not stuck in a 

local energy minimum. Four other simulations did not reach the native state. Figure 



 74

5.3 shows structures from the trajectories of each of the folding simulations. Each 

starts with the initial conformation and ends with the folded structure.  

In total, three of the simulations folded to native like structures. Because our 

simulations were limited to relatively short time periods it is not unexpected more 

than half of the simulations did not fold. Each of the non-folding simulations explored 

a variety of structural conformations and non appeared to have arrived at a structure 

more stable than the native. In experimental conditions Trp-cage has been shown to 

fold in 4μs. This suggests (as is conventionally known) that because 3 of the 7 

simulations folded in less than 300ns that the MD simulations folded significantly 

faster than experiment. This is a benefit in terms of computational expense but it does 

suggest limitation of the model.  
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Figure 5.3 Folding Pathways 
Snapshots along the folding pathways in the 3 simulations, showing the initial 
conformation at the top and essentially indistinguishable native conformations at the 
bottom. All rapidly adopt compact structures, with simulations B and C sampling less 
compact structures before folding. Significant (but transient) α-helical content is 
present in early stages of folding. The final step in folding in all simulations is the 
docking of the pre-formed PPII helix (gray, green and blue) onto the “1/2 cage” 
structure stabilized by contact between W21 (purple) and P31 (red). 
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5.3.2 Measuring the Procession of Folding 

We now describe the sequence of formation of specific features of the trp-

cage structure during folding. Having full structures saved from every picosecond of 

simulation allows us to track even small movements at high resolution. This allows us 

to investigate minute details of each simulation and also to compare independent 

simulations. There were both notable similarities and notable differences in the 

folding simulations. We find that the simulations are consistent with the diffusion-

collision model of folding[81-83]. This model suggests that elements smaller than the 

overall tertiary structure, which may or may not be secondary structure elements, can 

fold independently of the overall tertiary structure; these elements are called 

microdomains. Folding would then follow a series of coalescence steps whereby the 

microdomains together form the tertiary structure.  

 In our simulations, as would be expected from a diffusion-collision process, 

semi-stable secondary structure elements appeared before the native tertiary contacts 

were formed. Snapshots along the folding pathway for each of the simulations are 

shown in figure 5.3, with emphasis given to secondary structure and the side chains of 

Trp6 and the four prolines. 

Figure 5.4 shows several of the folding measures described above as a 

function of time for the 326K folding simulation. In all 3 successful folding 

simulations, structures with the 3-18 backbone RMSD values over 6Å are sampled 

before reaching native conformations (figure 5.4-A) with RMSDs below 1Å from the 
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native, corresponding to structures with 100% of the native contacts (figure 5.4-C). 

The folded structures of each of the folding simulations achieved 100% of the native 

contacts formed and satisfied all of the set of 29 NOE restraints deemed necessary 

and sufficient to define the fold.      

The radius of gyration (Rgyr) was used to discriminate the collapsed states 

from the extended states. It was sufficient for this purpose but the measurements were 

not useful for discerning folded structures from collapsed structures (figure 5.4-B). 

While the large radius of gyration values corresponded to high RMSD values, many 

non-native compact conformations have radius of gyration values that are similar to 

the native state value.  In the 326K simulation the radius of gyration dropped to 

values below 8Å, followed by a rise above 11Å before a final collapse to values that 

were comparable to radius of gyration values of the folded structures.  

 The first secondary structure element formed was the polyproline II helix 

(PPII) for prolines 17-19 (figure 5.4D). Because of the backbone structural limitations 

required by proline the polyproline helix was essentially formed in the linear structure 

(.85 Å RMSD from native). Thus, in every simulation the polyproline helix was 

formed immediately and essentially never unfolded (figure 5.4-D); at no time did the 

heavy atom RMSD of the polyproline helix ever exceed 1.1 Å from the native. 

Although the initial extended conformation was very close to the PPII conformation, 

the backbone RMSD for this region also never exceeded 1.1 Å during a 600K 

unfolding simulation (data not shown), confirming the stability of this secondary 

structure element. The stability of the polyproline helix lowers the entropic penalty of 
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forming the hydrophobic core which helps to explain the folding speed and stability 

of the trp-cage motif. 

