
Improved Conformational Sampling Methods for 

Molecular Dynamics Simulations 

 

A Dissertation Presented 

by 

Asım Okur 

to  

The Graduate School 

in Partial fulfillment of the  

Requirements 

for the Degree of 

Doctor of Philosophy 

in 

Chemistry 

Stony Brook University 

May 2007 





 iii

 

Abstract of the Dissertation 

Improved Conformational Sampling Methods for Molecular Dynamics Simulations 

by 

Asım Okur 

Doctor of Philosophy 

in 

Chemistry 

Stony Brook University 

2007 

 

Understanding conformational dynamics of biomolecules such as proteins is a 

fundamental challenge in structural biology. Native conformations of proteins can be 

determined experimentally via X-Ray Crystallography and NMR spectroscopy but 

usually such methods provide time averaged data. All-atom simulations are commonly 

used to supplement experimental observations where time dependent trajectories for 

complex systems can be obtained. However there are major challenges in computer 

simulations. 

For successful simulations the potential function has to be accurate enough to 

correctly rank the local and global energy minima and the barriers in between for the 

simulated system. We developed an efficient method to test the accuracy of force field 

parameters where the energies of pre-generated conformations (decoys) were calculated 

for each parameter set in question and the identified energy minima were compared to 
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experimental measurements. After generating decoy sets the evaluation of force field or 

other simulation parameters can be done quickly and efficiently. We used this decoy 

screening procedure to identify α-helical bias in existing force fields in AMBER and to 

develop improved force field parameters.  

Another major challenge in simulations is sampling because the time scales 

reached with standard simulations are 3-6 orders of magnitude shorter than actual 

comformational transitions observed in proteins. There are several new sampling 

methods available where transitions between energy minima are enhanced through the 

use of high temperatures. Such methods are still very computationally demanding and 

can only be applied to small systems. We have developed two new methods to further 

enhance the conformational sampling to reduce computational demands and increase the 

convergence speed of simulations. 
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Chapter 1  

Introduction 

 

1.1 Structural Biology 

Proteins are essential molecules for life where they play important roles in cellular 

processes such as enzymatic catalysis, transport, immune recognition, cellular control, 

mechanical structure, growth, replication, communication and differentiation. Because of 

their importance many diseases are caused by function or misfunction of certain proteins 

[1].  

Proteins are polymers formed by 20 amino acids where the sequence is coded 

through DNA for each organism. Each protein has to adopt a specific three dimensional 

structure to perform its task. Determining this structure and understanding how the 

proteins fold into this structure are important problems in biology since they provide 

information about diseases and may help identifying potential drug targets.  

Protein structures are usually determined experimentally through X-Ray 

Crystallography and NMR Spectroscopy (40354 structures available in Protein Data 

Bank as of November 28, 2006). These methods provide structural information for 

proteins in their native state and the resolution of the data obtained has been increased 

significantly over the years (See the review by Campbell for the evolution of structural 

biology [2]). Although these methods are commonly used they usually provide only 

snapshots of native state or time averaged data. Studying dynamics of protein folding is 

difficult through these experiments. Therefore computer simulations are an attractive 
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approach for such studies and are commonly used to supplement experimental 

observations with dynamic information in atomic detail.  

Anfinsen has showed that the information for a protein to find its native structure is 

present in its amino acid sequence (also known as Anfinsen’s Hypothesis) [3]. However 

determining the native structure of a protein using its sequence alone remains unsolved 

because of the number of available conformations gets very large for an average sized 

protein. All atom structure prediction using only sequence data has been successful only 

for small proteins [4] [5]. Simulations of larger systems usually focus on conformational 

changes on a portion of the protein such as loop modeling. The studies by Hornak et al. 

[6, 7] are good examples showing conformational transitions of the loop region between 

bound and unbound forms of HIV-1 Protease.  

As mentioned before the number of accessible conformations for proteins gets very 

large even with small proteins. Levinthal suggested that there are many more possible 

states than a protein can visit in the time it has to fold, therefore it has to go through a 

sequence of events or pathways that lead to its native state [8, 9]. This makes the use of 

molecular dynamics an attractive approach to study dynamics of protein motions because 

if the force field is accurate the protein should follow same pathways as in real life. 

However inaccuracies in force fields and insufficient computational resources prevent us 

from simulating folding process for an average protein in full detail.  

 

 

1.2 Force fields 
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Force fields provide the driving force on molecular simulations. Common 

simulation methods like molecular dynamics (MD) and Monte Carlo (MC) methods rely 

on force fields to calculate forces on each particle during simulations. The typical force 

field equation looks like Equation 1-1 where each term represents a different type of 

interaction such as bond lengths, bond angles, dihedral angles and non-bonded 

interactions.  
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Equation 1-1 Molecular mechanics force field equation.  
 

The parameters used in the molecular mechanics force field equation are called 

parameter sets or force fields. Commonly used parameter sets for biological simulations 

are CHARMM [10], AMBER [11], GROMOS [12] and OPLS [13] force fields. Several 

review articles discuss the current status and future directions of biological force fields 

[14-16].  

Among AMBER force fields ff94 [11] and ff99 [17] implementations are most 

commonly used. However several problems have been reported about both force fields 

suggesting they have strong bias for α-helical conformations. Several groups suggested 

that the backbone dihedral parameters were the source of the problem and many groups 

empirically modified them to obtain better simulation data for their systems [18-20]. 

Duan and coworkers adopted a different approach where they parameterized the entire 

force field using a different partial charge derivation scheme [21]. Chapter 2 describes 

our efforts of confirming the helical bias and modifying dihedral parameters to obtain a 

better parameter set for the test peptides (ffGA parameter set) [22]. Later we discovered 
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that the ffGA force field had strong preferences for β-strands and was only used in 

investigations of the Trpzip2 β-hairpin (Chapter 3) and dPdP three stranded β-sheet [23]. 

Force field development continued in our lab where the backbone parameters of ff99 

were completely refit to quantum mechanics energies for Alanine and Glycine 

tetrapeptides [24]. Decoy screening procedure was used to test the accuracy of the 

available AMBER force fields on various peptides and small proteins having different 

secondary structures.  

 

1.3 Solvent Models 

Interactions with solvent play a central role in the thermodynamics and structure 

of macromolecules. In particular, the stability and functionality of proteins and nucleic 

acids are dictated by both specific and bulk solvent effects. The effects and importance of 

solvents for proteins and nucleic acids have been summarized by Makarov et al. [25]. 

Solvent properties in the proximity of protein surfaces can differ significantly from bulk 

solvent (e.g. see review by Bagchi [26]). Therefore, it is important to include solvent 

effects as accurately as possible or successful simulation studies.  

Another important consideration when choosing a method to treat solvation is the 

impact it may have on the system size and thus the computational requirement of the 

simulations. Explicit representation of solvent molecules significantly increases the 

number of atoms in the simulated system. Periodic Boundary Conditions (PBC) are 

usually applied with an Ewald method [27] such as Particle Mesh Ewald (PME) [28] 

which take advantage of system periodicity to efficiently calculate long-range 

electrostatic interactions. While this may be reasonable for simulations of compact states, 
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it can become prohibitive when the solvent box is made large enough to enclose unfolded 

conformations of peptides and proteins. The growth in system size results in increased 

computational cost to calculate forces and integrate equations of motion for the solvent 

molecules. As a result, large explicitly solvated systems typically cannot be simulated for 

biologically relevant timescales.  

Continuum solvent models, like those based on Poisson Boltzmann (PB) 

formalism or the semi-analytical Generalized Born (GB) model [29], estimate the free 

energy of solvation based solely on coordinates of solute atoms. The neglect of explicit 

solvent molecules can significantly reduce the computational cost of evaluating energies 

and forces for the system. Continuum solvent models are thus and attractive approach to 

enabling the study of larger systems with MD. Among various models that have been 

developed, the GB approach is commonly used with MD due to its computational 

efficiency, permitting use at each time step. However, continuum models can also have 

significant limitations. Since the atomic detail of the solvent is not considered, modeling 

specific effects of structured water molecules with any implicit model can be challenging 

[30, 31].  

In the case of protein and peptide folding, it appears likely that the current 

generation of GB models do not have as good a balance between protein-protein and 

protein solvent interactions as do more widely tested explicit solvent models [32, 33]. 

More particularly, it has been reported [32-36] that ion pairs were frequently too stable in 

the GB implicit water model, causing salt-bridged conformations to be oversampled in 

MD simulations, thus altering the thermodynamics and kinetics of folding for small 

peptides.  
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1.4 Conformational Sampling 

Sampling is probably the biggest challenge in computational biology today since the 

energy landscapes of real proteins are rugged preventing transitions between various 

local minima. Even with sufficiently accurate force fields it is still very difficult to 

simulate folding process for proteins. With the computational resources available, it is not 

possible to simulate folding for an average sized protein in full atomic detail. Difficulties 

encountered on sampling have been reviewed on several articles [37, 38].  

One major problem encountered in simulations is quasi-ergodicity where simulations 

may appear converged when observing certain simulation parameters but in reality they 

may be trapped in local minima. Different simulations starting from different initial 

conditions may give different results (See example by Smith et al. [39]). This makes 

identifying the problem for an inaccurate simulation or testing the performance for force 

fields or other parameters difficult.  

The method chosen to treat solvent effects can have a direct impact on system size 

and complexity since the number of degrees of freedom increases significantly with 

explicit representation of solvent. Implicit methods such as Generalized Born approach 

[29] are often used to reduce complexity and enhance conformational transitions through 

the lack of viscosity. However they usually have limitations which are discussed in 

Chapter 4 in detail. Several hybrid implicit/explicit solvent treatments are proposed to 

reduce system sizes while keeping solvent molecules close to the solute for increased 

accuracy. The strengths and weaknesses of such implementations are discussed in the 

recent review by Okur and Simmerling [40].  
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To overcome quasi-ergodicity several enhanced sampling methods have been 

developed. Currently the Parallel Tempering [41] or Replica Exchange Method (REMD) 

[42] are commonly used to increase sampling efficiency through the use of combining 

high temperature simulations with low temperature ones where conformational 

transitions between local minima is enhanced through higher temperatures. 

Replica Exchange Method is successful exploring energy landscapes of peptides and 

small proteins. However obtaining converged results with larger systems or with explicit 

treatment of solvent molecules gets computationally very expensive preventing REMD to 

be used for large proteins. We have developed two methods to improve the sampling 

efficiency of REMD simulations to make them more applicable to larger systems. These 

methods are discussed in Chapter 4 and Chapter 5.  

 

1.5 Outlines of Research Projects 

This dissertation contains three projects that describe efficient methods for 

conformational sampling in molecular dynamics simulations. Chapter 2 describes decoy 

screening method where by generating a set of conformations only once, many tests on 

force fields or other simulation parameters can be performed very quickly. Such decoy 

structures can even be used to improve such parameters for improved simulations. This 

work is published in Journal of Computational Chemistry in 2003 [22]. Through this 

method we identified a helical bias in the commonly used Cornell et al. [11] force field 

(denoted ff94 in AMBER). This procedure was also used to test the accuracy of the 

parameter set developed by our group (ff99SB in AMBER 9) [24]. Chapter 3 describes 

the folding and unfolding study of the Tryptophan Zipper 2 β-hairpin using the force field 
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parameters obtained in Chapter 2. Chapter 4 describes a hybrid solvent approach to be 

used with Replica Exchange method to reduce the number of replicas required for 

explicit solvent simulations. This work is published in Journal of Chemical Theory and 

Computation in 2006 [43]. Chapter 5 describes another improvement in Replica 

Exchange method where when the replicas are coupled to a pre-generated high 

temperature reservoir, the convergence speed of the simulations is increased. This work is 

currently in press in Journal of Chemical Theory and Computation [44].  

 

1.5.1 Decoy Screening 

The transferability of molecular mechanics parameters derived for small model 

systems to larger biopolymers such as proteins can be difficult to assess. Even for small 

peptides, molecular dynamics simulations are typically too short to sample structures 

significantly different than initial conformations, making comparison to experimental 

data questionable. We employed a PC cluster to generate large numbers of native and 

non-native conformations for peptides with experimentally measured structural data, one 

predominantly helical and the other forming a β-hairpin. These atomic-detail sets do not 

suffer from slow convergence and can be used to rapidly evaluate important force field 

properties. In this case a suspected bias toward α-helical conformations in the ff94 and 

ff99 force fields distributed with the AMBER package was verified. The sets provide 

critical feedback not only on force field transferability, but may also predict 

modifications for improvement. Such predictions were used to modify the ff99 parameter 

set, and the resulting force field was used to test stability and folding of model peptides. 

Structural behavior during molecular dynamics with the modified force field is found to 
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be very similar to expectations, suggesting that these basis sets of conformations may 

themselves have significant transferability among force fields. We continue to improve 

and expand this data set and plan to make it publicly accessible. The calculations 

involved in this process are trivially parallel and can be performed using inexpensive 

personal computers with commodity components. 

 

1.5.2 Folding and Unfolding Simulations of a β-hairpin 

Understanding how proteins fold to a well defined structure is a complex problem of 

great interest. Using computational methods, we studied the folding and unfolding 

behavior of a small model peptide via nearly 4.5 μs of molecular dynamics simulation. 

We studied folding and unfolding pathways using non-equilibrium temperature jump 

simulations and validated these results against free energy data obtained from replica 

exchange molecular dynamics simulations. The unfolded state is observed to have a high 

tendency to sample a β-turn, along with non-specific hydrophobic contacts. Folding 

involves an increased specificity of these contacts and formation of native backbone 

hydrogen bonds, with both events occurring at the folding free energy barrier. Under 

simulation conditions, folding behavior does not appear to be a two-state process.  We 

demonstrate that each one of our observed exponential processes is itself composed of 

multiple pathways with similar relaxation times. While the overall folding and unfolding 

behavior for this β-hairpin are highly related, some interesting deviations appear to 

indicate that in order to understand this complex process, a more thorough approach may 

be required than is typically performed.  
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1.5.3 Hybrid Solvent Replica Exchange Method 

The use of parallel tempering or replica exchange molecular dynamics (REMD) 

simulations has facilitated the exploration of free energy landscapes for complex 

molecular systems, but application to large systems is hampered by the scaling of number 

of required replicas with increasing system size. Use of continuum solvent models 

reduces system size and replica requirements, but these have been shown to provide poor 

results in many cases, including overstabilization of ion pairs and secondary structure 

bias. Hybrid explicit/continuum solvent models can overcome some of these problems 

through an explicit representation of water molecules in the first solvation shells, but 

these methods typically require restraints on the solvent molecules and show artifacts in 

water properties due to the solvation interface. We propose an REMD variant in which 

the simulations are performed with fully explicit solvent, but the calculation of exchange 

probability is carried out using a hybrid model, with the solvation shells calculated on the 

fly during the fully solvated simulation. The resulting reduction in the perceived system 

size in the REMD exchange calculation provides a dramatic decrease in computational 

cost of REMD, while maintaining very good agreement with results obtained from 

standard explicit solvent REMD. We applied several standard and hybrid REMD 

methods with different solvent models to alanine polymers of 1, 3 and 10 residues, 

obtaining ensembles that were essentially independent of initial conformation, even with 

explicit solvation. Use of only a continuum model without a shell of explicit water 

provided poor results for Ala3 and Ala10, with significant bias in favor of α-helix. 

Likewise, using only the solvation shells and no continuum model resulted in ensembles 

that differed significantly from the standard explicit solvent data. Ensembles obtained 
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from hybrid REMD are in very close agreement with explicit solvent data, predominantly 

populating polyproline II conformations. Inclusion of a second shell of explicit solvent 

was found to be unnecessary for these peptides. 

 

1.5.4 Reservoir Replica Exchange Method 

Parallel tempering or replica exchange molecular dynamics (REMD) significantly 

increases the efficiency of conformational sampling for complex molecular systems. 

However, obtaining converged data with REMD remains challenging, especially for large 

systems with complex topologies. We propose a new variant to REMD where the replicas 

are also permitted to exchange with an ensemble of structures that have been generated in 

advance using high-temperature MD simulations, similar in spirit to J-walking methods. 

We tested this approach on two model systems, a β-hairpin and a 3-stranded β-sheet and 

compared the results to those obtained from very long (>100ns) standard REMD 

simulations. The resulting ensembles were indistinguishable, including relative 

populations of different conformations on the unfolded state. Use of the reservoir is 

shown to significantly reduce the time required for convergence. 
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Chapter 2  

 

Using PC Clusters to Evaluate the Transferability of 

Molecular Mechanics Force Fields for Proteins 

 

2.1  Introduction 

Computer simulations are an attractive approach to supplementing experimental data 

for complex systems.  They have the potential to provide thermodynamic information 

comparing relative stability of alternate conformations, as well as kinetic information 

describing interconversion between these structures. Simulations have the additional 

advantage that the resulting data need not be time- or ensemble-averaged, a limitation 

found in most experimental methods. Such calculations are computationally demanding, 

particularly when long-range interactions are significant and complex energy functions 

are employed.  However, the timescale of many processes of interest, such as large 

conformational transitions, currently necessitates the use of a relatively simple form for 

the energy function. The simplification can typically involve many types of 

approximations, including simplified solvation models and neglect of environment-

dependent charge redistribution. Many of the important parameters for these approximate 

molecular mechanics functions are developed to reproduce relative quantum mechanical 

energies for a handful of conformations for small model systems, such as individual 
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nucleic acid bases for DNA and RNA or very short peptides for protein parameters [11, 

17, 45-47]. 

Two key issues are involved in successful use of these force fields: accuracy and 

transferability. If one is unable to achieve an accurate fit to the training data, it is unlikely 

that the force field will perform acceptably in the larger systems. Even if a parameter set 

is successful in accurately reproducing the behavior of its model systems, testing 

transferability to the larger systems and properties of interest is of critical importance. 

This may fail if the training systems were not representative models of the behavior one 

wishes to study. However, testing transferability is far from trivial. When the goal is to 

reproduce sequence-dependent structure for biopolymers, an equilibrium ensemble of 

structures must be sampled to be confident that the simulated properties are 

representative of the underlying force field. For all but the smallest systems, however, the 

computational cost of obtaining such ensembles is prohibitive. Thus, the behavior 

observed in a typical simulation is likely a result of barriers to local conformational 

change, rather than the ability of the force field to reproduce correct equilibrium 

properties. A molecule at room temperature, even if simulated for tens of nanoseconds, is 

not likely to travel far in conformational space. Individual simulations on the nanosecond 

timescale therefore cannot be used to reliably evaluate the transferability of a force field.  

Recently, free energy landscapes for the C-terminal fragment of protein G were 

reported by two groups [36, 48]. Both studies used a replica-exchange approach [42] to 

sample conformational preferences in atomic detail with explicit solvation. The results 

were in disagreement concerning the amount of helical structure present in the ensemble 

of structures. While this could be an artifact of incomplete sampling, Zhou et al. 
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suggested that the origin of the problem might lie in the use of different force fields in the 

two studies. 

To investigate this issue, we take an approach analogous to that currently used in the 

design and evaluation of scoring functions for protein structure prediction, the creation of 

sets of misfolded structures [49-51]. Such “decoy” databases have become quite valuable 

in the design and testing of potential functions for protein structure prediction [52-57]. 

Recently, an atomic-detail force field was shown to recognize misfolded structures in 

such databases with an impressive 90% accuracy [58]. Here we investigate not only 

whether a given force field can select the native conformation among several decoys, but 

also whether the native conformation is the most favorable that could be sampled with 

that force field. The latter requires significant local, as well as global structural variation, 

but can potentially provide greater insight into the effect of the parameters. 