Next, following the collapse to the compact state, the alpha and 310 helices 

formed (Figure 5.4 graphs B, F, and E). Unlike the PPII helix, these structures were 

not stable and were transiently lost on several occasions before location of the native 

fold.  

The initial fraction of native contacts (Q) (figure 5.3 C) ranges from 40-50% 

for the compact initial structures to 20% for the extended conformation. In each 

simulation, we observe a gradual increase in Q to values above 80% within the first 

10 ns. Q fluctuates around a plateau at 80% until the 310 helix and α helix form at 

which point it rises rapidly to nearly 100%. The specific contacts formed in this final 

stage of folding are discussed below. It is interesting to note that Q has already 

reached 90% by 30ns, and little change is seen during the sudden transition in NOE 

violations at 50 ns. Corresponding to Q approaching 90% is the arrival of a stable α 

helical structure (figure 5.4-E). Because the folding of the α helix satisfies the 

majority of the native contacts and because there were only two native contacts 

between residues that were separated by more than three residues (Tyr3-Pro19 and 

Asp9-Serine14) this native contact measure does not discern the folded from unfolded 

structures. Also, because there are no interstrand contacts between the residues that 

make up the eponymous tryptophan cage (Trp6, Pro12, and Pro18) this native contact 

definition cannot evaluate the progression of the folding of this key structure element.  
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The α helix folded and partially unfolded on at least three occasions before 

reaching a stable structure. The folding of the α helix is the second folding event of a 

piece of secondary structure event in all the simulations.  

The next native-like feature adopted in the simulations is the contact between 

the side chains of Trp6 and that of Pro12, which forms the bottom of the “cage”. We 

called this sub-structure the “half-cage”. It is attained when the indole ring of the 

tryptophan, in the local context of the α helix, stacks on the ring of the first proline in 

the sequence. This sub-structure, therefore, forms after the alpha helix, but before the 

polyproline segment docks on to the top of the W21 side chain. The half-cage can be 

seen in each of the folding trajectory paths in figure 5.3. The third structure in column 

A and the fourth structures in columns B and C all show the half-cage. The early 

presence of this folding intermediate during the folding process is demonstrated in 

figure 5.5, which shows the RMSD for the half-cage formed by residues 3-12 against 

that of the full trp-cage fold (residues 3-18). Each simulation shows native-like 

structures for the half-cage segment (RMSD values < 1Å) in structures that have 

overall RMSD values up to 3Å. This demonstrates that there is a significant 

population of structures that have attained the half-cage but not the full cage. 

After evaluating the results of a 5ns REMD simulation of trp-cage with 

explicit solvent Zhou proposed a semi-stable folding intermediate with a significantly 

different structure than the half-cage that we propose[77]. Zhou’s intermediate has 

two hydrophobic cores separated by an Asp9-Arg16 salt bridge. He suggests that the 

structure is stable until the breaking of the salt bridge allows for the rearrangement of 

the two hydrophobic cores into one. This model would allow for the formation of the 
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α helix and polyproline helix before formation of the tryptophan cage. This model 

does not allow for interactions between the residues in the upper hydrophobic core 

(residues 1-8 and 17-20) and the lower hydrophobic core (residues 10-15.)    

Experimental chemical shift data support the suggestion that there is a stable 

intermediate in the folding path. If folding is truly two state (no stable intermediates) 

folding should be fully cooperative. Any significant local minima (intermediates) 

would be detectable as being non-cooperative. Indeed, while all of the other proline 

resonances move toward random coil values during thermal denaturation, the 

Pro12δ3 resonance moved upfield, away from random coil values[63]. This suggests 

non-cooperative structuring of that residue during the melting process. 

While the experimental data support Zhou’s contention that there is a folding 

intermediate, the data contradict the contention that there are two hydrophobic cores 

separated by an Asp9-Arg16 salt bridge. The data suggest that Pro12δ3 moves closer 

to Trp6 in the folding intermediate, not further from it as would be required by the 

two hydrophobic cores.  