We generate large numbers of independent simulations on a cluster of personal 

computers to create sets of reasonable, but non-native decoy structures. We employ two 

model peptides with experimentally determined structural features, including helix, 

strand, turn and unstructured regions. The decoy sets contain much greater 

conformational variability than is likely to be seen in individual simulations, even those 

covering several μs. We used the decoy sets to evaluate the ff94 parameters [11] (denoted 

“parm94” in AMBER versions before 7.0) and confirm that a bias toward helical 

conformations is present even in these solvated peptides. The same bias is present in the 

related but more recent ff99 force field [17] (previously denoted “parm99”). In both 

cases, helical decoys are significantly more stable than any other structure, in 

disagreement with experimental data.  
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We also investigated the possibility of using our decoy sets to carry out optimization 

of the force field parameters. This process has two goals: an improved parameter set may 

be obtained, but perhaps more important is evaluation of the transferability of the atomic-

detail decoy sets to force fields that were not used in their creation. This provides 

feedback on the degree of local and global sampling represented in the decoy sets. 

Simulations using the empirical decoy-based parameters have properties that are very 

similar to expectations based on decoy analysis, demonstrating that decoy transferability 

may be acceptable. Compared to the original ff99 parameter set, the test parameters result 

in simulations that are in much better agreement with experimental data. However, 

further investigation of the use of decoys to optimize the atomic-detail force field 

parameters is required and will be reported elsewhere. 

 

2.2 Methodology and Model Systems 

2.2.1 Model Peptides 

The tryptophan zipper is a structural motif that greatly stabilizes ß-hairpin 

conformations through tryptophan – tryptophan crosstrand pairs [59]. Folding 

information for this peptide was determined by NMR and CD spectroscopy, and a family 

of structures (pdb code 1HRX) was refined using restraints from NMR experiments [59]. 

Among the trpzips, trpzip2 has the most cooperative melting curve and highest stability 

(~90%) at 300K, therefore it was selected for use in this study. The sequence is 

SWTWENGKWTWK, with a type 1’ β-turn at the NG portion of the sequence. 
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The second peptide was chosen because of similar length to trpzip2, but different 

secondary structure propensity, allowing testing of structure based primarily on sequence 

rather than length. α-lactalbumin (αlac) 101-111 corresponds to residues 101 to 111 in 

the protein α-lactalbumin. The sequence is IDYWLAHKALA (the native Cys111 in α-

lactalbumin was replaced by Ala for the NMR experiment). NMR experiments in 

aqueous solution have shown that residues 101 to 107 are highly ordered, with residues 

103 to 107 predominantly adopting a helical conformation terminated at His107 [60, 61]. 

Residues 108 to 111 are not well defined by the family of structures (pdb code 1CB3). 

 

2.2.2 Simulation Details 

All simulations were carried out using the AMBER molecular modelling program 

suite (version 6) [62]. The NMR structures were taken from PDB and LEaP was used to 

prepare the systems for simulation. C-terminal groups were neutral in both cases, but N-

terminal residues were acetylated for αlac 101-111 and positively charged for trpzip2, in 

accord with the respective experiments. All MD simulations used a temperature of 300K 

and 2fs time step unless otherwise noted. The SANDER module in AMBER6 was 

modified to include removal of rigid-body motion during GB dynamics, targeted MD 

simulation, improved scaling on the PC cluster and use of SHAKE [63] on all bonds 

during MPI simulation. 

For explicit solvent simulations, peptides were solvated with TIP3P [64] water 

molecules in a rectangular periodic box, with a 5Å buffer between solute and box 

boundary. Long range electrostatic interactions were calculated by the PME method [28] 

with an 8Å cutoff for the real-space nonbonded interactions. Simulations were carried out 
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in the NPT ensemble at 1atm and 300K. Time constants for the temperature and pressure 

coupling were 0.2ps and 0.02ps, respectively. Systems were equilibrated with 50ps 

simulation with harmonic positional restraints on solute atoms, followed by 

minimizations with gradually reduced positional restraints and three 5ps MD simulations 

with gradually reduced restraints. Production simulations were carried out with weaker 

temperature and pressure coupling constants of 1ps and 0.2ps, respectively. SHAKE was 

applied to constrain the length of all bonds involving hydrogen. The high temperature 

simulations were run in the NVT ensemble with a 1fs time step. 

Implicit solvent simulations used the Generalized Born (GB) implicit solvent model 

[29] as implemented in AMBER6. Translational and rotational motion was removed 

every 10000 steps. No cutoffs were used in energy calculations, all nonbonded 

interactions were evaluated at each MD timestep and SHAKE was used to constrain all 

bond lengths. Other parameters were the same as for explicit solvent calculations. Under 

these conditions we obtain 4ns per day on a single 1.4ghz AMD Athlon CPU. 

 

2.2.3 Targeted Molecular Dynamics 

During targeted molecular dynamics [65] an additional term was added to the energy 

function (Equation 2-1). A reference structure and a target RMSD value were given as 

additional input. When the calculated best-fit RMSD value differed from the target value, 

the atomic derivatives of this term forced the system toward or away from the target 

(depending on the sign of K). 
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Equation 2-1. Targeted MD energy. K is the force constant and N is the number of atoms. 
 

2.2.4 Decoy Generation 

The structures for the decoy sets were generated through the following sets of 

simulations with GB solvation, all at 300K unless noted. The following force fields were 

employed:  ff94, ff99 and ff94 without φ/ψ dihedral terms. MD simulations were 

performed with backbone atoms restrained to the native conformations. Unrestrained MD 

simulations starting from the native conformation provided additional local fluctuations 

in structure. Targeted MD simulations were employed to unfold and refold the structure 

45 times, with different force constants, by linearly scaling the backbone target RMSD 

each 2ns between 8.0Å and 1.0Å. A cluster analysis of a trajectory at 800K was 

performed, and representative structures from the clusters were saved, quenched and 

simulated at 300K to locally explore these basins of attraction. A similar approach was 

used for each model peptide. A total of nearly 500,000 decoys were generated for trpzip2 

and 250,000 for αlac 101-111. 

 

2.2.5 Genetic Algorithm  

A program was written to carry out the genetic algorithm (GA) procedure for 

modification of the force field parameters. Input to the program included energy, RMSD 

and backbone φ/ψ dihedral values for each structure in the decoy sets. The energy values 

were evaluated without the φ/ψ dihedral terms. The gene consisted of phase (γ) and 

amplitude (Vn) values for each of 4 cosine terms in the Fourier series (Equation 2-2) for φ 
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and ψ, resulting in a gene length of 16. The series was limited to n=4 in analogy with 

ff94, which used terms up to n=4. One gene was initialized to zero for all variables, all 

other population members were assigned random initial values.  

Amplitude values were allowed to take any value; this could result in an asymmetric 

Ramachandran plot that may not be desirable for glycine. However, the point of the 

fitting in this case is to obtain a force field that favors native conformations rather than 

one that is ideally transferable. A separate parameter set could be fit to glycine, but with 

more variables an increase in the number of decoy sets would be desirable to avoid 

overfitting. 
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Equation 2-2. The energy for dihedral angle (φ) calculated in AMBER or the GA 
program (Dihedral term of the molecular mechanics equation shown in Equation 1-1). 

 

One parent was chosen biased by fitness using a roulette-wheel scheme, the other 

was chosen randomly. Crossover points were selected randomly, with two points 

employed so that swap of internal gene segments was permitted (but not required). A 

mutation rate of 0.1 was used for each gene element, and mutation consisted of 

replacement of the value with a new random value. Amplitudes were limited to 0.5 

kcal/mol. Offspring that were duplicates of parents were discarded. Elitism was 

employed, with the highest ranking half of the parents and offspring carried over to the 

next generation.  

The fitness function had 2 components for each sequence: the energy gap between 

native and non-native structures, and the energy vs. RMSD slope. Native conformations 
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were defined as those with RMSD values under 1.0, while RMSD values above 1.7 were 

considered non-native. This difference reduced the arbitrary nature of using a cutoff 

value for native conformations. Average energies were calculated for the 1000 lowest 

energy native structures and the 1000 lowest energy non-native structures. The energy 

gap was defined as the difference between these two values, with a positive value 

indicating that the global minimum is native-like. The fitness value was calculated as the 

geometric mean of the energy gap and slope for each of the two sequences. A large gap 

has been suggested to be critical to the existence of a folded state .The combination of 

energy gap and increase in energy with decreasing similarity to native conformations has 

been used in the past to optimize non-atomic detail energy functions [54, 55]. A detailed 

discussion of the selection of the fitness function and its properties are not essential to the 

focus of this work will and will be presented in a separate publication [24].  

The program was written to employ the MPI parallel library. During every 

generation, 50 MPI processes each evaluated the fitness of one gene (parameter set). This 

included calculation of the φ/ψ energies for all structures for that gene, and adding these 

values to the input energies for all other terms in the force field. The population was 

allowed to evolve for 200 generations, resulting in over 7x106 energy evaluations 

(roughly equivalent to 15μs MD simulation with a 2fs time step). Since only the 

parameters for φ and ψ were optimized, it was not necessary to evaluate the other terms 

in the energy function, resulting in a dramatic speedup compared to re-calculation of 

these terms for each new parameter set. Inter-process communication involved only 

collection of fitness values for each parameter set, thus nearly perfect scaling was 

achieved even with commodity 100 mbit/sec network interfaces. 
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2.2.6 Data Analysis 

Cluster analysis, dihedral angle evaluation and RMSD calculations were carried out 

using MOIL-View [66]. Unless stated otherwise, RMSD values for trpzip2 were 

calculated using the backbone atoms in residues 2-11 since those are well defined in the 

family of NMR structures. For αlac 101-111, backbone atoms in residues 2-8 

(corresponding to 102-108 in the intact protein) were used.   

 

2.2.7 Cluster Configuration 

All calculations were carried out on our Beowulf-type Linux cluster consisting of 20 

dual 800MHz PentiumIII nodes and 50 1.4GHz AMD Athlon nodes. All nodes have 

256MB RAM and are configured as diskless machines writing data to a SCSI RAID array 

on a central file server. The entire cluster is on a private (i.e. non-routable IP) network 

with nodes interconnected by an HP ProCurve 4000M Ethernet switch at 100Mb/s. The 

programs were compiled with GNU compilers and the publicly available MPICH library. 

The cost of the cluster was ~$70,000. We have provided further information such as 

cluster details, benchmarks and AMBER MACHINE files on the main AMBER web site 

at http://amber.scripps.edu/cluster_info/index.html . 
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2.3 Results and Discussion 

2.3.1 MD simulation with ff94 and ff99 

We performed simulations of trpzip2 using ff99 in explicit solvent at 300K and 

monitored the RMSD of backbone atoms as a function of time (Figure 2-1). Trpzip2 

remained stable with an average RMSD value from the initial conformation of ~ 1.0Å for 

approximately 15ns. After this time an increase in RMSD was observed, with the 

deviation remaining above 2Å for the remainder of the ~135ns simulation. Analysis of 

the backbone structure revealed that residues 1-3 and 10-12 underwent a transition from 

extended to α-helical conformation (Figure 2-2). This was accompanied by a decrease in 

average energy of the solvated system of ~7 kcal/mol (Figure 2-3). Simulations with ff94 

behaved similarly, with transition to helical conformation in the terminal residues 

observed within 6ns. 
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Figure 2-1. Backbone RMSD (residues 2-11) vs. simulation time for trpzip2 in explicit 
solvent at 300K using ff99. After staying native-like for ~15 ns an increase in the RMSD 
observed. 
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Figure 2-2 Ramachandran plots for each trpzip2 residue during explicit solvent 
simulation using ff99 at 300K. Residues 2-3 and 10-12 sample non-native α-helical 
conformations. 
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Figure 2-3. Energy vs. RMSD graph for the explicit solvent simulation of trpzip2 using 
ff99. The first cluster represents the native conformation and the second and more 
populated cluster (at RMSD values of ~2.5Å) represents the structures where the residues 
at the ends sample helical conformations. Some structures in the second cluster have 
lower energies than the native one. 

 

Even though the simulation was relatively long (135ns), only two structural families 

were observed and it is likely that only local equilibration has been achieved. Several 

possibilities for increasing the transition rate were explored. First, simulation in explicit 

solvent at 550K was performed. In this case, the peptide structure converted within 3ns to 

an α-helix which remained stable for the remainder of the ~12ns simulation. This should 

be surprising, since this sequence is one of the most stable short β-hairpins that has been 

studied [59]. In addition, 550K is well above the 345K trpzip2 melting temperature [59] 
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and no significant structure should be observed, suggesting an incorrect stabilization of 

helical conformations.  

The second method that we tested to increase transition rates was to employ the GB 

solvation model during MD simulation, obtaining increased rates due to the lack of 

solvent friction. In this case, the same α-helical conformation was found at 550K, but the 

timescale was ~300ps, roughly 10x faster. The simulation was repeated at 300K and the 

helical conformation was located at 9ns. This correspondence of the converged structures 

obtained from the continuum and explicit solvent models suggests that using GB to 

explore structural properties may be more efficient and provide similar results. 

For the αlac 101-111 GB simulations with ff94 and ff99 at 300K showed a strong 

tendency for the helix to extend beyond His107 to the full length of the sequence (Figure 

2-4). This is in contrast to the family of structures refined using experimental NMR data, 

which indicate that the helix is terminated after His107, and the final 4 residues may be 

disordered. This helical conformation persisted throughout 35ns simulation in both cases. 

A 50ns simulation initiated with a fully extended conformation with ff99 converged 

rapidly to the same helix, which remained stable. This again suggests an overstabilization 

of the helical conformation. The average structures obtained with ff99 for the trpzip2 and 

αlac 101-111 sequences differed by less than 1Å, demonstrating no sequence dependence 

in stark contrast to experimental observations. 
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Figure 2-4. Backbone structures of αlac 101-111, with the family of NMR structures 
shown on the left and snapshots from 35ns MD with ff99 on the right. Residues 108-111 
are not well defined in the NMR family but are always helical in the simulation. 

 

2.3.2 Generating and analyzing decoy structures 

While multi-ns length simulations are becoming routine, they still require significant 

resources and it is difficult to obtain information about conformations far from initial 

structures. It is also impractical to repeat these simulations for each new variation of a 

force field in order to test the behavior. Perhaps the most important drawback is that 

unless full exploration of phase space can be achieved, the behavior observed in such 

simulations may be determined to a great extent by the barriers to conformational 

transitions, rather than the relative energies of different conformations. Therefore, this is 
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not an optimal approach for evaluation of the thermodynamic properties of a force field. 

It is clear that simulations need to be extended to much longer timescales, even on small 

systems such as those discussed in this article. Length of the simulation is not the only 

important factor; great care must be taken with approximations that increase timescale at 

the expense of accuracy. 

The approach that we investigated involved generating large sets of “decoy” 

structures that were reasonable conformations for the peptide at 300K, including local 

and global structural variation. These sets of structures can provide a more complete view 

of the conformational preferences of the sequence with a given force field than is possible 

from a single long simulation. The structures were not generated randomly, but rather 

with MD simulations at 300K to ensure that all were reasonable structures for these 

sequences (see Methodology section for details), however, they do not reflect a 

distribution in any particular ensemble.  Altogether nearly 750,000 structures were 

obtained from ~1.5μs of simulation data. Although these decoy sets represent 

microsecond-length MD at 300K, the diversity of structures is likely to be much greater 

than observed in a single 1 μs simulation due to the many initial structures and forced 

conformational sampling.  

The diversity of the structures can be evaluated in many ways. Two examples are 

presented; the coverage of Ramachandran space for the trpzip2 decoy structures is 

demonstrated in Figure 2-5, and a histogram of RMSD values is shown in Figure 2-6. 

The Ramachandran plots demonstrate significant sampling of fluctuations about the 

traditional secondary structure basins of attraction and look similar to those extracted 

from large sets of known protein structures. The Gly7 distribution is much broader and 
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nearly symmetric, consistent with expectations due to the lack of a side chain. Larger 

structural variations are also represented, with significant numbers of structures with 

RMSD values ranging up to 8Å. The properties of the decoy set for αlac 101-111 are 

similar, with RMSD values ranging up to 5Å. 

 

 

Figure 2-5. Ramachandran plots for each trpzip2 residue for the structures in the decoy 
set. All secondary structure areas are sampled extensively, with Gly7 showing the 
expected broad and nearly symmetric distribution. 
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Figure 2-6. Histogram of RMSD values for the trpzip2 decoys, showing significant 
numbers of structures with RMSD values up to 6Å. 

 

The conformational preferences of each sequence in a particular force field can be 

estimated by recalculating energies for this set of reference structures. Efficiency is 

increased 1000-fold because the number of energy evaluations is far less than was 

required to produce all of these structures, since snapshots were saved every 1000 steps 

of MD. The analysis requires the number of energy evaluations required for ~1.5ns of 

MD simulation and can currently be performed in a matter of hours. Even further 

speedup can be obtained since this evaluation is trivial to parallelize on a PC cluster by 

splitting the decoy set into subsets for each processor, requiring no inter-process 

communication.  
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In Figure 2-7 we show the potential energy for the decoy structures as a function of 

RMSD to the native conformation for ff94. This is simply a 1-dimensional projection of 

the energy landscape of the peptide. For trpzip2, it is clear that the lowest potential 

energy values are not at low RMSD values, in fact the global minimum is near 4Å. When 

these low energy structures are analyzed it is found that they are helical, consistent with 

the results of the long MD simulations. Although only residues 101-107 of αlac 101-111 

are well-defined in the NMR family of structures, the RMSD is shown for all backbone 

atoms compared to the fully helical structure. This allows us to observe that the longer 

helix is ~11 kcal/mol more stable than alternate conformations, again consistent with the 

results of the long single MD simulations.  
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Figure 2-7. Energies of the decoy structures calculated with ff94. For trpzip2 (left) the 
global energy minimum (filled star) is helical and differs significantly from the native 
(open star) conformations. Energies of the αlac 101-111 decoy structures (right) 
calculated with ff94. RMSD values are calculated with a completely helical reference 
structure, demonstrating that this full helix is ~11 kcal/mol lower in energy than other 
structures. 

 

In Figure 2-8 we show the decoy results using the more recent ff99 parameters, in 

which the φ/ψ dihedral parameters were re-fit in order to improve the relative energies of 

alternate peptide conformations. It is perhaps surprising to note that the decoy energy 

profiles are very similar to those obtained with ff94, despite the difference in the φ/ψ 

parameters in these force fields (Figure 2-9). These plots demonstrate the important result 

that ff94 and ff99 do not reproduce the experimentally determined sequence dependence 
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of peptide structure; instead a similar helix (1Å RMSD) is the global energy minimum for 

both sequences in both parameter sets. 

 

 

Figure 2-8. Energies of the decoy structures calculated with ff99. The profiles are very 
similar to that for ff94 (Figure 2-7). For trpzip2 (left plot), the global energy minimum 
(filled star) still differs from native conformations (open star). The helical conformation 
of αlac 101-111 is lowest in energy. 
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Figure 2-9. Energy profiles for rotation about φ (lower) or ψ (upper) backbone dihedrals. 
Profiles are shown for the three parameter sets discussed. 

 

2.3.3 Interpretation of decoy results 

For both model sequences, very long MD simulations with a given force field 

converged to structures that were similar to the lowest energy decoy structures. This 

indicates that decoy evaluation is a useful way to test the preferences of a given 

parameter set. For ff94 and ff99, a suspected bias toward helical conformations was 

confirmed and both fail the evaluation in that native conformations are not energetically 

preferred. However, passing the decoy test is not a sufficient condition to conclude that a 

force field is “correct”. The relative energies for members of the non-native ensemble are 
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not considered in this procedure, yet these energy differences directly influence important 

properties such as entropy contributions, equilibrium constants and melting temperatures. 

Further analysis is therefore needed to determine if a parameter set will reproduce the 

actual conformational preferences of a particular sequence beyond identifying or 

predicting the native conformation. 

Since ff94 and ff99 failed the simpler decoy test, it is not appropriate to use them to 

test these advanced properties of force fields. Additional existing parameter sets could be 

tested, however more insight into the properties of decoy sets may be gained by 

modifying the ff94/ff99 parameter sets based on the decoy results. Each set is necessarily 

a limited subset of all possible conformations for the sequence, and the completeness of 

this conformational basis set influences the transferability of the results and the validity 

of the insight that can be extracted.  