Examination of the interaction of the side chains of Trp6 and Pro12 in the half 

cage during the course of our folding simulations, whose contact stabilizes the half-

cage motif, can explain this result. The distance between these side chains is shown 

for structures of different overall RMSD values in figure 5.6. While the relative 

sampling of alternate conformations differs among these non-equilibrium simulations, 

the patterns are strikingly similar in each case. Native conformations with RMSD 

values near 1.0Å all have Trp6:Pro12 contact distances above 6Å. However, a shift to 

shorter distances (4-5Å) between these side chains is seen in non-native structures 
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with RMSD values above 2Å. Thus the formation of the full cage fold results in an 

increase in the distance between the side chains that comprise the bottom of the cage 

(as compared to structures with only the half-cage motif). This data suggests that the 

stable intermediate observed by experiment can be accounted for by the half-cage 

intermediate.  

While each of the simulations shared a common order of events at the 

beginning of the simulations, the order of the final events in the folding paths 

diverged. The events that occurred at the end of the folding process include the 

arrangement of the 310 helix, the formation of the Trp6hε1-Arg16O hydrogen bond, 

the formation of the Asp9-Arg16 salt bridge, and the docking of the polyproline helix 

on the top of the cage. In the 326K simulation the 310 helix (residues 11-14) backbone 

RMSD from the native and the 3-12 backbone (shown as RMSD from the native 

respectively in figures 5.4-F and G) arrived at native like conformations well before 

the final folding event. The polyproline helix also docked early, but it docked 

incorrectly on top of the cage (figure 5.4-J). The rearrangement of the top of the cage 

allowed for the formation of the salt bridge (figure 5.4-I) and the Trp6-R16 hydrogen 

bond (figure 5.4-H) which completed the folding process. In the two other folding 

simulations the folding was completed by the docking of the polyproline helix (data 

not shown.) 
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Figure 5.4 Folding Measures  
Time evolution of various folding measures during folding simulations. A) 3-18 
backbone RMSD from native, B) Radius of gyration in Å,  C) Fraction of native 
contacts (Q) (Cα pairs, i to i>1, < 6.5Å), D) Polyproline helix backbone  RMSD, E) α 
Helix backbone RMSD, F) 310 Helix backbone RMSD, G) 3-12 backbone RMSD, H) 
W6hε1-R16O distance, I) D9γc-R16ζc distance (salt bridge), J) W6-P18 Ring 
centroid distance. (This figure is discussed in the text.) 
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Figure 5.5 Presence of the Half-Cage Structure 
 
These figures show the 3-19 backbone RMSDs  vs. the 3-12 backbone RMSDs from 
the nartive. Each of the three simulations has a population of structures where the 3-
12 backbone RMSD is less than 1 Å while the full RMSD is greater than 2 Å. These 
populations demonstrate the presence of the half-cage structure in the absence of the 
overall folded structure.  
 
 

 
 
 

326K 350K(1) 350K(2) 



 84

Figure 5.6 Tryptophan Proline 12 Distance 
 
Distances between the side chains of Trp6 and Pro12 shown vs. backbone RMSD 
value. Each of the 3 folding simulations is shown in a different plot, with each data 
point corresponding to a single snapshot during that simulation. Well-folded 
conformations (RMSD ~1Å) have contact distances near 6Å, while structures with 
larger RMSD values sample significantly shorter packing distances (~4Å) for these 
side chains that stabilize the half-cage motif.  
 

 

326K 350K(1) 350K(2) 
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5.3.3 Conformation of the Trp6 Indole Ring 

The orientation of the indole ring of the Trp6 sidechain is important for the 

stability of the folded structure. Before arriving at the native state, simulations on 

several occasions adopted structures with native-like topology but incorrect 

orientation of the indole ring in the proline cage. These conformations were only 

transiently stable and gave way to less compact states before the true native state 

could subsequently be located. 

The importance of the orientation of the indole ring highlights the need for 

judicious use of RMSD as a folding measure. As discussed previously, other 

published reports used Cα RMSD values of 2Å [72] and 2.4Å [71] as the cutoff for 

defining the native state. We show in Figure 5.7 the conformation of the Trp6 side 

chain in two sets of structures sampled during simulations. While structures with 3-19 

Cα RMSD values below 1Å all have correct indole ring conformations, a large 

fraction of the population with 3-19 Cα RMSD values below 2Å have the indole ring 

oriented  incorrectly.  