The conformational preferences of ff94 and ff99 should be well represented by the 

set of decoys since each was used to generate many of the structures. If using the same 

set to evaluate a different force field is acceptable, many thousands of CPU hours could 

be saved for each parameter set. However, if the decoy set does not represent an adequate 

range of local fluctuations within a given basin of attraction, subtle shifts in the positions 

of minima might preclude calculation of accurate relative energies for alternate force 

fields. If the decoy sets do not sample enough low-energy basins, a poor parameter set 

could pass the test by having the absent non-native basin as the global minimum. We 

address these questions by using the existing decoy data to modify the ff99 parameter set 

and comparing properties predicted using the decoys to those actually obtained with the 

resulting parameters. The goal of this fitting is not necessarily to obtain an ideal set of 
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parameters, but rather to demonstrate how decoy sets could be used for empirical fitting, 

test the completeness of the decoy sets and to obtain a parameter set that has native-like 

conformations as lowest in energy to permit further analysis of entropic effects. For 

maximum transferability, inclusion of more sequences with greater diversity in secondary 

structure would be highly desirable. 

 

2.3.4 Using decoy results to guide modification of force-field 

parameters 

Since the evaluations described above indicated that the largest problem with the 

ff94/ff99 parameters is a sequence-independent secondary structure bias, we focused on 

the Fourier series parameters for the φ and ψ rotational energy profiles.  

We directly used the decoy set energy vs. RMSD profiles to re-optimize these 

parameters by using a genetic algorithm (GA) program written for this purpose, with 

further detail provided in the Methodology section. After 200 generations, the parameter 

set (denoted ffGA, Table 2-1) with the largest fitness value was selected for further 

analysis. Even though periodicities up to n=4 were allowed, the n=3,4 terms for φ have 

amplitudes of nearly zero and therefore have little contribution. The dihedral energy 

profiles for these parameters are shown in Figure 2-9. 

 

 

 

 



 37

 φ   ψ  

N amplitude (kcal/mol) phase (radians) amplitude (kcal/mol) phase (radians) 

1 0.40 4.58 0.48 4.78 

2 0.41 5.29 0.45 5.39 

3 0.02 5.02 0.12 5.76 

4 0.02 5.81 0.45 5.52 

 

Table 2-1. Optimized parameters for ffGA. Other force field parameters were the same as 
ff99. 

 

Before this optimization was performed, it was also unclear if refitting only φ and ψ 

dihedral parameters could remedy the problems described above. The energy vs. rmsd 

profiles for decoy structures with this parameter set (Figure 2-10) differ significantly 

from ff94/ff99, indicating the sensitivity of the decoy relative energies to these backbone 

dihedral parameters. The native conformations of both sequences are now the global 

energy minima, demonstrating that a single parameter set is able to correctly and 

simultaneously identify native conformations for both secondary structure types. For 

trpzip2, the energy difference between the lowest energy native and non-native 

conformations increased from the ff99 value of  –16 (native was less stable) to 8.l 

kcal/mol. It is interesting to note that the αlac 101-111 energy gap was decreased from 

the ff99 value of 10.7 to 5.5 kcal/mol. Thus requiring a single parameter set to 

simultaneously prefer native conformations for both secondary structures reduced the 

maximum attainable αlac 101-111 stability. 
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Figure 2-10. Energies of the decoy structures calculated with ffGA. In both sequences, 
the global energy minimum is now native-like, but the stability of the αlac 101-111 helix 
is reduced compared to ff94 and ff99. 

 

2.3.5 Testing the transferability of decoy set: MD simulation with 

ffGA 

2.3.5.1 αlac 101-111 

Three simulations were carried out for αlac 101-111 with ffGA starting from 

conformations obtained from ff99. In each case, the experimentally determined helical 

conformation near 101-107 was reproduced, but the region from 108-111 was 

substantially more flexible than was observed with ff94 or ff99 (Figure 2-11). This is 
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consistent with the family of NMR structures (Figure 2-4) and the analysis by Demarest 

et al. indicating that the structure for this region was not well defined [61]. This 

demonstrates that the simulations with parameters based on decoy set analysis are able to 

reproduce not only sequence-dependent structure, but also sequence dependent stability 

at a given temperature. In two of three simulations, transient loss of helical content is 

observed, consistent with the reduced energy gap in the decoy set when using ffGA as 

compared to ff94 and ff99. It is clear, however, that the reduction in stability of the long 

helix is not distributed evenly in the sequence, but predominantly in residues 108-111, 

consistent with experimental observations. 

 

 

Figure 2-11. Snapshots of αlac 101-111 from MD simulation with ffGA. The helical 
conformation in residues 101-107 is stable, but 108-111 show significant flexibility, 
similar to the family of NMR-derived structures (Figure 2-3). 
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2.3.5.2 Trpzip2 

MD simulations of trpzip2 using ffGA were carried out at 300K starting from the 

native conformations of each sequence. In contrast to ff99, the hairpin conformation was 

stable using ffGA, with an average RMSD of ~1.0Å during the entire 30ns simulation 

and no unfolding events. The large twist in the native conformation was maintained, as 

well as the close interaction between the Trp side chains. While this is an encouraging 

result, it merely indicates that the native conformation is a stable, though perhaps local, 

minimum in this force field. Such stability can be the result of kinetic trapping at this 

temperature rather than favorable thermodynamics. It does not demonstrate that the decoy 

set was complete enough to represent a sufficient number of thermally accessible basins 

of attraction.  

Direct comparison of fractional population can provide additional validation. Since 

reaching a true equilibrium state at 300K is likely beyond our present capability, an 

additional 60ns native simulation was performed at 350K, slightly above the 

experimental melting point of 345K. Multiple unfolding/refolding events were observed. 

A 100ns simulation starting from a distorted hairpin structure was able to convert to the 

observed native conformation within ~3ns, and thereafter resulted in similar behavior. 

The time course and histogram of RMSD values for both simulations are shown in Figure 

2-12. The large peaks near RMSD values of 0.8 demonstrates that significant native 

population is present at this temperature.  Using a somewhat arbitrary cutoff value of 

1.5Å for native conformations (the end of the first peak), the calculated native fraction of 

0.3 to 0.35 for each simulation is in excellent agreement with the value of 0.41 

determined by experiment [67]. However, folding/unfolding transitions are separated by 
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~20ns even at this elevated temperature, and the distributions are not identical. Increased 

statistics are required to ensure that sampling of phase space was adequate both in the 

decoy set and in the ffGA test simulations.  

 

Figure 2-12. RMSD values (left) during two trpzip2 simulations using ffGA at 350K. 
Each shows multiple folding/unfolding events. Histograms of the RMSD values with 
integration curves are shown on the right, and are similar for the two independent 
simulations. A native-like fraction of 0.3 to 0.35 is calculated in each case, in excellent 
agreement with the experimental observation of 0.4 at this temperature. 

 

A simulation at 300K starting from the helical structure obtained from ff99 was 

performed, and the peptide underwent a series of changes resulting in formation of the 

native hairpin at ~40ns, which persisted for the remainder of the ~80ns simulation. The 

folded structure is very similar to that determined by NMR (Figure 2-13), with the 
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exception that the stacking of the outer Trp side chains differs somewhat from the 

published structures. 

 

Figure 2-13. Overlap of the representative folded conformation of trpzipo2 using ffGA 
(purple) to the average NMR conformation (gray). For clarity, only the backbone and Trp 
side chains are shown. The backbone structures are very similar, including large twist in 
the β-sheet. The stacking of the outer Trp side chains differs from the published 
structures. 

 

Since this still represents only a single folding event and has little statistical validity, 

16 additional folding simulations were performed, initiated from representative structures 

from an ensemble generated at 800K with ff99. Each employed 4 CPUs and all were 

carried out simultaneously on the cluster, for a total of 72 CPUs and a speedup of ~50x. 
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A total of 650ns of data was collected at 350K. The evolution of RMSD with time is 

shown for the simulations in Figure 2-14. Fourteen of the 16 simulations (88%) folded to 

the native hairpin, with several simulations showing multiple unfolding/refolding events. 

This large fraction of folding is required to have confidence that the structure is the true 

native conformation of the force field, since it is possible to introduce bias when simply 

observing that a small fraction of simulations converts to what is known to be the actual 

folded form. Analysis of first crossing times gives an approximately exponential folding 

curve (Figure 2-15). These observations provide additional confidence that sampling of 

phase space in these simulations was adequate and that it is unlikely that the structures 

are kinetically trapped on this timescale. However, detailed analysis of the folding 

landscape is beyond the scope of the present article.  
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Figure 2-14. RMSD vs. time for 16 folding simulations of trpzip2 at 350K. Fourteen of 
the 16 simulations locate the native conformation, and several show unfolding/refolding 
events. 
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Figure 2-15. Trpzip2 folding curve (jagged line) calculated from the first crossing times 
observed in the folding simulations depicted in Figure 2-16.  88% of the simulations fold. 
The curve is approximately exponential (smooth line), suggesting reasonable statistics. 

 

These simulations now permit evaluation of the transferability of the decoy set to a 

different set of backbone dihedral parameters. Structures from the 350K folding 

simulations were combined, and the ffGA energy vs. RMSD profile for these 325,000 

snapshots is found to be very similar to that observed for the decoy set (Figure 2-16) 

despite the fact that ffGA was not used to create any of the decoys. The average energies 

are higher by the amount expected due to the larger thermal fluctuations, and the range of 

energies is reduced since all structures were generated with the ffGA parameters. Even 

with this extensive additional sampling, the native conformation remained the global 
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energy minimum. This demonstrates that the decoy set was complete enough to avoid 

creating a non-native global minimum during parameter fitting. If such structures were 

found, the decoy set could be expanded through an iterative process [54].  

 

 

Figure 2-16. Energy profile for trpzip2 structures calculated from 650ns of ffGA 
simulation at 350K. The energy profile is very similar to that obtained with this force 
field for the decoy set, suggesting good transferability of the decoys. 

 

The energy gap between native and non-native structures was predicted to be 8.1 

kcal/mol from the decoy set, while the actual ffGA structures have a gap of 8.6 kcal/mol. 

This represents an error of only 2% of the predicted 24 kcal/mol change in relative 

energies from modification of the ff99 parameter set. The agreement is excellent 
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considering the differences between the conditions used to generate the two sets of 

structures, and indicates that such sets of decoy structures may have useful transferability.  

 

2.4  Conclusions 

Simulations with explicit solvent tend to be trapped in local minima and undergo 

significant conformational transitions only after tens of nanoseconds. Even when 

extended to over 100ns, these expensive simulations are unconverged and sample only a 

few backbone conformations. When a continuum solvent model is employed, ensembles 

sampled during 100ns still depend on initial conditions. The timescale of obtaining 

converged simulations even for short peptides remains daunting, and further efforts to 

improve conformational sampling are needed.  

This indicates that even very long simulations starting from native conformations 

may not be reliable indicators of the quality of a biomolecular force field. Instead, long 

simulations from many different starting points provides a reference set of “decoy” 

structures, with extensive sampling of many basins of attraction. The explicit inclusion of 

many basins makes the decoy set significantly more valuable than single simulations of 

similar timescale, and permit evaluation of the transferability of parameter sets to systems 

of interest. Multiple folding simulations are also needed to ensure that the native 

conformation is the same as that identified through energy analysis. In this case a large 

fraction of the ensemble should fold; observation of small numbers of folding events 

cannot evaluate the force field in this manner. The multiple simulations also permit 

comparison of ensemble properties and fractional population to values determined 

experimentally. Temperature dependence of these properties, though not presented in this 
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article, can also be generated in an analogous manner and compared directly to 

experimental data. PC clusters are well suited to this task since very large numbers of 

processors can be used but high-speed communication is not required. 

We generated a total of ~1.5μs of simulation to create sets of decoy structures, and 

demonstrated that a helical bias exists in the ff94 and ff99 force fields. While the bias had 

been suspected, this thermodynamic analysis demonstrated that it was clearly present 

even in solvated simulations of biomolecules. In order to determine whether the decoy 

sets could also provide critical feedback about improving, rather than just evaluating 

force fields, we used the data to modify the ff99 parameter set. The changes in properties 

predicted by the decoy analysis were very similar to those actually obtained from the 

simulations using the parameters, suggesting transferability of the decoy set.  

The correspondence between simulation and experiments was dramatically improved 

with these modified parameters as compared to ff99, and it appears that the removal of 

helical bias allowed important sequence-dependent structural details to emerge. However, 

the current parameters should not be viewed as being generally applicable unless a more 

diverse set of sequences is employed during the fitting and testing procedures. The 

present results suggest that such an approach may be worth exploring. The near-linear 

scaling would permit many more sequences to be used for decoy generation and genetic 

algorithm optimization while still employing an inexpensive PC cluster with commodity 

components. 
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Chapter 3  

Multiple pathways in β-hairpin folding and unfolding 

simulations 

 

3.1 Introduction 

An important aspect of the protein folding problem lies in understanding the 

process by which proteins locate their native conformations from the vast available phase 

space. Computational methods are an attractive way to tackle this problem since they can 

provide non-averaged data, in contrast to many experiments that supply only averages 

over time and/or macroscopic sample sizes. This is particularly important when multiple 

folding pathways may be involved, as we demonstrate below. 

However, serious limitations also apply to computational approaches. The 

computational cost can make simulating folding for even a very small protein unfeasible 

due to the level of detail and relatively long timescale involved. Thus it is desirable to 

validate methods on small model peptides (stable secondary structure units) prior to 

future application on larger, potentially more interesting systems.  

In contrast to experiments, a major drawback to simulation is the difficulty in 

obtaining well-converged ensemble-averaged data. This may contribute to the lack of 

consensus arising from simulation studies. Direct observation of folding events in 

unrestrained simulations is extremely challenging. Generating a sufficient number of 

these folding trajectories to obtain reliable insights into “typical” behavior of the 
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ensemble is rarely practical. An alternate approach is to generate thermodynamic 

properties with enhanced sampling techniques (such as Parallel Tempering [41]or Replica 

Exchange [42]), usually losing explicit time-dependent behavior (and “observation of 

folding”) in the process. Using simulations in which the process was not observed to 

describe folding usually relies on interpretation of (free) energy barriers observed in a 

reduced dimensionality and/or along pre-determined order parameters. These may not 

accurately reflect the actual barriers or even the minima encountered during folding of 

individual members of the ensemble.   

While both approaches have drawbacks, we combine them in this study and draw 

on the strengths of each.  Comparing the two types of data for otherwise identical 

simulated systems allows us to identify which features of a particular simulation reliably 

represent characteristic behavior of the system as compared to individual observations. 

This provides additional validation of the methods, as any inconsistencies may indicate 

non-converged data or unreliable interpretations.  

In the present case we focus on β-hairpin secondary structure, characterization of 

the native and unfolded ensemble and the changes that occur through the folding 

transition. β-hairpins have been studied extensively experimentally and computationally 

[36, 68-79] and several folding mechanisms were proposed where the difference in these 

is generally the balance between hydrophobic collapse and hydrogen bond formation, and 

the order in which the hydrogen bonds form.  

Recently the designed Tryptophan Zippers (trpzips) [59] are becoming popular 

systems for experimental and computational studies because of their unusual 

thermodynamic stability and small size. Trpzips were designed by Cochran and 
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coworkers by mutating the hydrophobic residues of the well known and studied GB1 

hairpin to tryptophans for increased stability [59]. Our group did the first simulation 

study of the trpzip2 [22] and we could not reproduce the proposed face-to-face 

tryptophan stacking as proposed in the original experimental paper [59] (PDB code: 

1HRX) (Figure 2-13). The structure was then refined and the tryptophan orientations 

were changed to edge-to-face packing as seen in our results [80](Refined PDB code: 

1LE1). Snow and coworkers have studied the folding kinetics of trpzip peptides via T-

jump spectroscopy and molecular dynamics [81]. In their study the molecular dynamics 

simulations were carried out using GB/SA solvent model with an extra viscosity term. 

Simulations were performed using distributed computing and the folding rates were 

estimated assuming irreversible and two-state folding and they were in close agreement 

with experiments. Yang and coworkers studied the thermal and chemical unfolding of 

trpzip2 using CD spectroscopy and replica exchange molecular dynamics [82]. At 

different denaturant concentrations they measured change in the melting temperature and 

in their simulations they calculated it using different order parameters and observed some 

differences as well. They concluded that under optimal folding conditions the hairpin has 

unusual folding kinetics. Later when they do kinetic measurements using T-jump 

spectroscopy, they see different pathways and their folding kinetics looks like a double 

exponential decay [83]. They concluded that there are kinetic traps on the energy 

landscape and there are some misfolded structures having incorrect tryptophan pairings 

and it may be possible that folding from the unfolded state is much faster than trapped 

structures. Wang and coworkers studied Trpzip2 further and they too observed 

differences in melting temperatures between CD and IR spectra [84]. They saw double 
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exponential of the folding behavior as well however they conclude that the first fast phase 

may be an artifact of the experimental method used. Latest studies on Trpzip peptides via 

T-Jump experiments for various Trpzips with different turn sequences show that the 

folding rate is strongly dependent on turn formation [85].  

In our simulations of the trpzip2 we find that the unfolded ensemble has a 

significant tendency to form the β-turn, along with non-specific hydrophobic contacts. 

Folding involves an increase in contact specificity coincident with formation of native 

backbone, and unfolding generally reflects the reverse process with differences in the 

sequence of events. While a single exponential describes the unfolding process, the 

presence of a slow phase in folding results in double exponential behavior only apparent 

when a large fraction of the ensemble undergoes folding. Our ability to separate the 

ensemble, based on structural properties, into two sets that show single-exponential decay 

thus gives a physical justification for the overall double-exponential fit as arising from 

independent folding pathways. Finally, we demonstrate that each exponential decay in 

folding and unfolding actually arises from multiple distinct pathways that have similar 

intrinsic relaxation times.  

 

3.2 Methods 

3.2.1 Model System 

The model system chosen was the tryptophan zipper (trpzip) developed by 

Cochran and coworkers[59]. This β-hairpin structural motif is stabilized through cross-

strand tryptophan pairs. Trpzip2 (SWTWENGKWTWK, with a type I’ β-turn at NG) has 



 53

the most cooperative melting curve and highest stability (~90% at 300K) among the 

trpzips; therefore, it was selected for use in this study. Thermodynamic properties for this 

peptide have been determined by NMR and CD spectroscopy, and a family of structures 

was refined using restraints from NMR experiments[59] [80] (PDB code 1LE1). The N-

terminal of the peptide was acetylated and the C-terminal was amidated, in accord with 

the experiments[59].    

 

 

 

Figure 3-1. NMR-based conformation of trpzip2 (pdb code 1LE1). Side-chains are shown 
only for Trp residues. Native contacts defined in the text are shown as color-coded lines, 
with the colors matching data curves for these contacts as shown in subsequent figures. 
The number of native backbone hydrogen bonds that are not present defines the “HBlost” 
order parameter. 

 

A set of native contacts was chosen as an alternative to RMSD to quantify the 

progression of folding (Figure 3-1). The contacts were defined using specific atom pair 

distances and corresponded to the 5 backbone hydrogen bonds [E5O-K8H, K8O-E5H, 

T3O-T10H, T10O-T3H, and S1O-K12H, 4 Å contact cutoff] and two native tryptophan 

packing contacts [W2-W11, W4-W9, 6Å cutoff]. Specific atom pairs were used for the 

Trp contacts to require native orientation as well as contact distance. 
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3.2.2 Replica Exchange Simulations 

Replica Exchange Molecular Dynamics (REMD) were performed to generate 

converged equilibrium data at various temperatures to evaluate the thermodynamic data 

[42]. 14 replicas with GB solvent model were prepared at temperatures ranging from 

251.7K to 554.7K. The temperature range was selected to obtain an exchange ratio about 

15%; extra replicas were added around experimental melting temperature to ensure better 

sampling of the melting curve. Exchanges between replicas were attempted every 

picosecond and coordinates of each replica were saved every picosecond. Each replica is 

run under the same conditions as the individual simulations except translational and 

rotational motion is removed every 250 steps. Two sets of simulations were run, one 

starting all replicas from experimental native conformation and the other one starting 

from an unfolded conformation. Each REMD simulation was run for about 85000 

exchanges (85ns per replica) and first 10000 exchanges were discarded to remove the 

bias introduced by starting conformations. Detailed description of REMD methodology 

and exchange probabilities can be found in Chapter 4.  