Chowdhury et al. described a similar folding path and suggested that the 

repositioning of Trp6, as measured by the fraction of Trp6 native contacts, is 

associated with three out of the four main folding transitions that they describe 

including the final folding event, the repacking of Trp6, that they call the rate limiting 

step [66]. While we do not find similar Trp6 interactions involved in the earlier 

folding events we do find that the compact nature of the core prevents rotation of the 

bulky indole in these structures and unfolding is required before alternate rotamers 

can be sampled. These events may therefore have a role in determining the folding 
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rate, but it is important to note that because our data does not represent converged 

sampling of the folding path this observation does not demonstrate that this repacking 

is the rate-limiting step in folding.  
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Figure 5.7 Trp6 Indole Ring Conformation 
 
Trp6 side-chain conformations in low RMSD structures. A single conformation is 
seen in well-folded structures (left, all structures with backbone RMSD<1Å) while 
near-native backbone conformations often trap the side-chain in incorrect rotamers 
(right, all structures with backbone RMSD<2Å). 

 
Trp 6 χ1
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5.3.4 Water Molecule Participation in the Trp-Cage Structure 

As a measure of the formation of the hydrophobic core we measured the 

number of waters around the Trp6 sidechain during the course of the 326K simulation 

(see figure 5.8). The Trp6 was chosen because of its position at the center of the 

hydrophobic core and a cutoff of 5Å was chosen to allow measurement of several 

waters without the undue counting of the bulk solvent. Over the course of the 

simulation the number of waters around the tryptophan drops from greater than 30 to 

less than 14. The striking feature of the process is that the expulsion of water closely 

parallels the changes in RMSD. Every significant step toward the native structure 

occurs with a reduction in the number of waters near the tryptophan.   

As discussed by Rhee et al. [84], two notably different theories about the role 

of the water in the hydrophobic core during the folding process have been proposed. 

ten Wolde and Chandler used a coarse grained model to investigate the hydrophobic 

collapse of a non-protein polymer and concluded that the evaporation of the waters 

around the hydrophobic core drives the hydrophobic collapse[85]. In contrast, 

Sheinerman and Brooks used molecular dynamics simulations to investigate the 

hydrophobic collapse of the B1 segment of the streptococcal protein G with explicit 

solvent and found that the collapse of the core expelled the waters[86]. Our system, 

interestingly, suggested neither of these mechanisms. If the leaving of the waters was 

causing the hydrophobic collapse we would expect a decrease in the numbers of 

waters around the core residues prior to the structural collapse and if the collapse 

were expelling the waters we would expect that the initiation of the collapse would 

consistently occur prior to a reduction in the number of waters local to the core. After 
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looking at each major collapse of the hydrophobic cores in two of the folding 

simulations (326K and 350K from the native) we find that neither event consistently 

precedes the other. In figure 5.8-B we show one such collapse that takes part in two 

phases. In the first phase the change in the structure precedes the expulsion of water 

from around Trp6 and in the second phase the leaving of the waters precedes the 

structural change.  

The arrival of the simulation at a stable structure allows the investigation of 

structured waters. To see if any waters were structured in the folded simulation we 

used the Ptraj module from the Amber 8 suite of programs to count the number of 

waters (counted by the location of the center of the oxygen in each water) per box in a 

0.5 Å grid that covered the volume accessible to the simulation. The waters were 

counted for a 1ns section of the trajectory that started at the structure with the lowest 

RMSD from the native. During this trajectory the RMSD from the native never rose 

above 1Å. The fraction of the frames where a box contained a water molecule was 

used to calculate a “density” of the water through time. The density was used to 

create a map of the areas where the water density was higher than bulk solvent and 

these areas are displayed around a surface map of trp-cage in figure 5.9. Because the 

core of the protein is relatively stable there is not a clearly available path for water to 

enter the core, we would expect that a water structured inside the protein would 

appear as a region of density higher than that of bulk solvent. No such density was 

found inside the structure suggesting that the structure of the core of the protein 

doesn’t rely on structured waters.  
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Figure 5.8 Desolvation of the Tryptophan 
 
A) The blue line below shows the number of waters within 5Å of Trp6 during the 
326K folding simulation shown as a running average over 100 structures. As a 
reference the 3-19 Cα backbone RMSD is shown in black. B) The blue line is the 
number of waters with 5Å from Trp6, without a running average, for the folding 
event after 50ns in the same simulation as in figure A. Again the black line is the 3-19 
Cα backbone RMSD. As the trp-cage structure approaches more native-like 
conformations the number of waters near Trp6 declines suggesting the desolvation of 
the hydrophobic core.  
 