 

3.2.3 Thermodynamic Analysis 

Replica exchange molecular dynamics simulations were performed to obtain a 

melting curve.  Structures were classified as native when RMSD from the experimentally 

determined structure was under 1.7Å. Fractions of folded and unfolded structures were 

calculated at each temperature. These data were fit to the Gibbs-Helmholtz equation to 

obtain values for melting temperature and enthalpy of melting: 

 



 55

ΔG = [ΔHm (1 - T/Tm)] – ΔCp [(Tm - T) + T ln(T/Tm)]  

 
Equation 3-1. Gibbs-Helmholz Equation 
 

The 350K temperature trajectories from both REMD runs were combined and 

treated as single ensemble resulting in ~150000 structures. Several types of analysis of 

this ensemble were performed. The number of native backbone hydrogen bonds was 

calculated for each structure, using a distance cutoff of 2.9Å between the hydrogen and 

carbonyl oxygen. We also calculated the number of contacts between hydrophobic Trp 

side chains. In this case, all 6 Trp pairs were considered in order to obtain a measure of 

non-specific hydrophobic clustering of these residues. A hydrophobic contact was 

considered present if the distance between any of the heavy atoms on two given Trp 

residues was less than 4.8 Å. This smaller cutoff was used since any atoms pairs in the 

Trp pair could identify these non-specific contacts. 

Potential Energy (PE) as a function of number of lost native backbone hydrogen 

bonds (HBlost) was calculated by averaging the energy of all structures with a given 

HBlost value. Free energies as a function of order parameters were obtained from multi-

dimensional population histograms; free energy values shown are relative to the most 

populated histogram bin. 

Lower limits for uncertainties in thermodynamic values and contact fractions 

were estimated as follows: each value was calculated using both REMD runs and the 

uncertainty was reported as the average error for calculated properties. 
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3.2.4 Temperature Jump Simulations 

Non-native structures were generated through simulation at 800K. Forty-nine 

snapshots with proper stereochemistry and trans peptide bonds were chosen randomly. 

Backbone RMSD values ranged from 2Å to 8Å from native conformation. The ensemble 

of structures was subjected to a temperature jump by instantaneously changing the bath 

temperature to 350K. First passage times were calculated as the time at which the 

instantaneous backbone RMSD for residues 2-11 fell below 0.6Å to ensure that the native 

basin was reached. After folding, the simulations were terminated. The fraction of 

structures that had not yet folded was then calculated as a function of time. This 

procedure eliminates a contribution from the unfolding rate in this simulated relaxation 

experiment.  

Unfolding was studied using an analogous procedure. Initial structures for 53 

unfolding trajectories were obtained by assigning different velocities to a native 

conformation that was equilibrated at 300K. First passage times were identified when the 

backbone RMSD rose above 3.0Å where native and near native conformations are no 

longer present.  The fraction of structures that had not yet unfolded was calculated as a 

function of time.   

 

3.2.5 Simulation Details 

All simulations were carried out using a locally modified version of AMBER 

(versions 6 and 8) [62]. The systems were coupled to a bath to maintain constant 

temperature (350K) with a temperature coupling constant of 1.0 ps unless otherwise 

noted [86]. Overall translational and rotational motion was removed every 10000 steps. 
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All non-bonded interactions (with no cutoffs) were evaluated at each MD time step (2 fs) 

and SHAKE [63] was used to constrain all bond lengths. All simulations used the 

Generalized Born (GB) implicit solvent model[29] with GBHCT implementation in 

AMBER[87], without additional friction terms. This lack of viscosity prevents direct 

comparison of simulated and experimental rate constants. The force field was ff94[11], 

with modifications made to reduce over stabilization of α-helical conformations[22]. 

Data was analyzed using the programs MOIL-View [66]and ptraj. 

 

3.3 Results and Discussion 

3.3.1 Hairpin Structure and Stability: Equilibrium Simulations 

Before carrying out a detailed analysis of the simulated folding for any system, it 

is important to validate the approach by ensuring that the simulations reproduce the 

experimentally determined structure and stability. It is insufficient to demonstrate only 

that the native conformation can be transiently sampled or that an initial native 

conformation was not lost on a particular timescale. We therefore calculated free energy 

profiles through REMD simulations and analyzed the 350K temperature trajectories in 

which multiple folding and unfolding events were observed. In Figure 3-2 we show free 

energy as a function of two order parameters: backbone RMSD and number of native 

backbone hydrogen bonds lost (HBlost). Using this convention, the NMR conformation 

has a value of zero for both parameters and increasing values correspond roughly to 

decreasing similarity to the NMR conformations. 
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Figure 3-2. Free energy (A,B) and average potential energy (C) as a function of folding 
order parameters RMSD and HBlost (# native backbone hydrogen bonds not present) at 
350K. The native state is thus on the left in all plots. Free energies show a barrier for 
folding while average potential energy does not. Error bars reflect statistical 
uncertainties.  
 

 

The free energy vs. RMSD curve shows multiple minima, including the narrow 

global minimum located at RMSD ~0.8Å compared to the experimental structure. The 

broad minimum at large RMSD values corresponds to the unfolded state, and local 

minima near 2.2Å  and 3.2Å represent specific misfolded structures that are described in 

detail below. The free energy vs. HBlost shows only 2 minima, corresponding to the 

native and non-native states. It is interesting to note that the stability of the native state 

appears to differ for alternate order parameters where the native conformation is about 
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1.0 kcal/mol more stable using RMSD as order parameter and the unfolded state is about 

0.4 kcal more favorable using HBlost parameter. This observation is consistent with 

different melting curves reported by Yang et al. [82] using different variables.  

Both of the profiles show an apparent free energy barrier for folding and 

unfolding (with the transition state located near 1.7Å RMSD or 3 HBlost). The minimum 

located at RMSD ~2.2Å is not encountered during folding and reflects an off-pathway 

intermediate (discussed below). This artifact of projection of the multidimensional 

surface onto a single dimension obscures the location of the transition state as 

encountered during folding events.  

In contrast to the free energy data, when we calculate the average potential energy 

(PE) along the HBlost coordinate, the PE decreases steadily during folding, with no 

apparent barrier. The magnitude of the potential energy change is also much larger (~18 

kcal/mol) than the corresponding free energy change, consistent with the expected large 

entropy contribution in the unfolded state.  

In order to estimate the thermal stability of the hairpin, the fraction of native 

conformation was calculated for every temperature trajectory of the REMD simulations 

where conformations having a backbone RMSD less than 1.7Å were classified as native. 

The resulting melting curve is shown in Figure 3-3, along with an analogous curve 

generated from experimental data [59]. At low temperatures REMD seem to overestimate 

the native population and at elevated temperatures the calculated values seem to be in 

good agreement with experiments since the experimental curve lies within the error bars 

at calculated temperatures. 
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Figure 3-3. Fraction native structure vs. temperature obtained from REMD simulations 
(red) and experimental data (reproduced from thermodynamic data reported by Cochran 
et al. [59]) (black) 

 

We used this data to determine the melting temperature (Tm) and changes in 

enthalpy and heat capacity for folding (Table 3-1, experimental and simulated values). 

The ΔH values are in very good agreement (within ~10% of the experiment). As 

expected, the simulated ΔH value is also very similar to the average ΔE shown in Figure 

3-2. The differences in heat capacity change are larger, with simulations underestimating 

the experimentally determined value. This underestimation is consistent with incomplete 

sampling in the unfolded ensemble, but is also likely to arise from the use of a continuum 
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solvent model that does not properly account for the temperature-dependent properties of 

aqueous solvation. 

Parameter Experiment [59] REMD Simulations 

ΔHm, cal·mol-1 16770 ± 60 16100 ± 1200 

ΔCp, cal·mol-1·K-1 281 ± 2 8 ± 2 

Tm, K 345.0 ± 0.1 342 ± 3 

 

Table 3-1. Changes in enthalpy and heat capacity along with melting temperature 
calculated from simulations compared to those obtained from experimental 
measurements. 

 

The ability to closely reproduce the native hairpin structure and several key 

thermodynamic parameters suggests that the simulations provide a useful model for 

folding of this peptide. An additional validation of our approach was provided by a more 

detailed analysis of the packing of the Trp side chains that stabilize the native hairpin. In 

particular, the face-to-face stacking of the indole rings originally observed in the NMR-

based conformations (pdb code 1HRX, now withdrawn) differs from that obtained after a 

further refinement stage that included chemical shift data[80] (pdb code 1LE1).  In our 

simulations, the native conformations adopted the edge-to-face packing seen in the more 

accurate NMR-based conformations, even though all simulations that began with 

“native” conformations used 1HRX (See Figure 2-13).  
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3.3.2 Characterization of the Non-native Ensemble 

The interaction of the indole rings of the Trp side chains was suggested to be a 

dominant stabilizing factor for the trpzip hairpin[59]. We investigated the amount and 

type of these interactions in our equilibrium ensemble and the fraction of each possible 

Trp-Trp contact pair is shown as a function of the HBlost folding order parameter in 

Figure 3-4. The plot shows that the packing in the native state (HBlost=0) is highly 

specific and nearly complete for native Trp pairs 2:11 and 4:9. The middle Trp pair (2:9) 

does not have significant contact in the native structure, which is reflected in a contact 

fraction of only ~0.5. The average number of Trp pairs in the native state is thus ~2.5 (the 

sum of these individual values). These observations are all consistent with the NMR-

derived conformation (Figure 3-1). As HBlost increases during unfolding, Trp clustering 

becomes non-specific in nature, with the most common pairs in the unfolded state being 

non-native interactions between Trp pairs close in sequence (2:4, 9:11). In addition, there 

is a slight decrease in the average total number of Trp pair contacts (1.7 contacts with 

HBlost=5). This change in the contact specificity occurs during the region of 2-3 HBlost, 

the same region previously identified as the location of the free energy barrier to folding 

(Figure 3-2). This increase in Trp packing specificity, along with the configurational 

entropy loss resulting from formation of backbone hydrogen bonds, is likely a significant 

entropic contribution to the free energy barrier for folding. 
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Figure 3-4. Average population of each Trp pair contact for structures with different 
HBlost order parameter, calculated from equilibrium MD data. Native conformations are 
on the left. Unfolding is accompanied by loss in specificity of Trp contacts. 

 

 

3.3.3 Temperature-jump Simulations 

Ensembles of folded and unfolded structures were subjected to a temperature-

jump as described above and simulations were continued until first passage was recorded 

for 85% (folding) or 100% (unfolding) of the ensembles. This large fraction is critical to 

ensuring that all relevant pathways have been sampled since the earliest observed events 

may not be relevant to the behavior of the majority of the ensemble [88]. The total 

simulation time for folding and unfolding simulations was 2.1μs.  
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We initially attempted to fit the data with a single exponential, assuming simple 

2-state kinetics [89]. The decay (folding) or rise (unfolding) in the fraction of non-native 

conformations is shown in Figure 3-5. Unfolding can be fit by a single exponential with a 

relaxation time of 13ns (Figure 3-5B). In contrast, folding data requires at least two 

exponentials with approximately equal weights (Figure 3-5A), with relaxation times 

differing by nearly an order of magnitude (4.5ns and 38.5ns). The double exponential fit 

suggests the presence of kinetic partitioning [90], in this case through at least two single 

exponential processes. Similar partitioning has been encountered in the folding kinetics 

of proteins [91] and recent experiments suggest this for trpzip2 as well [83]. The single 

exponential fit for unfolding does not imply a single unfolding pathway (or even a single 

rate constant); parallel reactions initiated from the same basin will always give rise to 

single-exponential behavior. This point will be revisited below. 

 

 

Figure 3-5. Fraction non-native structure as a function of time during folding (left, 
800K 350K) and unfolding (right, 300K 350K) following the simulated temperature 
jump. Black circles represent times at which a member of the ensemble underwent a 
folding or unfolding transition and the simulation was terminated. Folding data was 
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poorly fit by single exponential (thin line) and at least two exponentials are required. 
Unfolding data can be represented with a single exponential. 

 

These curves reflect behavior of the ensemble as a whole, and our goal is to 

justify the multi-exponential fit and elucidate the properties of the simulated folding 

process that result in this observation. An advantage to simulations as compared to 

analogous experiments is that the behavior of each member of the ensemble is available 

in atomic detail with a time resolution limited only by the frequency of saving coordinate 

snapshots (each picosecond in this case). The difficulty arises when attempting to assign 

a particular trajectory (ensemble member) to one of the exponential decay processes.  

In the present case, the large difference in relaxation times for folding permitted 

analysis of events that occurred at timescales for which the faster process is nearly 

complete (>20ns, Figure 3-5A). This revealed sampling of two different non-native 

metastable hairpin conformations. One of these (Figure 3-6A) has a γ-turn at Gly7, 

resulting in a switch in up/down pattern of side chains on the C-terminal strand. Cross-

strand Trp pairs are thus positioned on opposite faces of the hairpin. The other structure 

type (Figure 3-6B) has the Trp indole rings on the same side of the hairpin but the 

location of the type I’ β-turn is shifted by one residue (G7-K8). In both structure families, 

the entire backbone hydrogen bond pattern is non-native, the N-terminal strand is 

extended past the C-terminal and inter-strand stacking of Trp indole rings is not present. 

Neither type was present in the set of initial structures representing our unfolded 

ensemble (before the T-jump). 
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Figure 3-6. Non-native hairpins that give rise to kinetic partitioning. Structure A has a γ-
turn at Gly7 while structure B has the β-turn at G7-K8 instead of the native N6-G7. 
Neither have significant Trp pair packing nor any native backbone hydrogen bonds. 

 

In order to confirm that these non-native hairpin structures were responsible for 

the slow folding phase, simulations sampling either type were separated from the rest of 

the ensemble of T-jump refolding trajectories. Simulations that sampled misfolded 

hairpins showed single-exponential folding to the true native state with a relaxation time 

very similar to the slower phase (31 vs. 38ns) of the double exponential behavior seen for 

the entire ensemble.  

We find that the misfolded hairpin structures represent off-pathway intermediates 

(Figure 3-7). The transition from unfolded to misfolded state occurs on a timescale 

similar to the transition from unfolded to native state (~4ns in each case). In addition, 

none of the unfolding trajectories sampled the misfolded structures prior to their 

transition into the unfolded state. These results demonstrate that the transition into the 

misfolded structures is not responsible for the slow folding behavior. Examination of 

refolding trajectories revealed that the transition between misfolded and native 
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conformation is not direct; misfolded structures always show significant unfolding prior 

to reaching the native state (Figure 3-8 shows one of such trajectories). The misfolded 

structures have RMSD values near 2.2Å and 3.2Å (same values for the local minima 

observed in REMD simulations, see Figure 3-2A), yet RMSD values rise to ~5Å before 

successful folding occurs. RMSD is thus a poor reaction coordinate in this case since the 

free energy barrier occurs at a larger value than misfolded (reactant) or native (product) 

conformations. 

 

 

Figure 3-7. Observed folding mechanism of trpzip2 in simulations. From the unfolded 
state (U) trpzip can either misfold (M1 and M2) or fold to the native state (N) by one of 
two pathways. Passing through the unfolded state is necessary to access the native state. 
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Figure 3-8. Backbone RMSD vs. time during a refolding simulation that samples both 
misfolded structure types (A,B). These always unfold (C) before reaching the native 
hairpin (D). 

 

We next re-calculated first passage times to the folded state starting from the first 

snapshot after leaving the misfolded basin, and obtained single-exponential decay with a 

timescale nearly identical to the fast folding phase, consistent with our observation that a 

transition back to the unfolded state occurred (data not shown). Thus the slow folding is 

not due to entering the misfolded basins, nor to folding after leaving the misfolded 

basins; rather the rate limiting step is the transition from trapped structure back to the 

unfolded state.  
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We described above that the combined misfolding trajectories give rise to a 

single-exponential folding process. If we separate these slow-phase trajectories into two 

sets based on the type of misfolded hairpin sampled, we obtain single-exponential decay 

in both cases with slightly different timescales for the two sets (30ns vs. 45ns). This is 

direct atomic-level evidence that an observed single-exponential folding process can arise 

from physically distinct folding pathways that have similar intrinsic folding rates. 

Finally, the ensemble of trajectories that never sampled these misfolded hairpins 

(~50%) show single exponential folding with nearly identical relaxation time as the faster 

phase of the double-exponential fit to all simulations. This indicates that the simulations 

sampling the two incorrect hairpins give rise to the entire slow phase of folding. Our 

ability to separate the ensemble, based on structural properties, into two sets that each 

show single-exponential decay thus gives a physical justification for the overall double-

exponential fit as arising from independent folding pathways.  

 

3.3.4 Analysis and Comparison of Folding and Unfolding Pathways 

As we noted above, folding events were not observed to originate directly from 

the misfolded hairpins. We thus examined the folding pathway using the ensemble of 

folding trajectories that did not become kinetically trapped in these basins. For unfolding, 

the entire ensemble of unfolding trajectories was used. For each ensemble, we calculated 

(Figure 3-9) the time-dependent fraction of 7 native contacts (as defined in Figure 3-1). 

Comparison of relative rates of forming each contact provides insight into the sequence 

of contact formation (in an ensemble-averaged manner). Comparison of folding and 

unfolding also highlights any differences in the two processes.  
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Figure 3-9. Average contact loss as a function of time for folding (left) and unfolding 
(right) ensembles. Colors correspond to contact definitions in Figure 3-1. Contact loss is 
shown for consistency with Figure 3-5. The inset on the left shows detail for the contacts 
that have similar timescales. 

 

The most apparent feature of this data is that the contact corresponding to the β-

turn forms on a much more rapid timescale than any of the other contacts. During 

unfolding, this contact was lost most slowly and was retained by a large fraction of the 

ensemble even after the remaining contacts were nearly completely lost. Both sets of 

observations imply a high tendency to form the turn in the unfolded state, consistent with 

our analysis of the equilibrium data.  

For the remainder of the contacts, it is interesting to note that the rates of contact 

formation during folding vary by less than 15%, while nearly 300% variation is seen 

during unfolding under the same conditions. In both cases, however, the ordering of 

backbone hydrogen bond formation or loss is consistent, with zipping occurring from the 

turn out, and unzipping from the termini toward the turn.  
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Although unfolding is the reverse of folding with respect to the backbone, Trp 

packing shows an important difference. During folding (Figure 3-9A), native Trp-Trp 

contacts formed only after the hairpin was complete, with Trps 4:9 forming before 2:11. 

In contrast, unfolding (Figure 3-9B) occurs by initial loss of a single Trp pair contact 

(usually Trps 2:11, see below), followed by loss of the adjacent backbone hydrogen 

bonds, then the second Trp pair contact, and finally the last set of hydrogen bonds. Thus 

formation of the two native Trp pairs is the last step during folding, but loss of both pairs 

is not the first step during unfolding.  

These trends in the ensemble data were confirmed by visual inspection of multiple 

individual trajectories. We discovered that unfolding actually occurs simultaneously by 

two very different pathways. In the predominant pathway (90% of the unfolding 

simulations) unzipping proceeds by successive loss of inter-strand hydrogen bonds from 

the termini towards the turn, consistent with the order of contact loss seen in Figure 3-9B. 

However, a second minor unfolding pathway also exists (10%) in which a hydrogen bond 

near the turn (E5H:K8O) is initially lost and unzipping proceeds away from the turn. This 

pathway is not apparent from the contact loss curves obtained these simulations, 

presumably due to the lower weight of this unfolding pathway in the ensemble data. It is 

also of interest to note that no reverse of the minor unfolding pathway was seen for any 

member of the folding ensemble (hydrogen bonds for the open end of the hairpin never 

formed before those near the turn).  