 
 

A 

B 
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Figure 5.9 Water Density Through Time 
This figure shows the solvent accessible surface area (with a probe radius of 1.4Å) of 
the protein surrounded by the locations of high water densities. The protein surface is 
white, the proline surfaces is colored orange, the tryptophan surface is red, the water 
density is colored blue, and the amino terminus is in the upper left hand corner. A 
reference structure is shown on the lower left. 
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5.3.5 Comparing Folding in Explicit and Implicit Solvent Models 

 
Because these simulations were run in a similar manner to the implicit solvent 

simulations we can examine the effects of the different solvent models on the folding 

process. Although friction isn’t entirely due to the solvent, Qui et al. demonstrated 

that internal friction has a meaningful effect on the folding rate [87], the increased 

friction expected in the explicit model increased the time it took for the linear 

structure to collapse to a compact state. With Generalized Born (GB), the radius of 

gyration reached a native-like value of ~8Å after only 25ps, while this process took 

over 4ns in explicit solvent (experimentally the folding time has been measured at 4μs 

[64].) The time it took for the structures to fold from the compact state to the native 

state was also significantly longer in simulations with the explicit solvent model. In 

the GB simulations the time from collapse to finding a structure under 1 Å RMSD 

from the native state took 9 ns while the explicit solvent simulations took greater than 

52 ns. Also, the salt bridge population for the Asp9-Arg16 ion pair was significantly 

higher in the GB simulations (75%) than the explicit solvent simulations (25%). This 

result could suggest inappropriate treatment of salt bridges in the GB solvent model. 

This result would be consistent with a recent study by Zhou and Berne on the effect 

of solvent models on free energy landscapes that suggested that GB models do 

overstabilize salt bridges and has overstabilized them enough to change the global 

free energy minimum of the C-terminal β hairpin fragment of protein G[88].   
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5.4 Discussion 

The simulation and analyses presented here show that it is possible to directly 

simulate the folding process at relevant temperatures with full atomic detail, for both 

protein and solvent, without the aid of enhanced-sampling techniques. Starting from a 

number of different initial conditions, we have been able to observe, in a direct 

dynamical sense, the complete pathway from unfolded to folded conformations, 

including some transiently populated, non-thermodynamically populated misfolded 

structures. Such simulations have the potential to provide unique insights into 

complex process of protein folding. In the present case, we observed that the adoption 

of native packing in the core of trp-cage was preceded by formation of the α helical 

secondary structure and the adoption of a semi-stable “half-cage” intermediate. 

Older theories on protein folding suggested that proteins folded by a specific 

step by step process. Newer views suggest that that proteins fold via many different 

paths with, potentially, common intermediates. Interestingly, this protein folds 

according to the old and the new views of protein folding: the sequence of events is 

almost unique in the early stages, but the final steps show significant variation among 

trajectories. This is slightly contrary to expectations. Because of the large number of 

possible unfolded structures and the smaller number of folded structures one might 

expect the variations to be found earlier rather than later in the folding paths. In this 

instance, we observed that the conformational flexibility of the system allowed local 

energetically favorable events to happen early in the trp-cage folding sequence.  
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Chapter 6. Studies of the Exendin 

Protein and its Derivatives 

6.1 Biological Significance of Exendin4 and Exenetin 

Exendin-4 is a peptide identified from Gila Monster Heloderma Suspectum 

saliva[59] that has several biological activities that suggest potential use as a 

therapeutic agent for type II diabetes[89]. Greater than 6% of the United States 

population displays the clinical manifestation of Diabetes[90]. The clinical 

manifestation of diabetes is abnormally high blood glucose levels. The body normally 

keeps the circulating sugar levels in check by secreting insulin. In the diabetic state 

the body either produces insufficient levels of insulin, no insulin, or has become 

resistant to the secreted insulin[91].   