A free energy landscape was constructed using the two distances (as sampled 

during REMD) corresponding to the initial hydrogen bond lost in each of the unfolding 

pathways (Figure 3-10). Two alternate low-energy pathways are apparent and correspond 
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to unzipping of the hairpin from either end. The broad unfolded state shows a slight 

depression along a nearly constant value for the E5H:K8O distance; this arises from the 

tendency to form the turn in the unfolded ensemble. 

 

 

Figure 3-10. Both figures show the same free energy surface, calculated from populations 
obtained from REMD simulations. The Y axis corresponds to hydrogen bond E5H:K8O 
and the X axis is S1O:K12H. The native conformation is in front and the broad unfolded 
basin toward the rear. Height and color of the surface correspond to free energy relative 
to the global minimum. White spheres are positioned at values sampled by snapshots 
during major (left figure) and minor (right figure) pathways as explored during 
temperature-jump unfolding simulations. Backbone conformations for representative 
structures are shown along each pathway. 

 

Snapshots from simulations sampling each type of pathway were projected onto 

the landscape. Each process begins in the narrow native basin and ends in the broad 

unfolded region, but both pathways are explored. The higher incidence of unzipping 

toward the turn is consistent with the lower free energy barrier for the exit from the native 

basin, relative to that traversed by unzipping away from the turn (~1.2 kcal/mol higher 

for the minor pathway). In each pathway, this initial step is followed by crossing of a 

second free energy barrier along the alternate coordinate. The landscape thus suggests an 

explanation for the more cooperative folding process as compared to unfolding (Figure 
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3-9). Multiple barriers are encountered during both of the unfolding pathways, yet no 

significant free energy barrier to folding is present once either native hydrogen bond has 

formed. We note however, since this landscape employs backbone hydrogen bond order 

parameters, it does not provide insight into the different coupling of these parameters to 

Trp pair contact formation observed between folding and unfolding simulations. 

 

3.4 Conclusions 

Multiple microseconds of equilibrium and non-equilibrium simulations were 

combined to provide a thorough analysis of the native state, unfolded ensemble and 

folding/unfolding transitions for trpzip2 in the simulation environment. While the 

alternate approaches yielded a consistent and often complementary view, interesting 

differences between the order of events occurring during folding and unfolding were 

noted. In both cases, we demonstrated that the single-exponential behavior clearly arises 

from multiple pathways with similar intrinsic rates. In addition, we justified the slow 

phase of a double-exponential fit of folding data as arising from two different off-

pathway intermediates that give rise to kinetic partitioning during folding.  

The β-hairpin folding pathway we describe here differs in detail from those 

previously reported, but shares general features with most. Folding proceeds by rapid 

formation of the β-turn (and a corresponding slow loss during unfolding). The unfolded 

ensemble samples a high level of non-specific hydrophobic clustering, but side chain 

rearrangement and a rise in the specificity of these contacts accompany formation of the 

native backbone conformation while traversing the free energy barrier. Folding and 

unfolding differed in a statistically meaningful manner in the details of this 
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rearrangement. In addition, an alternate unfolding pathway was found that was never 

sampled during folding simulations but was distinctly present in the free energy 

landscape.  

While these simulations were carried out using an approximate solvent model, we 

feel that such approaches are currently required in order to obtain sufficient sampling of 

conformations and folding transitions. Obtaining converged populations and following 

significant fractions of ensembles through folding and unfolding for larger and more 

complex systems remains an immense challenge. With increased computational 

resources, we feel that approaches such as we have taken here will not only provide 

useful insights but also supply an essential test of the internal self-consistency and 

reliability of any conclusions drawn from simulations.  

 

 



 75

Chapter 4  

Improved efficiency of replica exchange simulations 

through use of a hybrid explicit/implicit solvation model 

 

4.1  Introduction 

The potential energy surfaces of biological systems have long been recognized to be 

rugged, hindering conformational transitions between various local minima. This 

sampling problem can preclude success even when a sufficiently accurate Hamiltonian of 

the system is used in the simulations. Thus, significant effort has been put into devising 

efficient simulation strategies that locate low-energy minima for these complex systems. 

Conformational sampling was recently reviewed[38] and is also the subject of a recent 

special journal issue[37]. 

One approach that has seen a recent increase in use for biomolecular simulation is 

the replica exchange method[41, 92, 93]. In replica exchange molecular dynamics 

(REMD)[42] (also called parallel tempering[41]), a series of molecular dynamics 

simulations (replicas) are performed for the system of interest. In the original form of 

REMD, each replica is an independent realization of the system, coupled to a heat bath at 

a different temperature. The temperatures of the replicas span a range from low values of 

interest (such as 280K or 300K) up to high values (such as 600K) at which the system 

can rapidly overcome potential energy barriers that would otherwise impede 

conformational transitions on the timescale simulated.  
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At intervals during the otherwise standard simulations, conformations of the system 

being sampled at different temperatures are exchanged based on a Metropolis-type 

criterion[94] that considers the probability of sampling each conformation at the alternate 

temperature (described in more detail in Methods). In this manner, REMD is hampered to 

a lesser degree by the local minima problem, since simulations at low temperature can 

escape kinetic traps by “jumping” directly to alternate minima being sampled at higher 

temperatures. Likewise, the structures sampled at high temperatures can anneal by being 

transferred to successively lower temperatures. Moreover, the transition probability is 

constructed such that the canonical ensemble properties are maintained during each 

simulation, thus providing potentially useful information about conformational 

probabilities as a function of temperature. Due to these advantages, REMD has been 

applied to studies of peptide and small protein folding[32, 34, 36, 41, 42, 48, 95-99].  

For large systems, however, REMD becomes intractable since the number of replicas 

needed to span a given temperature range increases with the square root of the number of 

degrees of freedom in the system[100-103]. Several promising techniques have been 

proposed[102, 104-106] to deal with this apparent disadvantage to REM.  

The method chosen to treat solvent effects can have a direct impact on the system 

size and thus the computational requirement of employing REMD. Explicit 

representation of solvent molecules significantly increases the number of atoms in the 

simulated system, particularly when the solvent box is made large enough to enclose 

unfolded conformations of peptides and proteins. The growth in system size results in a 

need for many more replicas to span the same temperature range. This increase in 
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computational cost is in addition to that added by the need to calculate forces and 

integrate equations of motion for the explicit solvent molecules.  

Continuum solvent models like the semi-analytical Generalized Born (GB) 

model[29] estimate the free energy of solvation of the solute based on coordinates of the 

solute atoms. The neglect of explicit solvent molecules can significantly reduce the 

computational cost of evaluating energies and forces for the system, but a larger effect 

with REMD can arise from the reduction in number of replicas due to fewer degrees of 

freedom. This factor can determine whether REMD is a practical approach to model the 

system. For example, in the 10-residue peptide model presented below, 40 replicas are 

needed when solvent is included explicitly while only 8 are sufficient for the same 

peptide with a continuum solvent model. Larger systems would be expected to show even 

greater differences; the number of peptide atoms increases approximately linearly with 

sequence length, while the volume of a sphere (and thus the number of solvent atoms) 

needed to enclose extended conformations increases with the peptide length to the third 

power. Thus one can roughly estimate that the difference in number of replicas required 

for explicit vs. continuum solvation of a system will increase with the number of solute 

degrees of freedom to the 3/2 power. 

Continuum solvent models are thus an attractive approach to enabling the study of 

larger systems with REMD. Among the various models that have been developed, the GB 

approach is commonly used with molecular dynamics due to its computational efficiency, 

permitting use at each time step. However, these models can also have significant 

limitations. Since the atomic detail of the solvent is not considered, modeling specific 

effects of structured water molecules can be challenging. In the case of protein and 
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peptide folding, it appears likely that the current generation of GB models do not have as 

good a balance between protein-protein and protein-solvent interactions as do the more 

widely tested explicit solvent models[32, 33]. More particularly, is has been reported[4, 

33-35] that ion pairs were frequently too stable in the GB implicit water model, causing 

salt bridged conformations to be oversampled in MD simulations, thus altering the 

thermodynamics and kinetics of folding for small peptides. A clear illustration was given 

by Zhou and Berne[33] who sampled the C-terminal ß-hairpin of protein G (GB1) with 

both a surface-GB (SGB)[107] continuum model and explicit solvent. The lowest free 

energy state with SGB was significantly different from the lowest free energy state in 

explicit solvent, with incorrect salt bridges formed at the core of the peptide, in place of 

hydrophobic contacts. Zhou extended this study on GB1 by examining several force 

field–GB model combinations, with all GB models tested showing erroneous salt-

bridges[35]. 

The more rigorous models based on Poisson-Boltzmann (PB) equations are generally 

considered to be more accurate. Historically, the increased cost of evaluating solvation 

free energy with these methods results in their use primarily to post-process a small 

number of conformations, or snapshots sampled during an MD simulation in explicit 

solvent[108]. However, some researchers have reported using PB as a solvent model for 

molecular dynamics simulation[109, 110]. PB approaches do not necessarily overcome 

the difficulty of modeling non-bulk effects in the first solvation shells.  

In order to benefit from the efficiency of implicit solvents while incorporating these 

first shell effects, several hybrid explicit/implicit models have been proposed.  These 

typically employ explicit solvent only for the first 1-2 solvation shells of the solute, often 
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surrounded by a continuum representation of various types[111-123]. However, these 

methods have drawbacks in that the explicit water typically must be restrained to remain 

close to the solute to avoid diffusion into the “bulk” continuum. These restraints, as well 

as boundary effects at the explicit/implicit interface, can have a dramatic effect on solute 

behavior. In a recent implementation, Lee et al. employed a hybrid TIP3P/GB solvation 

model with excellent results[119], but they pointed out drawbacks typical for these 

models, such as the need for a fixed solute volume and shape for the solvation cavity, 

preventing large-scale conformational changes of the type that is necessary for detailed 

analysis of conformational ensembles using enhanced sampling techniques like REMD. 

In addition, they demonstrated that solvent properties such as radial density and dipole 

distributions showed significant artifacts due to boundary effects.  

Recognizing that the main difficulty in applying REMD with explicit solvent lies in 

the number of simulations required, rather than just the complexity of each simulation, 

we propose a new approach in which each replica is simulated in explicit solvent using 

standard methods such as periodic boundary conditions and inclusion of long-range 

electrostatic interactions. However, the calculation of exchange probabilities (which 

determines the temperature spacing and thus the number of replicas) is handled 

differently. Only a subset of closest water molecules is retained, with the remainder 

temporarily replaced by a continuum representation. The energy is calculated using the 

hybrid model, and the exchange probability is determined. The original solvent 

coordinates are then restored and the simulation proceeds as a continuous trajectory with 

fully explicit solvation. This way the perceived system size for evaluation of exchange 

probability is dramatically reduced and fewer replicas are needed.  
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An important difference from existing hybrid models is that our system is fully 

solvated throughout the entire simulation, and thus the distribution functions and solvent 

properties should not be affected by the use of the hybrid model in the exchange 

calculation. In addition, no restraints of any type are needed for the solvent, and the 

solute shape and volume may change since the solvation shells are generated for each 

replica on the fly at every exchange calculation. Nearly no computational overhead is 

involved since the calculation is performed infrequently as compared to the normal force 

evaluations. Thus the hybrid REMD approach can employ more accurate continuum 

models that are too computationally demanding for use in each time step of a standard 

molecular dynamics simulation.  

In this study we have tested the hybrid REMD method on varying lengths of 

polyalanine peptides (dipeptide, tetrapeptide and Ala10). Many helical design studies have 

used polyalanines with charged residues[124-127], N-capping[128] and C-capping 

interactions[129] to solubilize the peptides and stabilize helical structure. Recently, 

experimental studies with CD, NMR, and UV resonance Raman have been able to 

characterize primarily polyproline type II (PII) structure in short polyalanines [130-132] 

and in the denatured state of longer alanine peptides[133]. MD simulations of 

polyalanines have further substantiated these experimental observations[134]. The quality 

of solvent model is expected to be critically important since it has been proposed that 

specific solvation of backbone amide groups plays a key role in the stabilization of PII 

conformations[135, 136].   

For each peptide we first obtained conformation ensembles using standard REMD in 

explicit solvent. We used this data as a reference in order to remove the influence of the 
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protein force field parameters from this study of solvation models. For each sequence, 

two sets of REMD simulations in explicit solvent were run with different initial 

conformations until convergence was indicated by reasonable agreement between the 

data sets. For example, the populations of conformation clusters in the two Ala10 runs in 

TIP3P solvent were highly correlated (R2=0.974), demonstrating high similarity not only 

in the types of structures sampled in these two simulations, but also in their probability in 

these independently generated ensembles. This level of convergence gives us confidence 

that the differences we observe between the various solvent models are predominantly 

due to solvation effects and not poorly converged ensembles with large uncertainties in 

the resulting data.  

We then employed pure GB REMD simulation using both models available in 

Amber (GBHCT [87] and GBOBC [137, 138]) as well as the hybrid REMD approach using the 

same GB models. We also performed REMD where only the first 1 or 2 solvation shells 

were retained for the exchange calculations (without a continuum model). Comparison of 

these results to each other and to the standard explicit solvent REMD results provides 

insight into the performance of the GB models, the improvement obtained by retaining 

the first solvation shell in the calculation of exchange probability (the hybrid model), and 

the need for the reaction field surrounding the solvation shells.  

We compared ensemble distributions of properties such as chain end-to-end distance, 

backbone φ/ψ free energy maps, and cluster populations among the methods. While all of 

the solvation models provided similar results for alanine dipeptide, the GB models failed 

to reproduce the TIP3P ensemble data for Ala3 and Ala10 even at a qualitative level, 

providing ensembles that were dominated by α-helical conformations. Simulations using 
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hybrid REMD using GBOBC and only a single shell of explicit water were in good accord 

with the reference simulations, with a high degree of similarity between structure 

populations (R2=0.93), with lack of significant α-helix and a strong preference for PII 

conformation. This agreement was obtained despite a significant reduction in 

computational cost; for Ala10, 40 replicas were used for standard REMD in TIP3P, while 

only 8 were needed for pure GB or hybrid GB/TIP3P REMD. 

 

4.2 Methods 

4.2.1 Replica Exchange Molecular Dynamics (REMD) 

We briefly summarize the key aspects of REMD as they relate to the present study. 

In standard Parallel Tempering or Replica Exchange Molecular Dynamics[41, 42], the 

simulated system consists of M non-interacting copies (replicas) at M different 

temperatures. The positions, momenta and temperature for each replica are denoted by 

[q[i], p[i], Tm], i = 1,…,M ; m = 1,…, M. The equilibrium probability for this generalized 

ensemble is 
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now consider exchanging a pair of replicas. Suppose we exchange replicas i and j, which 

are at temperatures Tm  and Tn  respectively,  
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Equation 4-2 
 

In order to maintain detailed balance of the generalized system, microscopic 

reversibility has to be satisfied, thus giving 
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Equation 4-3 
 

where ρ(X X’) is the exchange probability between two states X and X’. With the 

canonical ensemble, the potential energy E rather than total Hamiltonian H will be used 

simply because the momentum can be integrated out. Inserting Equation 4-1 into 

Equation 4-4, the following equation for the Metropolis exchange probability is obtained: 
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In practice, several replicas at different temperatures are simulated simultaneously 

and independently for a chosen number of MD steps. Exchange between a pair of replicas 

is then attempted with a probability of success calculated from equation 4. If the 

exchange is accepted, the bath temperatures of these replicas will be swapped, and the 
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velocities will be scaled accordingly. Otherwise, if the exchange is rejected, each replica 

will continue on its current trajectory with the same thermostat temperature.  

As we described above, one of the major limitations of REM is that the number of 

replicas needed to span a temperature range grows proportionally to the square root of 

number of degrees of freedom in the simulated system. While a more rigorous analysis of 

the acceptance probability in REM trials has been given recently using a Gaussian energy 

distribution model[103, 139], one can also approximate from equation 4 that the overall 

exchange probability Pacc is proportional to exp(-ΔT2/T2), which implies that a greater 

acceptance ratio requires a smaller temperature gap ΔT or a more dense temperature 

distribution to reach. On the other hand, ΔT should be as large as possible so as to span a 

wide temperature range with a small number of replicas. The relationship can be 

estimated through consideration of potential energy fluctuations of two replicas sampling 

at the target temperature Tn and Tn-1 (Figure 4-1). The instantaneous energy fluctuation 

δE in a given simulation at temperature T scales as f T, and the average energy gap ΔE 

between two neighboring replicas is proportional to fΔT, where f is the number of 

degrees of freedom and 1−−=Δ nn TTT . Obtaining a reasonable acceptance ratio relies on 

keeping the replica energy gap comparable to the energy fluctuations, thus ΔE/δE should 

be near unity. Since ΔE/δE is proportional to TfT /Δ , the acceptable temperature gap 

between neighboring replicas therefore decreases with larger systems as fT /1~Δ , 

and more simultaneous simulations are needed to cover the desired temperature range.  
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Figure 4-1. Schematic diagram illustrating the energy fluctuations for simulations at two 
temperatures for neighboring replicas. In order to obtain high exchange probabilities, the 
energy fluctuations δE in each simulation should be of comparable magnitude to the 
mean energy difference ΔE. 

 

4.2.2 Model Systems and Simulation Details 

We simulated three polyalanine sequences: alanine dipeptide (Ala1), alanine 

tetrapeptide (Ala3) and polyalanine (Ala10), all with acetylated and amidated N- and C-

termini, respectively. All simulations employed the Amber ff99 force field[11, 17], with 

modifications[24] to reduce α-helical bias. Explicit solvent and hybrid REMD used the 

TIP3P water model[64]. The standard REMD simulations in explicit solvent and in pure 

GB were run using our REMD implementation as distributed in Amber (version 8) [62]. 

The hybrid solvent REMD calculations were performed with a locally modified version 

of Amber 8. All bonds involving hydrogen were constrained in length using SHAKE[63]. 

The time step was 2 fs. Temperatures were maintained using weak coupling[86] to a bath 

with a time constant of 0.5 ps-1.  

Secondary structure basin populations for central residues were calculated based on 

φ/ψ dihedral angle pairs. The dihedral angle ranges defining for those regions are 

provided in Table 4-1. The solvent accessible surface areas (SASA) for simulated 
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peptides were calculated using the gbsa=2 option in AMBER. The end-to-end distances 

for Ala10 were calculated between Cα atoms of Ala2 and Ala9 (omitting terminal 

residues) using the ptraj module of Amber. Cluster analysis for Ala10 was performed 

using Moil-View[66], using backbone RMSD for Ala2-9 and a similarity cutoff of 2.5Å.  

Secondary Structure φ ϕ 

α -160 to -50 -60 to +30 

β -180 to -110 +110 to +180 

PII -110 to -40 +110 to +180 

αL +20 to +70 -30 to +70 

 

Table 4-1. The ranges used to determine residue based secondary structure populations. 
 

4.2.3 Explicit Solvent REMD 

The Ala10 peptide in α-helical conformation was solvated in a truncated octahedral 

box using 983 TIP3P water molecules for a total of 3058 atoms. The system was 

equilibrated at 300K for 50ps with harmonic positional restraints on solute atoms, 

followed by minimizations with gradually reduced solute positional restraints and three 

5ps MD simulations with gradually reduced restraints at 300K. Long range electrostatic 

interactions were calculated using PME[140]. Simulations were run in the NVT 

ensemble.  

40 replicas were used at temperatures ranging from 267K to 571K, which were 

optimized to give a uniform exchange acceptance ratio of ~30%. Exchange between 

neighboring temperatures was attempted every 1 ps and each REMD simulation was run 
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for 50,000 exchange attempts (50 ns). The first 5ns of each simulation was discarded to 

remove initial structure bias.  