The biological activites of exendin-4 include the promotion of β-cell 

neogenisis[92, 93], glucose-dependent stimulation of insulin secretion[94] with a 

concomitant reduction in blood glucose levels, inhibition of gastric emptying, and an 

inhibition of food intake[95]. Synthetic exendin-4, called Exenatide, from Amylin 

Pharmaceuticals completed phase III clinical trails as an anti-diabetes therapeutic in 

2004[96] and reached the market in 2005 as the drug Byetta[97].  
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6.1.1 GLP-1 

Glucagon-like polypeptide 1 (GLP-1) is a regulatory peptide in the family of 

incretins processed from the proglucagon gene and released from the intestinal L-

cells in the gut in response to food intake[98]. GLP-1 causes the release of insulin 

from the pancreatic β-cells and inhibits the release of glucagons. GLP-1 acts by 

binding to its receptor, GLP-1r, and is degraded by the dipeptidyl-peptidase-IV (DPP-

IV)[99] with a circulating half life of two minutes[100].  Exendin-4 acts as a 

structural mimetic of GLP-1 [101], binding to the same receptor, and was chosen 

specifically for its improved physiological stability relative to GLP-1[100]. The N-

terminal alpha helical regions of GLP-1 and exendin-4 are important for binding to 

the receptor GLP-1r[102]. The N-terminal region of exendin-4 doesn’t bind to the 

receptor as strongly as the N-terminal region of GLP-1; the C-terminal region of 

exendin-4 binds as a compensating mechanism for the weaker binding of the N-

terminal region[103]. This highlights the importance of the C-terminal region of 

exendin-4.  

 

6.2 Simulation and Construct Rationale 

Because the 20 amino acids of trp-cage are 80% identical (see table 6.1) to the 

last 20 amino acids of exendin-4 we hypothesized that a protein composite made from 

the N-terminal extended helix from exendin-4 and the tryptophan cage from trp-cage 

would have a tertiary structure similar to that of exendin-4 but would exhibit 

increased stability and faster folding than exendin-4. To test this we analyzed folding 

simulations of both exendin-4 and the composite protein.  
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6.3 Simulation Details 

We started 16 simulations of each of the exendin-4 and the exendin-4/trp-cage 

5b chimera (ex4-5b). The simulations were run each started from the extended state 

with the GB solvent model and the Mod2 force field with the Amber 7 [78] molecular 

modeling suite of programs. The simulations were minimized with 10 steps of 

steepest descent and 490 steps of conjugate gradient energy minimization to eliminate 

initial strained structures. Following minimization the simulations were run at 350K 

for approximately 100ns each on average with individual times ranging from 50ns to 

315ns. The simulations often folded to RMSD values below 4Å but the majority of 

their structures were above 9Å RMSD from the native exendin-4 (79.4% for ex4-5b, 

67.83% for exendin-4.) See figure 6.1. 

  

6.4 Simulation Analyses 

Because we wanted to evaluate the propensity of the chimeric protein to adopt 

structures similar to that of exendin-4 and because there is no known experimental 

structure of the chimeric protein, we used the Cα RMSD from the exendin-4 structure 

as the measure of the ex4-5b folding. The exendin-4 simulations were analyzed in the 

same manner to allow a comparison between the simulations.    

 

6.5 Discussion 

Detailed investigations of the salt bridge stability by Raphael Geney, of our 

lab, convinced us that salt bridges are over-stabilized by the particular GB solvation 
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model we used. As the structures of ex4-5b can have 5 or more salt bridges in the 

disordered state (while the predicted conformation is expected to have only one) we 

suspected that the non-exendin-4 like families that were heavily populated in our 

simulations were being favored in response to the excessive salt bridge stability. 

Indeed, upon visual examination many of the non-native-like structures had several 

salt bridges.  

Furthermore, a paper by Al-Sabah and Donnely[104] and personal 

communications with Dr. Dan Donnely of the School of Biomedical Sciences at the 

University of Leeds, United Kingdom, demonstrated experimentally that a chimeric 

protein very similar to the one we proposed EX-4:Ala-2:TC5a (different only at 

residue 20, see table 6.1)  bound less stably to the GLP1r (exendin-4 pIC50 9.1 ± 0.1 

M-1, ex4-5b pIC50 8.4 ± 0.4 M-1 (mean ± S.E. of three experiments) than the wild type 

exendin-4 in competition assays with the GLP1r antagonist 125I-exendin(9-39). With 

the likelihood of improving the compound diminished and with the treatment of the 

salt bridges cast in doubt we discontinued the simulations.  
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Table 6.1 Amino Acid Sequences of GLP-1, EX-4, Trp-Cage, EX-4-5b, and EX-
4:Ala-2:TC5a 

 

GLP-1 
HAEGTFTSDV10 SSYLEGQAAK20 EFIAWLVKGR30 

EXENDIN-4 
HGEGTFTSDL10 SKQMEEEAVR20 LFIEWLKNGG30 PSSGAPPPS39 

TRPCAGE 5B 
        N1 LYIQWLKDGG11 PSSGRPPPS20 

EXENDIN 4 – TCAGE 5B CHIMERA 
HGEGTFTSDL10 SKQMEEEAVN20 LYIQWLKDGG30 PSSGRPPPS39 

EX-4:Ala2:TC5a 
HAEGTFTSDL10 SKQMEEEAVR20 LFIQWLKDGG30 PSSGRPPPS39 
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Figure 6.1Exendin-4 and Ex4-5b Simulation 
The RMSD of the Exendin-4 simulation and the Ex4-5b simulation from the native 
exendin-4 structure. Neither simulation sampled structures within 3Å of the native 
Exendin4 structure.   
 

 
 

RMSD (Å) 
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Concluding Remarks 

The first study presented in this dissertation discussed the problem of an α-

helical bias in the then current parameter set of the Amber forcefield. The root of that 

problem was identified and methods for developing a new parameter set were 

presented.  A new force field parameter set developed with these tools, Mod2, was 

used successfully in much of this work, but limitations of this set were discovered. 

Other work confirmed our inappropriate treatment of the glycine parameters and 

suggests a future means from improving the parameter sets. Newer parameter sets, 

currently being developed in the Simmerling lab, will resolve this problem by treating 

the glycine parameters separately from the parameters for the other amino acids.  

In the second project presented here, the Mod2 parameter set was used to 

predict the three dimensional structure of the mini-protein trp-cage before the release 

of the experimentally derived structure coordinates. To our knowledge this is the first 

time that the structure of such a complicated molecule has been predicted to such a 

high resolution without previous knowledge of the structure. Trp-cage is a very small 

and fast folding protein, these attributes made it an attractive target for folding 

simulations but significantly improved computer performance will be necessary 

before folding of larger more typical proteins can be simulated.  

To better understand the process of trp-cage folding the third project presented 

here investigated folding events of trp-cage with the use of the TIP3P explicit solvent 
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model. These simulations demonstrated that simulations of the full folding process 

from fully unfolded structures to structures that were essentially indistinguishable 

from the experimentally derived ensemble of folded structures are possible. Further 

we observed that the adoption of native packing in the core of trp-cage was preceded 

by formation of the α helical secondary structure and the adoption of a semi-stable 

“half-cage” intermediate. Future studies of this system will require an improved 

understanding of the folding energy surface; improved sampling techniques such as 

Hybrid Implicit/Explicit Solvent Replica Exchange[105] that are currently being 

developed will allow exactly these explorations.  

Finally the last study presented here heralds both the potential of these tools 

and their limitations. This study intended to explore the relationship between the 

stability of the N-terminal extended helix and the C-terminal region of the 

biologically important exendin-4 protein by incorporating the highly stable 

tryptophan cage from trp-cage into the exendin-4 C-terminal region. Ultimately it 

became apparent that the solvent model we were using over-stabilized salt bridges in 

the structures we were sampling and that our results would not be useful for the 

intended comparison. Dr. Raphael Geney in the Simmerling Lab is currently working 

towards an improved treatment of salt bridges in Generalized Born solvent models 

and with those tools this project might well be reconsidered.  
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