In order to provide a stringent test of data convergence for greater conformational 

diversity expected for Ala10, two sets of REMD simulations were performed, starting 

from different initial conformations. In one set, all replicas were started from a fully α-

helical conformation; in the other an extended conformation was employed. In the case of 

Ala1 and Ala3, lower bounds for uncertainty were estimated by separating the full 

simulation data into halves and reporting the difference between values calculated for 

each half. 

A similar procedure was used for Ala1 and Ala3.  Ala1 was solvated in a truncated 

octahedral box using 341 TIP3P water molecules. Ala3 required 595 water molecules. For 

both systems the same equilibration procedure as used for Ala10 was employed. To cover 

the same temperature range 20 replicas for Ala1 and 26 replicas for Ala3 were needed. 

Both systems were simulated for ~ 40000 exchanges, and the first 5000 exchange 

attempts were discarded as equilibration. 

 

4.2.4 Implicit Solvent REMD 

Solvent effects were calculated through the use of two Generalized Born 

implementations in Amber (GBHCT and GBOBC (note that GBOBC is model 2 in reference 

59)).  Two sets of intrinsic Born radii were used, both adopted from Bondi[141] with 

modification of hydrogen [142]. Unless otherwise noted, the GBHCT model was used with 

the mbondi radii, and the GBOBC model was employed with mbondi2 radii (as 

recommended in Amber). Scaling factors were taken from the TINKER modeling 
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package[143]. No cutoff on non-bonded interactions was used. All other simulation 

parameters were the same as used in explicit solvent.  

For Ala10, the use of the continuum solvent model resulted in a total of 109 atoms 

considered explicitly in the simulations (~28 times fewer than in the explicitly solvated 

system). The much smaller system size permitted the use of 8 replicas to cover the same 

temperature range that required 40 replicas in explicit solvent, while obtaining the same 

30% exchange acceptance probability. Exchanges were attempted every 1 ps and the 

REMD simulation was run 50,000 exchange attempts (50 ns). Simulations were initiated 

with the same two initial conformation ensembles as were used for the explicit solvent 

REMD calculations, with comparison of the two runs providing a lower bound for the 

uncertainty in resulting data. For Ala1 and Ala3 the same approach was used, with 4 

replicas used to cover the temperature space for each system. Simulations were run for 

50000 exchange attempts, and the first 5000 exchanges were discarded.  

 

4.2.5 Hybrid Solvent REMD 

All simulation parameters in the hybrid solvent REMD simulations were the same as 

those employed for standard REMD in explicit solvent, with the exception that the 

number of replicas (8 for Ala1, Ala3 and Ala10) and the target temperatures were the same 

as those used for the pure GB REMD simulations for Ala10. It is important to note that the 

hybrid solvent model was used only for calculation of exchange probability; the 

simulations themselves were performed on fully solvated systems with truncated 

octahedral periodic boundary conditions and PME for calculation of long-range 

electrostatic interactions.  
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We determined the number of water molecules to retain in the hybrid model based 

on analysis of the number of waters in the first solvation shell of Ala10 in the ensemble of 

structures sampled in the standard REMD explicit solvent simulations. We found that 100 

water molecules were sufficient even for the most extended conformations (data not 

shown). Thus this number was used for all replicas and all exchanges. For Ala1, 30 water 

molecules were enough to incorporate the 1st solvation shell and 60 water molecules for 

the 1st and 2nd solvation shells. These numbers increase to 50 waters and 100 waters for 

1st solvation shell and 1st and 2nd solvation shells of Ala3 respectively. Ala1 and Ala3 

hybrid simulations were run for ~ 30000 exchanges and the first 5000 were discarded. 

At each exchange step, the distance between the oxygen atom of each water 

molecule and all solute atoms was calculated. Water molecules were then sorted by their 

closest solute distance, and all water molecules except the X with shortest solvent-solute 

distances were temporarily discarded (where X is the numbers of waters retained in each 

system, as described above). The energy of this smaller system was then recalculated 

using only these close waters and the GB solvent model. This energy was used to 

calculate the exchange probability, and then all waters were restored to their original 

positions and the simulations were continued (Figure 4-2). In this manner the simulations 

using the hybrid solvent model were continuous simulations with fully solvated 

PBC/PME and the hybrid model was used only for calculation of exchange probabilities. 
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Figure 4-2. Schematic description of hybrid solvent REMD. The fully solvated Ala10 
(with truncated octahedral boundary conditions) is simulated between exchanges (left). 
The exchange energy is calculated by retaining only the closest 100 waters (center), with 
bulk solvent properties calculated using the GB solvation model. After the exchange 
calculation the explicit solvent is restored and the dynamics continues under periodic 
boundary conditions. This approach allows on the fly calculation of the solvation shell, 
whose shape adjusts automatically to the solute conformation (top: α-helical structure, 
bottom: extended structure). As a result, many fewer replica simulations are required. 

 

 

4.3 Results and Discussion 

 

4.3.1 Comparison of exchange efficiency for hybrid and standard 

REMD in Ala10 

Even though REMD has become a useful tool to improve conformational sampling, 

REMD simulations are highly computationally expensive, particularly when solvent is 

treated explicitly. The increase in cost arises not only from the additional effort involved 
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in calculating forces in a given simulation, but from the increase in the number of 

simulations (replicas) needed to span a particular temperature range. This increase is due 

to the much larger number of degrees of freedom present in the explicitly solvated system 

as compared to that in continuum solvent models. In the case of Ala10, our largest model 

system, the number of replicas needed to span the range of 267K to 517K increases from 

8 to 40 when switching from implicit to explicit solvation. 

We evaluated the utility of the hybrid solvent model during the calculation of 

exchange probability on several levels, using Ala10 as its size is most relevant to the 

larger systems that would benefit most from this method. First, we validated that fewer 

replicas were needed to obtain efficient exchange with the hybrid model as compared to 

the number required when retaining the full periodic box of explicit water molecules 

during the exchange probability calculation (Equation 4-4). Efficient exchanges were 

obtained with the hybrid model even when using the same number of replicas as was 

needed for the pure continuum solvent REMD simulations. Next, we evaluated whether 

the use of the hybrid model affected the data obtained from the simulations, with 

particular emphasis on the conformational distributions sampled by the model peptides. 

These distributions were also compared to those obtained for REMD with only the 

continuum solvent model.  

An important benefit of REMD is the ability to obtain improved sampling at low 

temperatures of interest by exchanging conformations with higher temperature 

simulations that have less likelihood to become kinetically trapped. As described in 

Methods, the probability of successful exchange of conformations between two 

temperatures depends on the overlap in potential energy distributions at those 
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temperatures. Figure 4-3 shows the potential energy distributions vs. temperature for sets 

of simulations with explicit solvent (A) and those with GB (B) between 267K and 571K. 

The graph illustrates why fewer replicas are required for the GB model; the energy range 

spanned is smaller for the smaller system and fewer replicas are still able to achieve the 

required overlap. In contrast, when the explicit solvent model is used with only the 8 

replica temperatures that are successful with GB, no significant overlap in the 

distributions is observed (Figure 4-3C).  

 

 

Figure 4-3. Potential Energy distributions for Ala10 simulations over a range of 
temperatures using (A) explicit solvent REMD with 40 replicas, (B) GB REMD with 8 
replicas and (C) explicit solvent REMD with 8 replicas using the same temperature 
distribution as GB REMD. GB simulations involve fewer degrees of freedom and are 
able to span the energy range with fewer replicas. In contrast, no overlap is obtained 
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when using explicit solvent with the same replica and temperature selection as GB. This 
implies that no exchanges would be permitted and the benefits of REMD would be lost. 

 

Based on Figure 4-3, exchanges between replicas at neighboring temperatures are 

expected to occur with high probability when using 40 replicas in explicit solvent or 8 

replicas with GB. No exchanges are expected for explicit solvent with only 8 replicas. 

Figure 4-4 shows the temperature histories of the first 2 replicas in the same explicit 

solvent and GB REMD simulations as were shown in Figure 4-3. As expected, the 

replicas visited all available temperatures during the run (the other replicas showed 

similar behavior and are not shown for clarity). However, the explicit solvent REMD 

with only 8 replicas showed no exchanges even after 25,000 attempts (25ns simulation), 

and all replicas remained at their initial temperatures. This REMD simulation is identical 

to 8 standard MD simulations at different temperatures, and therefore no sampling 

improvement is obtained. Thus, in order for replicas to sample a range of temperatures, 

more replicas (and thus significantly more computational resources) are required for 

simulations in explicit solvent. Reducing this requirement while maintaining fully 

explicitly solvated simulations is the goal of our hybrid model. 
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Figure 4-4. Temperature histories for Ala10 replicas using  (A) explicit solvent with 40 
replicas, (B) GB with 8 replicas and (C) explicit solvent with 8 replicas. For clarity only 
the first two replicas for A and B and only the first 5000 exchanges of B are shown. 
Consistent with the potential energy distributions shown in Figure 4-3, exchanges are 
only obtained when sufficient overlap in potential energy distributions is present. If too 
few replicas are used (C), the result is a series of standard MD simulations.   

 

These exchange efficiencies are all consistent with previously reported REMD 

simulations and the known scaling with system size of the number of replicas required for 

efficient exchange. In our case this data provides an important context for evaluation of 

the use of hybrid solvation models during the calculation of exchange probability. We 

performed REMD simulations using the same explicitly solvated system as shown above, 

but with only the 8 replicas/temperatures that gave efficient exchange with pure GB 

solvation. With standard REMD, this system showed no overlap in potential energy 
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distributions and was unable to generate any successful exchanges (Figure 4-4C). We 

employed the hybrid solvent model only for calculation of the exchange probability 

(Equation 4-4) for this fully explicit solvent system. The distributions of the potential 

energies for the different temperatures during 10,000 exchange attempts (10 ns) are 

shown in Figure 4-5. Use of the hybrid solvent model permits the simulations to achieve 

nearly the same level of energy distribution overlap as we obtained for the pure GB 

model. Consistent with this observation, multiple exchanges are observed despite the 

relatively small number of replicas employed. The replicas are able to traverse the entire 

temperature range on the nanosecond timescale. It is interesting to note that this is more 

rapid than seen for the standard REMD explicit solvent run, most likely due to the larger 

temperature step taken with each successful exchange with the hybrid solvent model (due 

to larger ΔT between neighboring replicas). The standard REMD run requires more 

exchanges to traverse the same total temperature range. This suggests that the hybrid 

calculation may have additional advantages beyond simply reducing the number of 

replicas as compared to standard REMD; however such analysis is outside the scope of 

the present article. 
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Figure 4-5. Potential energy distributions (A) and temperature histories of 2 Ala10 
replicas (B) using 8 replicas in periodic boxes with fully explicit solvent, but with the 
hybrid solvent model for calculation of exchange probability. Use of the hybrid model 
gives overlap between neighboring temperatures and allows replicas to span a range of 
temperatures, in sharp contrast to the total lack of exchanges for the same simulated 
system with standard REMD Figure 4-3C and Figure 4-4C).  For clarity only the first 
10000 exchanges are plotted and only 2 replicas are shown in the lower figure. 

 

 

4.3.2 Analysis of conformational sampling in hybrid and standard 

REMD 

After establishing the ability of the hybrid REMD model to reduce the number of 

replicas required to obtain efficient exchanges, we examine the ability of the hybrid 

approach to reproduce ensemble data obtained with standard REMD in explicit solvent. 
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We also investigate whether the reaction field beyond the solvation shells is required, and 

the dependence of the results on the number of solvation shells included in the exchange 

calculation. For the larger Ala10, the computational demands of obtaining high-precision 

data for various hybrid models (which require fully solvated simulations) prevented 

exhaustive testing. Thus, these more detailed tests were performed on the smaller models 

alanine dipeptide (blocked Ala1) and alanine tetrapeptide (blocked Ala3).  

 

4.3.2.1 Alanine Dipeptide 

We first compared results obtained for standard REMD with TIP3P to those from 2 

different GB models, as well as to TIP3P but using the hybrid solvent model for 

calculation of exchange probability. The hybrid model employed either a first solvent 

shell (30 TIP3P waters) or first and second shells (60 waters). The population of minima 

corresponding to alternate secondary structure types (see Methods for details) are shown 

in Table 4-2. The largest population is found for the polyproline II basin (~35%), 

followed by α-helix and β-sheet (each ~25%), and a much lower population of left 

handed α-helix or turn conformation (1-3%). We make the observation that all of these 

solvent models provide essentially the same results. Use of either GBOBC or GBHCT with 

no explicit solvent either in MD or in the exchange calculation provides populations for 

each of the basins with an error of ~2% population as compared to the standard REMD in 

explicit solvent. Similarly, the average SASA is nearly identical for all models. These 

data indicate that the hybrid model is at least performing adequately and does not have 

any obvious and serious problems, and that similar results are obtained for either first and 

second solvation shells or only the first shell. This insensitivity is expected since the GB 
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simulations adequately reproduced the explicit solvent data with no explicit solvent shell. 

The insensitivity of the results to solvent model strongly indicates that alanine dipeptide 

is not a good test case for evaluation of the effects of inclusion of explicit solvent. 

 

Alanine dipeptide α β PII αL SASA 

Explicit solvent  28.1 ± 1.0 25.1 ± 0.1 36.2 ± 0.5 2.6 ± 0.1 355.8 ± 0.0 

GBOBC 29.3 ± 0.8 26.5 ± 0.5 35.1 ± 0.2 0.7 ± 0.1 356.5 ± 0.0 

GBHCT 28.5 ± 0.2 27.6 ± 0.1 34.0 ± 0.2 0.8 ± 0.2 356.5 ± 0.1 

Hybrid 1st shell + 

GBOBC 

29.7 ± 1.8 24.7 ± 0.4 35.0 ± 1.5 2.5 ± 0.1 355.8 ± 0.1 

Hybrid 1st and 2nd 

shells + GBOBC 

30.3 ± 1.5 24.7 ± 0.3 36.0 ± 0.2 1.3 ± 0.8 355.9 ± 0.1 

 

Table 4-2. Populations of basins on the alanine dipeptide φ/ψ energy landscape 
corresponding to alternate secondary structures, along with average solvent accessible 
surface areas. The results for the pure GB and hybrid REMD models are all similar to 
those obtained using standard REMD with full explicit solvent. 

 

 

4.3.2.2 Alanine Tetrapeptide 

We next turn to results from alanine tetrapeptide to evaluate whether the agreement 

between all solvent models tested for alanine dipeptide is maintained in larger systems. In 
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Table 4-3 we show populations for secondary structure basins for the central alanine 

residue using standard REMD with explicit solvent, GBOBC or GBHCT. Data is also shown 

for several hybrid models, as discussed below.  

 

Alanine 

tetrapeptide 

α β PII αL SASA 

Explicit Solvent 23.6 ± 0.1 23.4 ± 1.3 40.2 ± 1.4 5.1 ± 0.1 565.3 ± 0.1 

GBOBC 50.5 ± 2.4 17.5 ± 0.9 22.9 ± 0.6 1.1 ± 0.4 557.4 ± 1.0 

GBHCT 57.8 ± 1.0 15.2 ± 0.2 18.2 ± 0.4 1.2 ± 0.1 552.4 ± 0.4 

Hybrid 1st shell 

noGB 

41.4 ± 0.8 13.5 ± 0.9 23.4 ± 1.0 13.1 ± 0.8 552.7 ± 0.1 

Hybrid 1st and 2nd 

shells noGB 

29.5 ± 0.2 14.1 ± 0.2 24.1 ± 0.5 23.4 ± 0.3 550.8 ± 0.2 

Hybrid 1st Shell 

GBOBC 

21.6 ± 0.9 21.2 ± 0.2 41.1 ± 0.3 7.6 ± 1.0 563.2 ± 0.1 

Hybrid 1st and 2nd 

Shells GBOBC 

28.3 ± 1.7 22.2 ± 0.9 37.7 ± 0.2 3.8 ± 0.1 563.8 ± 0.2 

Hybrid 1st Shell + 

GBHCT 

23.5 ± 1.1 22.1 ± 0.8 42.8 ± 1.0 2.3 ± 0.0 566.4 ± 0.2 

Hybrid 1st and 2nd 

Shells + GBHCT 

14.9 ± 0.2 25.6 ± 0.1 49.4 ± 0.4 1.9 ± 0.4 569.6 ± 0.1 
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Table 4-3. Data for the central alanine in alanine tetrapeptide (blocked Ala3). Populations 
of basins on the φ/ψ energy landscape corresponding to alternate secondary structures are 
shown, along with average solvent accessible surface areas. Data is discussed in the text. 

 

For standard REMD in explicit solvent, we observe that the populations have not 

changed significantly from those obtained for alanine dipeptide, with a slight increase in 

population of the polyproline II conformation that dominates the ensemble. In this case, 

however, we observe that both of the pure GB models are in significant disagreement, 

with α-helical conformations dominating the ensemble (over 50% for each GB model). 

The two GB models are similar to each other. Overstabilization of salt bridges in GB has 

been reported[33-35], but no salt bridges are present in this system.  

Next, we performed REMD simulations in explicit solvent, but retain only the first 

(50) or the first and second (100) solvation shells in the exchange calculation. 

Importantly, no GB model was included in these simulations. Using only a single 

solvation shell results in a significant bias in favor of α-helical conformations (41% vs. 

~24% for standard REMD), much too little polyproline II conformation and nearly three 

times the αL / turn conformation than was sampled in standard REMD. Inclusion of a 

second shell (without GB) resulted in an even greater shift of the ensemble toward turn 

structures. Notably, both of these shell models show significantly smaller average SASA 

than obtained with standard REMD in explicit solvent, consistent with a drive toward 

compact conformations that reduce the water/vacuum interface that is present without a 

reaction field to surround the solvent shells.  

We next examine the data obtained from the hybrid model in which GB solvation 

was employed in addition to shells of explicit solvation. We note that all of these models 

are in significantly better agreement with the standard TIP3P REMD data, regardless of 
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the GB method or number of shells. The more recent GBOBC model performed best, with 

errors in population of only ~3% for all basins with the exception of the α-helix 

conformation with the first and second shell model, which had an error that was less than 

5%. The average SASA was also in excellent agreement with standard REMD. We 

conclude that this hybrid model is significantly better than the pure GB REMD or 

inclusion of only the solvation shells with no reaction field. The addition of a second 

shell in the exchange calculation appears to make no significant difference as compared 

to a single shell. 

As described above, the MD simulations between exchanges in the hybrid model are 

performed with full explicit solvation. We thus do not need to restrain the explicit water 

and since the solvation shells are surrounded by bulk explicit solvent, we expect no effect 

on the water geometries as have been reported when using a hybrid GB+explicit water 

model for dynamics[119]. To test this hypothesis, we calculated the radial distribution 

function for water oxygens around the carbonyl oxygen in the central Ala2, and found 

that the function obtained in the hybrid model was indistinguishable from that in the 

standard REMD in explicit solvent (Figure 4-6). Since this data is obtained from the 

entire set of structures, this close agreement is also a further indicator of the similarity of 

the ensembles obtained using hybrid or standard REMD.  
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Figure 4-6. Radial distribution functions for water oxygen atoms around the carbonyl of 
Ala2 in alanine tetrapeptide, calculated using ptraj. The distributions for the hybrid 
models using either 1st  or 1st and 2nd shells are nearly indistinguishable from those 
obtained using the reference standard REMD in explicit solvent. 

 

The hybrid model using GBHCT performed comparably to GBOBC when only a single 

shell was used, but the first+second shell model showed a marked reduction in α-helix 

conformation (from 23.5% to 14.9%). This was accompanied by an increase in average 

SASA. These effects with GBHCT are even more apparent in Ala10 and will be discussed 

in more detail below. 
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4.3.2.3 Polyalanine (Ala10) 

The conformational variability available to Ala10 is significantly greater than for 

alanine dipeptide or tetrapeptide. We thus performed a more stringent evaluation of data 

convergence in this case to ensure that the differences we observe between the different 

solvent models are statistically significant. We performed two completely independent 

REMD simulations for each of the solvent models, in each case starting from 2 different 

initial ensembles (fully extended or fully helical). This allows us to evaluate the influence 

of the solvent model within the context of intrinsic uncertainties in each data set.  

We also consider separately the local φ/ψ conformations and more global properties 

of this larger peptide, such as end to end distance distributions and conformation cluster 

analysis. 

 

4.3.2.3.1 Comparison of local conformational preferences 

In Table 4-4 we show secondary structure basin populations for the central Ala5 

residue. Free energy surfaces for these simulations are provided in Figure 4-7. For the 

reference standard REMD simulations in explicit solvent, the polyproline II conformation 

is again favored with the same ~40% population as we obtained for alanine dipeptide and 

tetrapeptide. In comparison, both GB models show very large bias in favor of α-helix 

conformations (~70-80%).  
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Figure 4-7. Free energy profiles at 300K for the central Ala5 residue from REMD in 
multiple solvent models. Contour levels are spaced 0.5 kcal/mol apart. Solvent models 
are (A) TIP3P explicit solvent, (B) GBHCT, (C) GBOBC, (D) GBHCT/TIP3P hybrid,  (E) 
GBOBC/TIP3P hybrid and (F) GBOBC/TIP3P hybrid with  intrinsic Born radius on 
hydrogen bonded to oxygen reduced by 0.05Å. (D), (E) and (F) correspond to fully 
solvated REMD simulations with the hybrid model used only for calculation of exchange 
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probability. Basins corresponding to the major secondary structure types are all similar in 
free energy for models using explicit solvent; however both pure GB models show strong 
bias (2-3 kcal/mol) favoring α-helical conformations. Free energy landscapes were 
calculated using two dimensional histogram analyses of the dihedral angles of Ala5. For 
easier comparison between models, free energy values were normalized using the TIP3P 
REMD global minimum (the bin corresponding to -75° < φ < -60°, 150° < ψ < 165°) as a 
free energy of zero. 

 

Consistent with the results obtained for alanine tetrapeptide, the GBHCT hybrid model 

favors extended conformations with large SASA too strongly (β and PII), despite the bias 

in favor of α-helix for the pure GBHCT simulations. This suggests that the explicit water 

shell is solvated too strongly by this GB model. The GBOBC hybrid model shows a more 

balanced profile in good agreement with the full TIP3P data. The strong bias favoring α-

helix in the pure GBOBC model is nearly completely eliminated when a single solvent 

shell is retained, although some remains with approximately 10% too much α-helix 

present in the GBOBC hybrid.  

 

Ala10 α β PII αL SASA 

Explicit Solvent 24.9 ± 0.8 19.5 ± 0.6 39.5 ± 0.4 8.4 ± 2.0 1195.4 ± 5.6

GBOBC 67.8 ± 1.8 8.3 ± 0.7 12.5 ± 0.8 4.2 ± 0.1 1098.6 ± 0.4

GBHCT 83.1 ± 0.1 3.2 ± 0.1 5.0 ± 0.0 2.3 ± 0.1 1038.3 ± 1.6

Hybrid GBOBC 

+1st shell 

35.7 ± 6.2 17.3 ± 0.2 29.0 ± 5.3 6.6 ± 0.7 1140.8 ± 4.4

Hybrid GBHCT + 

1st shell 

12.3 ± 0.2 28.3 ± 0.3 50.5 ± 1.2 2.1 ± 1.1 1275.4 ± 2.5

Hybrid GBOBC’ + 29.8 ± 1.6 18.5 ± 1.6 34.3 ± 0.5 8.9 ± 0.3 1167.8 ± 2.5
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1st shell 

 

Table 4-4. Data for the central Ala5 in blocked Ala10. Populations of basins on the φ/ψ 
energy landscape corresponding to alternate secondary structures are shown, along with 
average solvent accessible surface areas. GBOBC’ refers to the hybrid model using 
GBOBC with slight adjustment of the Born radius on H bonded to O. Uncertainties 
reflect differences between independent simulations from different initial structures. Data 
is discussed in the text. 

 

In addition to differences in the method for calculating GB effective Born radii, the 

GBHCT and GBOBC simulations employed different intrinsic Born radii (denoted in Amber 

as mbondi and mbondi2 sets, respectively), consistent with recommendations for these 

models. In order to determine the relative influence of these two differences, we repeated 

the calculations, swapping the GB models and radii (GBHCT with mbondi2, GBOBC with 

mbondi). We found that the results depended nearly exclusively on the set of radii and 

were less sensitive to the GB models themselves (data not shown). This is consistent with 

the aim of the GBOBC model, which was designed to provide improved properties for 

larger systems than our current model[137]. We note that the strong bias toward extended 

structures seen in the hybrid models using mbondi radii likely arises from the use of 0.8 

Å for hydrogen atoms bonded to oxygen. In the more recent mbondi2 set, this value was 

restored to the default Bondi value of 1.2 Å. This larger value appears to have an 

improved balance of hydrogen bonding of the explicit solvent to the solute or to the bulk 

(continuum) solvent. 

 

4.3.2.3.2 Comparison of global structural properties 
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Our analysis of alanine dipeptide and tetrapeptide focused on local backbone 

conformation; in the larger Ala10 we supplement this analysis with more global properties 

of the chain. We calculated the end-to-end distance distributions for Ala10 in the 300K 

ensembles obtained from each of the different REMD simulations. In Figure 4-8 we show 

the results of the 2 explicit solvent REMD simulations that were initiated from fully α-

helical or extended conformations, respectively. A broad distribution of distances is 

observed, suggesting that no particular conformation is preferred, consistent with the 

local backbone preferences for the central Ala5. Consistent with the small uncertainties in 

the φ/ψ basin populations, we observe that the initial conformation has essentially no 

effect on the distribution, indicating that the REMD simulations are well-converged on 

this timescale. Similar behavior is observed for other temperatures. As expected, standard 

MD simulations at 300K were trapped near the initial conformation on this timescale 

(data not shown). 

In Figure 4-8, we show the distance distributions at 300K obtained from GB REMD 

using the two GB models (HCT and OBC). In contrast to the relatively flat profiles seen 

in the explicit solvent REMD data, a sharp peak near 11Å is obtained using either GB 

model, with essentially no sampling of extended conformations with end to end distances 

greater than ~15-20Å, unlike the explicit solvent REMD that shows a nearly flat 

distribution out to ~22Å. This is consistent with the strong bias toward α-helix in the 

pure GB models as shown in Table 4-4. The bias is somewhat less pronounced with the 

GBOBC model than with GBHCT. We note that these differences between the various 

solvent models are much larger than the differences obtained from alternate initial 

conformations using the same solvent model. 
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Figure 4-8. Ala10 end-to-end distance distributions at 300K obtained in REMD using 
alternate solvent models (red): (A) pure GBHCT, (B) pure GBOBC, (C) hybrid REMD with 
GBHCT and mbondi radii, (D) hybrid REMD with GBOBC and mbondi2 radii (HO=1.2 Å) 
and (E) hybrid REMD with GBOBC’ (mbondi2 radii with HO= 1.15 Å). In each case the 



 109

results are independent of initial conformation (solid/dashed lines). Data from standard 
REMD with explicit solvent is shown in each graph for comparison (black). 

 

In Figure 4-8 we also show end to end distance distributions at 300K obtained from 

REMD with the same hybrid variations shown in Table 4-4, each of which retained only 

the first shell (100 closest) water molecules combined with different GB models in the 

exchange calculation. When GBHCT was used in the hybrid model (Figure 4-8C), the 

distributions differ significantly from the reference explicit solvent REMD data, 

consistent with the large increase in polyproline II backbone conformations and average 

SASA for this model shown in Table 4-4. This bias toward more extended conformations 

in the hybrid using GBHCT is also consistent with what we observed for alanine 

tetrapeptide (Table 4-3). 

We next analyzed the distributions obtained from the GBOBC hybrid model (Figure 

4-8D). In this case, much better agreement with the reference data is seen than with either 

GBOBC alone or the explicit/GBHCT hybrid. However, the sampling of the most extended 

conformations (longest end to end distances) is slightly reduced in the hybrid REMD 

simulations. 

The good convergence of our data suggested the possibility of using it for minor 

empirical adjustment of the mbondi2 values for use with the GBOBC hybrid model. We 

adjusted the radii of hydrogen bonded to either N or O by 0.05 Å. Modification of H on N 

had little effect on the resulting distributions (data not shown), but reduction of the radius 

of H on O from 1.2 Å to 1.15 Å (GBOBC’) resulted in an end to end distance distribution 

in improved agreement with standard explicit solvent REMD data (Figure 4-8E and Table 

4-4). This slight reduction in the hydrogen radius is consistent with the increased 
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electronegativity of oxygen [142]. This change does not affect the pure GB calculations 

since Ala10 has no H bonded to O.  

The GBOBC’ hybrid model showed improved agreement with the pure TIP3P data, 

with all basin populations within 5% of the standard explicit solvent REMD. Some slight 

bias favoring α-helix at the expense of some polyproline II conformation remains in this 

model and will be the subject of future investigation. We repeated the simulations of 

alanine dipeptide and tetrapeptide using this modified radius and found that the 

populations (Table 4-5) remained in good agreement with standard REMD with explicit 

solvent. 

 

ALA1 α β PII αL SASA 

Hybrid Mod 1st 

shell 

28.0 ± 0.5 24.5 ± 0.1 35.7 ± 0.6 3.5 ± 0.3 355.8 ± 0.0 

Hybrid Mod 1st 

and 2nd shells 

29.3 ± 1.0 23.8 ± 0.1 36.0 ± 0.1 2.8 ± 0.7 355.8 ± 0.1 

ALA3 α β PII αL SASA 

Hybrid Mod 1st 

shell  

26.4 ± 0.5 22.3 ± 0.3 36.7 ± 2.1 6.9 ± 1.6 561.9 ± 0.3 

Hybrid Mod 1st 

and 2nd shells 

21.1 ± 1.6 22.6 ± 0.4 43.5 ± 2.2 4.4 ± 1.2 556.4 ± 1.1 

Table 4-5. Populations of basins on the φ/ψ energy landscape corresponding to alternate 
secondary structures, along with average solvent accessible surface areas. These 
simulations employed the modified intrinsic Born radius for hydrogen bonded to oxygen, 
as described in the text. 
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Since the backbone conformation populations suggest that the PII basin is the global 

free energy minimum in both the standard explicit solvent and the hybrid solvent models 

(Table 4-4 and Figure 4-7), we performed cluster analysis to determine the extent to 

which this local preference was reflected in the conformation of the entire polymer chain. 

Once again we compare results from independent ensembles generated by REMD with 

different initial conformations to ensure the convergence of our data.  

The most populated cluster for Ala10 at 300K in both standard explicit solvent 

REMD runs was an extended PII conformation (over 98% of the local backbone 

conformations in this cluster are PII, data not shown). This fully PII cluster comprised 

~20% of the overall ensemble in both explicit solvent simulations (19.5% vs. 21.2%).  

Representative structures for the clusters obtained from the independent simulations 

differed by only 1.3Å in backbone RMSD (Figure 4-9A). Once again, the high level of 

consistency between the data sets and independence of not only the conformation but the 

absolute population of the clusters give us confidence in the converged nature of our data. 

The relatively low population of this cluster in both simulations is also consistent with the 

broad distribution of end to end distances (Figure 4-8). A more detailed analysis of the 

ensemble of structures sampled by Ala10 will be presented elsewhere, but this preference 

for PII conformations is consistent with the experimental and simulation reports described 

previously.  

As was demonstrated with the analyses presented above, the pure GBHCT and GBOBC 

REMD simulations do not reproduce the data obtained in explicit solvent, nor are they 

consistent with experimental data. The most populated cluster in both cases is fully α-

helical (Figure 4-9B shows the GBOBC structure), comprising ~48% of the overall 
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ensemble for GBHCT, and 25.4% for GBOBC. This analysis is consistent with the α-helical 

bias apparent in the Ramachandran free energy surfaces shown in Figure 4-7.  

 

 

Figure 4-9. Representative structures for the most populated clusters in 300K ensembles 
obtained using various solvent models. (A) Very similar PII structures are obtained from 
2 independent standard REMD simulations with explicit solvent, initiated in extended 
and fully helical conformations. (B) Comparison of structures from GBOBC and TIP3P. 
GBOBC prefers α-helical conformations, in disagreement with explicit solvent 
simulations. (C) Using GBOBC’ with the hybrid model provides structures in close 
agreement with standard REMD in TIP3P. Terminal residues were not included in the 
cluster analysis. 
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We next performed cluster analysis on the ensembles obtained with the GBOBC’ 

hybrid model with modified mbondi2 radii. Consistent with the standard explicit solvent 

REMD runs, the most populated cluster at 300K was also an extended PII conformation. 

Representative structures were within 1.5 Å backbone RMSD from those obtained in 

explicit solvent (Figure 4-9C), again suggesting that the hybrid model is able to capture 

the dominant effects of explicit solvent in the exchange calculation despite the need for 

many fewer replicas. 

Since the most populated clusters were in close agreement between both TIP3P 

REMD simulations and GBOBC’ hybrid model, we compared the populations of all 

clusters observed. Smith et al. showed[39] that cluster analysis of simulations was a 

much more stringent test of convergence than other measures that they tested, including 

energy, RMSD or diversity of hydrogen bonds sampled. This was particularly useful 

when analyzing coordinate sets obtained by merging two independent trajectories. They 

examined the 5 ns dynamics of an 11-residue peptide and showed that the two trajectories 

sampled essentially none of the same clusters. 

We adapted this approach to our analysis, but we emphasize not just the existence of 

conformation families in two data sets, but also the fractional population of each cluster 

in 300K ensembles sampled in independent simulations. All trajectories from TIP3P 

REMD, GBOBC REMD and hybrid GBOBC’ simulations were combined and the resulting 

data set was clustered. A total of 44 clusters contained 99% of the structures; the fraction 

of the ensemble corresponding to that cluster was calculated for each REMD simulation. 

We compared the population of each cluster in the different ensembles, including those 

generated with the same or different solvent models.  
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First we evaluated the convergence of our standard REMD simulations with TIP3P 

by comparing cluster sizes between the independent runs with different initial 

conformations (extended and fully α-helical). Not only were the same conformations 

sampled in each run (20.3±0.9%), but the populations of clusters in each ensemble were 

highly correlated (Figure 4-10A, R2=0.974 and a slope of 1.02). This indicates that the 

relative population of each structure type is highly converged in these data sets.  

In stark contrast, when the TIP3P and GBOBC ensembles are compared, no 

correlation between cluster populations is observed (Figure 4-10B, R2=0.075), and the 

largest cluster in each (~20%) has less than 2% population in the other model. Much 

better results are obtained from the GBOBC’ hybrid data, with a correlation coefficient of 

0.935 with the standard TIP3P REMD data (Figure 4-10C). All clusters larger than 5% 

have the same rank order in the two models.  There is a relatively small difference in the 

size of the single cluster that is the largest for both models (15.9±0.6% and 20.3±0.9% 

for hybrid and standard TIP3P REMD, respectively). This corresponds to an error of only 

0.15 kcal/mol for the free energy of this cluster between the two models, compared to 

0.05 kcal/mol difference obtained between data sets from the same model. For 

comparison, the error in the free energy of this conformation using GB was more than ten 

times larger (1.6 kcal/mol).  
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Figure 4-10. Cluster populations at 300K from REMD for TIP3P Run1 vs. Run2 (A), 
TIP3P Runs 1&2 vs. GBOBC Runs 1&2 (B) and TIP3P Runs 1&2 vs. hybrid GBOBC’ Runs 
1&2. High correlations between individual TIP3P simulations and between TIP3P and 
hybrid simulations are observed, with the difference in the largest cluster in (C) 
corresponding to an error in free energy of only 0.18 kcal/mol. No correlation between 
TIP3P and GBOBC is observed; note also in plot (B) that the largest cluster in each solvent 
model has very low population in the other model (indicated by arrows). 

 

Since the standard explicit solvent REMD and hybrid solvent using GBOBC’ have the 

same most populated cluster, we investigated the timescale required for each model to 

adopt this conformation as the dominant member of their ensemble. This is important 

since the standard REMD simulation employed many more replicas, possibly facilitating 

earlier location of the PII conformation that would then be adopted in the lowest 

temperature ensembles. In Figure 4-11 we show the fractional size of this cluster in the 

structures sampled as a function of time for standard REMD and hybrid REMD, 

including data from both initial conformations in each model. Data is shown at 300K, and 

the first 5 ns were discarded in each case to remove biasing of the populations by the 

initial conformations that were not sampled at later points. The level of agreement is 

impressive; the long-time averages for both simulations of the 2 models are all ~20%, 



 116

with convergence to this value occurring at approximately 5ns in all cases (in addition to 

the 5 ns that was discarded).  

 

 

Figure 4-11. Population of the cluster corresponding to polyproline II helix (Figure 4-10) 
as a function of time for REMD simulations in explicit solvent, with the 2 independent 
simulations using the full system energy in the exchange calculation shown in black/red 
and the GBOBC’ hybrid shown in green/blue. At ~5ns, all four simulations converge to a 
population of 16-20% (the largest cluster in each of the ensembles), with a slightly lower 
population in the hybrid models that is consistent with Figure 4-10C. 

 

4.4 Conclusions 

We introduced a new variant of replica exchange molecular dynamics in which 

simulations are performed with a fully explicit representation of solvent, but those 
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solvent molecules beyond the first solvation shell are replaced with a continuum 

description only for the purpose of calculating the exchange probability. This reduces the 

effective system size governing the number of replicas required to span a given 

temperature range, and therefore significantly reduces the computational cost of REMD 

simulations. This approach is similar in spirit to hybrid explicit/continuum models that 

have been proposed for use during each step of MD simulation; in the present case, 

however, the solvent is fully explicit during the dynamics and no restraints are needed to 

maintain a solvation shell. However, since the Hamiltonian used for the exchange differs 

from that employed during dynamics, these simulations are approximate and are not 

guaranteed to provide correct canonical ensembles. It is important to determine the extent 

to which this approximation affects the resulting ensembles; in this article we introduce 

the method and investigate some of these effects on several short alanine-based peptides.  

Recently, another approach to reducing the number of replicas required for explicit 

solvent REMD simulations was proposed[144] in which the water-water interaction 

energy was temperature-dependent. That study employed alanine dipeptide as a model to 

show that their less computationally demanding method provided a similar ensemble to 

that obtained with standard REMD. In the present work we show that alanine dipeptide 

conformations are nearly insensitive to the solvent models that we tested, with results 

from full explicit solvent, two different GB models and several hybrid models all 

providing similar ensembles. In contrast, several of these models provided ensembles for 

the longer peptides that were in significant disagreement with standard REMD in explicit 

solvent, indicating that larger model systems should be included in evaluation of solvent 

models.  
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We further tested the method by calculation of conformational ensembles of Ala10 

using the TIP3P explicit solvent model, two GB models available in Amber, and hybrid 

variants using TIP3P and each GB model, all using the same underlying protein force 

field parameters. Ensembles from standard REMD in explicit solvent were considered the 

standard, and convergence of this data set was validated by a high correlation (R2=0.974) 

between the fractional populations of conformation families in simulations initiated with 

completely different initial structure ensembles. While a broad distribution of 

conformations was sampled, the predominant cluster for Ala10 adopted a PII structure. 

This preference is consistent with reported experimental and computational results for 

short polyalanine peptides [145].  

Simulations using the hybrid model with GBOBC were in excellent agreement with 

the reference data for local backbone conformations, end to end distance, SASA and 

populations of each conformation family in the ensemble. The difference in population in 

the largest cluster indicates that the hybrid model introduced and error of less than 0.2 

kcal/mol in free energy while reducing the computational expense by a factor of five.  

In contrast, REMD using only the GB models provided ensembles that bore no 

resemblance to the reference data, with the GB ensembles incorrectly dominated by α-

helical conformations. This may be indicative of general errors in these GB models, or 

they may arise from neglect of structure in the first solvation shells of the peptide. Mezei 

et al. recently reported[136] free energy calculations in explicit solvent, showing that 

solvation strongly favors the PII conformation over α-helix. Solvation free energy was 

shown to be highly correlated with the energy of interaction between the peptide and its 

first solvation shell.  
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It is important to note that several challenges remain for more general use of the 

proposed hybrid approach. In particular, the present work studied the effects on alanine-

based peptides. Future studies should be performed on other sequences with a more 

diverse representation of functional groups in the side chains. In particular, it will be 

important to determine whether the hybrid model is able to overcome known issues with 

GB models and ions pair interactions. The inclusion of explicit counterions in the 

exchange calculation may also be problematic. Additionally, we demonstrated that 

inclusion of a single shell of explicit water was sufficient for alanine dipeptide and 

analine tetrapeptide. In both cases similar results were obtained using one or two shells, 

but we were unable to perform these comparisons for Ala10. Although our approach 

reduces the number of replicas required for REMD, the simulations are still fully solvated 

during each step of MD and obtaining well converged data requires a significant 

investment of computational resources.  

The results obtained from these model systems provide additional evidence that 

explicit representation of water in the first solvation shell can significantly improve the 

performance of the GB continuum models, providing data similar to standard REMD 

with fully explicit solvent but at a greatly reduced cost. This reduction in computational 

requirements can enable simulations on longer time scales for the same system size, or 

permit application of REMD to the study of much larger systems.  We also showed that 

use of one or two explicit solvent shells alone was inadequate and that adding a reaction 

field was essential for obtaining reasonable results. Adaptation of this method to other 

continuum models (such as the more rigorous PB) should be straightforward. Since the 
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continuum solvent is only used for the infrequent exchange calculations, models that are 

too complex for use at each step of dynamics can be readily employed.  
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Chapter 5  

Improving Convergence of Replica Exchange 

Simulations through Coupling to a High Temperature 

Structure Reservoir 

 

5.1 Introduction 

Conformational sampling remains one of the largest challenges in simulating 

biologically relevant events in atomic detail. Even when a sufficiently accurate 

Hamiltonian of the system is used, the rugged and complex potential energy surfaces 

usually result in simulations being trapped, prohibiting complete exploration of 

conformational space. Thus, significant effort has been put into devising efficient 

simulation strategies that locate low-energy minima for these complex systems. The 

challenges in conformational sampling has been discussed in several reviews [37, 38]. 

One major problem for molecular simulations is quasi-ergodicity where 

simulations may appear converged when observing some simulation parameters, but in 

reality large energy barriers may prevent them from sampling important regions of the 

energy landscape. Another simulation initiated in a different conformation may look 

converged as well, but comparison may show that only partial equilibration was 

achieved. An example of this behavior has been demonstrated by Smith et al. who 

reported that MD simulations of short peptides starting from different initial 



 122

conformations were in poor agreement despite apparent convergence in some measured 

properties [39].  

One popular approach to overcoming quasi-ergodicity in biomolecular simulation 

is the replica exchange method [41, 92, 93]. In replica exchange molecular dynamics 

(REMD) [42] (also known as parallel tempering[41]), a series of molecular dynamics 

simulations (replicas) are performed for the system of interest. In the original form of 

REMD, each replica is an independent realization of the system, coupled to a thermostat 

at a different temperature. The temperatures of the replicas span a range from low values 

of interest (experimentally accessible temperatures such as 280 or 300K) up to high 

values (such as 600K) at which the system is expected to rapidly overcome potential 

energy barriers that would otherwise impede conformational transitions on a 

computationally affordable timescale.  

At intervals during the otherwise standard simulations, conformations of the 

system being sampled a different temperatures are exchanged based on a Metropolis-type 

criterion[94] that considers the probability of sampling each conformation at the alternate 

temperature (further details are discussed in Methods). In this manner, REMD is 

hampered to a lesser degree by the local minima problem, since simulations at low 

temperatures can escape kinetic traps by “jumping” directly to alternate minima being 

sampled at higher temperatures. Moreover, the transition probability is constructed such 

that the canonical ensemble properties are maintained during each simulation, thus 

providing potentially useful information about conformational probabilities as a function 

of temperature. Due to these advantages, REMD has been widely applied to studies of 

peptide and small protein folding [18, 23, 34, 36, 41, 42, 48, 95, 97-99].  
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For large systems, REMD can become intractable since the number of replicas 

needed to span a given temperature range increases with the square root of the number of 

degrees of freedom in the system[100-103]. Since the number of accessible 

conformations also typically increases with system size, the current computational cost 

for REMD simulations of large systems limits the simulation lengths to tens of 

nanoseconds per replica, which limits the ability to obtain converged ensembles for large 

systems. Several promising techniques have been proposed[43, 102, 104, 106, 146] to 

deal with this apparent disadvantage of REMD. To our knowledge converged REMD 

simulations in explicit solvent from independent starting conformations have been 

reported only for short helical or unstructured peptides. [32, 43, 147] 

Several studies have compared the sampling efficiencies of standard MD and 

REMD. Sanbonmatsu and Garcia reported a fivefold increase in sampled conformations 

using REMD over MD in the 5 residue Met-enkephalin peptide in explicit solvent [96]. 

Zhang et al. showed that REMD enhances sampling over conventional MD by 15 – 70 

times at different temperatures for the 21 residue Fs peptide in continuum solvent [148]. 

A recent study by Zuckerman and Lyman investigated the sampling efficiency of REMD 

through consideration of the rate acceleration afforded by increased temperature [149]. 

For slower converging systems (such as β-hairpins or more complex topologies where 

folding time is in the order of microseconds) REMD simulations typically initiated from 

the native conformation (see recent example by Zhang et. al. [150]) where unfolding 

through high temperature replicas is obtained and temperature dependent properties are 

calculated from the resulting structures. 
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REMD simulations increase conformational sampling over standard MD 

simulations, but obtaining reliable results for non-trivial systems remains challenging. It 

is possible that REMD does not provide even greater efficiency gains for peptides and 

proteins because the temperature dependence of the folding rate tends to be more weakly 

temperature dependent than the unfolding rate, as has been shown experimentally [74, 

151-154] and computationally[155, 156]. When starting from non-native conformations, 

high temperature replicas give limited advantage for finding native states since more 

minima on the free energy landscape become accessible at higher temperatures, further 

complicating the search. Furthermore, when a high temperature REMD replica locates a 

favorable low-energy basin (such as the native structure), this conformation is exchanged 

to lower temperature and the high temperature replica needs to repeat the search process. 

Importantly, during the search by the high-temperature replicas, all replicas continue to 

be simulated. Thus a very large set of simulations, all of which are long enough for the 

high-temperature replicas to sample multiple folding events, can be required to achieve 

correct Boltzmann-weighted ensembles across the range of replicas. From another 

perspective, REMD drives the generation of correct equilibrium ensembles of structures 

by employing an exchange criterion that explicitly assumes that structures being 

considered for exchange have Boltzmann-weighted probability of being sampled (see 

Methods for details). However, this assumption is only true after the generalized 

ensemble has already reached convergence and is typically incorrect at the start of the 

REMD simulation. Thus until all temperatures sample an equilibrium ensemble, none of 

the temperatures would be expected to have correct distributions due to coupling of 

replicas through an incorrect exchange probability.  
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An approach to reducing quasi-ergodicity that is conceptually similar to REMD 

was reported by Frantz et al. for Monte Carlo (MC) simulations of atomic clusters [157]. 

In their approach, called jump-walking (or J-walking) they coupled one MC simulation to 

another at higher temperature. Somewhat analogously to REMD, the low temperature 

simulation was used to sample local minima and provide thermodynamic ensemble data 

at the temperature of interest, while the high temperature simulation was used to facilitate 

barrier crossing. Periodically the low temperature structures escape local minima by 

“jumping” to basins sampled at high temperatures. The Boltzmann distribution generated 

by the high temperature walker becomes the sampling distribution for attempted jumps 

by the low temperature walkers. One drawback is that too large a temperature difference 

results in poor acceptance probabilities for the jump, comparable to the need to optimize 

the spacing between REMD temperatures. Variations of the J-walking scheme were 

tested by employing high temperature simulations on a different time scale than the low 

temperature simulation or using multiple high temperature simulations. They determined 

that the most efficient method is running the high temperature walker to obtain an 

adequate distribution, and using the stored conformations for jumps in a MC run at 

slightly lower temperature. The results of this lower temperature run were then used as 

the seed set for a new J-walking run at even lower temperature. They validated this 

approach using simple double well potentials where comparison to analytical results was 

possible, and in simulations of Argon clusters of various sizes. Similar approaches to J-

walking have been developed, such as Smart Walking (S-Walking) [158] , Smart Darting 

[159] and Cool Walking [160]. The J-walking scheme has been adapted to REMD 

simulations that employ a resolution exchange scheme, where replicas were run using a 
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coarse grained model to obtain conformations to be subsequently sampled by an all-atom 

model[161, 162].   

Here we introduce a variant to REMD where we draw upon the strengths of the J-

walking approach to overcome the slow convergence and high computational expense of 

REMD. Similar to J-walking, an ensemble of structures is generated using standard MD 

simulation at high temperature. Instead of reducing the temperature stepwise and re-

equilibrating the ensemble in stages, an REMD run is used to link in a single step the 

high-temperature ensemble to the low temperature of interest. Periodic exchanges are 

made between randomly chosen conformations from the reservoir set and the highest 

temperature replica. This process formally provides correct ensembles at lower 

temperature with free energies that reflect the proper relative populations of minima. 

Importantly, the convergence speed of the REMD run is greatly enhanced since 

exchanges are attempted from an already converged Boltzmann ensemble and thus the 

exchange probabilities are correct at the start of the REMD run. We call this method 

Reservoir REMD (R-REMD) since REMD is coupled to a high temperature reservoir.  

One major advantage of the reservoir approach with REMD is that a converged 

ensemble of conformations has to be generated only once and only for one temperature. 

After extensive conformational search at one temperature, the remaining temperatures 

can sample from and anneal these structures to rapidly construct equilibrium distributions 

consistent with their thermostat temperature. This is in contrast to the typical REMD 

approach where all replicas are run simultaneously, and the computational expense for 

running long simulations must be paid for each of the replicas even though only a few 

high-temperature ones may be contributing to the sampling of new basins. Another 
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advantage is that the exchanges with the reservoir need not be time correlated with the 

replica simulations. Folding events sampled during reservoir generation can provide 

multiple native structures for the other replicas, in contrast to standard REMD where an 

independent folding event is required for each temperature that will have substantial 

native population. Overall, the convergence rate for the set of replicas is greatly enhanced 

by exchanging with a previously converged ensemble.  

We have implemented the reservoir REMD approach in the Amber [163] 

simulation package and have tested it on two models peptides, the trpzip2 β-hairpin [59] 

and the dPdP [164] three-stranded antiparallel β-sheet. These systems were selected due 

to the complexity and slow folding of β-sheets and hairpins as compared to α-helices, 

which fold rapidly enough that the performance advantage of R-REMD may not be 

apparent. For both systems, reservoir ensembles were generated at 400K using 

Generalized Born [29] (GB) implicit solvent model using multiple simulations with 

different initial conditions. Subsequent R-REMD simulations we compared to standard 

REMD calculations with the same temperature ranges. In all cases, simulations were 

extended until close agreement was obtained between results obtained from independent 

runs with different initial structure ensembles (folded and unfolded). For both peptides 

the use of reservoir structures is shown to provide the same structure ensembles and 

thermal melting profiles as standard REMD, with a reduction in overall computational 

cost of 5 to 20 times, including the generation of the reservoir.  
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5.2 Methods 

5.2.1 Replica Exchange Molecular Dynamics (REMD) 

We briefly summarize the key aspects of REMD as they relate to the present 

study. In standard Parallel Tempering or Replica Exchange Molecular Dynamics [41, 42], 

the simulated system consists of M non-interacting copies (replicas) at M different 

temperatures. The positions, momenta and temperature for each replica are denoted by 

(q[i], p[i], Tm), i = 1,…,M ; m = 1,…, M. The equilibrium probability for this generalized 

ensemble is 
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where the Hamiltonian ),( ][][ ii qpH  is the sum of kinetic energy )( ][ipK  and 
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now consider exchanging a pair of replicas. Suppose we exchange replicas i and j, which 

are at temperatures Tm  and Tn  respectively,  
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In order to maintain detailed balance of the generalized system, microscopic 

reversibility has to be satisfied, thus giving 
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)'()'()'()( XXXWXXXW →=→ ρρ  

Equation 5-3 
 

where ρ(X X’) is the exchange probability between two states X and X’.  

A key step in the derivation of the exchange criterion [42] is the substitution of 

the Boltzmann factor for the weight of each conformation into Equation 5-3, yielding 

Equation 5-4. We note that this is not strictly correct until equilibrium has been reached, 

at which point the structures are actually considered for exchange with this probability.  
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Equation 5-4 
 

In the canonical ensemble, the potential energy E rather than total Hamiltonian H 

can be used because the momentum can be integrated out [42]. By rearranging Equation 

5-4 the following Metropolis exchange probability is obtained (Equation 5-5). 
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It is important to reiterate that Equation 5-4 is valid only for equilibrated 

ensembles that follow Boltzmann distributions. This assumption is true at the end of the 
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simulation, and use of this exchange probability drives each replica towards adoption of 

the correct ensemble.  

In standard REMD, several replicas at different temperatures are simulated 

simultaneously and independently for a chosen number of MD steps. Exchange between 

a pair of replicas is then attempted with a probability of success calculated from Equation 

5-5. If the exchange is accepted, the bath temperatures of these replicas will be swapped, 

and the velocities will be scaled accordingly. Otherwise, if the exchange is rejected, each 

replica will continue on its current trajectory with the same thermostat temperature.  

 

5.2.2 Reservoir REMD (R-REMD) 

Reservoir REMD simulations (R-REMD) were run using same simulation 

parameters as standard REMD simulations. The only difference is that the highest 

temperature replica is replaced with a previously generated structure reservoir (replica 

RN). Standard replicas (MD simulations) were used for each of the lower temperatures 

(replicas R1 to RN-1). Exchanges are attempted based on the same criterion as used for 

standard REMD (Equation 5-4). During exchange attempts for replicas between R1 and 

RN-1 the exchange calculation is performed using current simulation coordinates. The 

only difference between R-REMD and REMD is when an exchange is attempted between 

replica RN-1 and the reservoir set RN. The exchange attempt is made between the current 

structure of RN-1 and a randomly selected structure from the reservoir. If the exchange is 

accepted, the coordinates and velocities from RN are sent to replica RN-1. Formally the 

coordinates from replica RN-1 would be placed into the reservoir, however for simplicity 

it is discarded since we assume that the reservoir constitutes a complete representation of 
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the ensemble and that the inclusion of the new coordinates will have a negligible effect 

on the reservoir.  

 

5.2.3 Model Systems 

The first model system chosen was the tryptophan zipper (trpzip) developed by 

Starovasnik and coworkers [59]. This β-hairpin structural motif is stabilized through 

cross-strand tryptophan pairs. Trpzip2 (SWTWENGKWTWK, with a type I’ β-turn at 

NG) has the most cooperative melting curve and highest stability (~90% at 300K) among 

the trpzips, and was selected for use in this study. Thermodynamic properties for this 

peptide have been determined by NMR and CD spectroscopy, and a family of structures 

was refined using restraints from NMR experiments [59] (PDB code 1LE1). The N-

terminal of the peptide was acetylated and the C-terminal was amidated, in accord with 

the experiments.    

The second model system was created from the sequence of DPDP 

(VFITSdPGKTYTEVdPGOKILQ, dP=D-proline, O=ornithine) except that lysine was 

substituted for the ornithine. Replacing ornithine with lysine in a related peptide 

analogous to the C-terminal hairpin of DPDP caused no detectable effect on the structure 

[165]. The termini were amidated and acetylated in accordance with experiments. DPDP 

was designed with a net charge of +2 to prevent aggregation, and our model retains this 

net charge[164]. 
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5.2.4 REMD Simulations 

For both systems standard REMD simulations were carried out with Amber 

version 8 [163]. For trpzip2 all covalent bonds were constrained using SHAKE [63]. For 

dPdP only the bonds involving hydrogen atoms were constrained. A 2fs time step was 

used and temperatures were maintained using weak coupling [86] to a bath with a time 

constant of 0.5 ps-1. All non-bonded interactions were calculated at each time step (i.e. no 

cutoff was used). In order to permit comparison to our previously published data, both 

peptides were simulated with the Amber ff99 force field with modified backbone 

parameters [22]. Steepest descent energy minimization was performed for both systems 

for 500 steps prior to REMD simulations. Both systems were simulated with Generalized 

Born solvation model [29] with GBHCT [87] implementation in Amber. Scaling factors 

were taken from the TINKER modeling package [143].  

Standard REMD simulations were performed for both systems using 14 replicas 

for trpzip2 and 12 replicas for dPdP, covering a temperature range of ~260 – 570K with 

an expected exchange probability of 15%. For trpzip2 additional replicas were manually 

placed between 300 K and 370 K to increase statistics around the experimentally 

observed melting transition. Exchanges between neighboring replicas were attempted at 

1ps intervals.  

For both systems two independent replica exchange simulations were run. For 

trpzip2 one simulation initiated all replicas in the published native conformation. The 

other simulation started from a compact non-native conformation where no hairpin 

backbone hydrogen bonds were present. Both REMD simulations were run to 155000 

exchange attempts (155 ns per replica). dPdP simulations were run as explained in our 



 133

previous work [23], with a simulation starting with all replicas in fully extended and 

another with all replicas in a compact non-native structure. dPdP simulations were carried 

out for 170000 exchange attempts (170ns per replica).  

 

5.2.5 Generation of Reservoir Structures 

The reservoir structures were generated through molecular dynamics at 400K with 

the same simulation parameters as used for REMD simulations. For trpzip2 four 

independent MD simulations of ~38 ns in length were run starting from an extended 

conformation. Multiple folding and unfolding transitions were observed for each 

trajectory. For dPdP a single long trajectory of 260ns was generated. Multiple folding and 

unfolding transitions were observed. For both systems velocities and coordinates were 

saved each 1 ps. In the present implementation of R-REMD in Amber, coordinates and 

velocities for the reservoir were loaded into memory at the start of the R-REMD run. To 

minimize memory requirements, the reservoir ensembles were reduced to 10000 

structures by selecting equidistant snapshots from the trajectories.  

 

5.2.6 Reservoir REMD Simulations 

For trpzip2 four replicas were used below the 400K reservoir with temperatures of 

300 K, 323 K, 350 K and 373 K. No additional replicas were used since these four 

replicas were sufficient to provide a 25-30% exchange ratio. Two sets of R-REMD 

simulations were each run for 50000 exchange attempts, starting from the same native or 

unfolded initial conformations as used for the standard REMD calculations.  
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Since dPdP is a larger system, R-REMD simulations used 6 replicas below 400K 

with the same temperature distribution as the standard REMD reported by Roe et al. [23]. 

One R-REMD simulation starting from extended conformations was run for 50000 

exchange attempts. 

 

5.2.7 Analysis 

The trajectories obtained from standard and reservoir REMD simulations were 

analyzed using the Amber ptraj module. Trpzip2 simulations were compared to the 

experimentally determined native structure [59] (Model 1 of PDB code 1LE1) where 

backbone RMSD’s were calculated for residues 2 to 11. Terminal residues were omitted 

to remove the effects of fluctuations. An RMSD cutoff of 1.7Å was used to determine 

native structures based on free energy profile along RMSD where the native minimum 

reached up to 1.7 Å (data not shown). For dPdP the fraction of native contacts were 

calculated and the native population was calculated using a cutoff of 0.50 for both 

hairpin1 and hairpin2 contacts (as described in Roe et al. [23]).  

Melting curves were generated by calculating the average population of native 

structures at each temperature. For trpzip2 simulations, data from the first 55000 

exchange attempts were discarded for each standard REMD simulation to remove initial 

structure bias. For dPdP REMD simulations data from the first 20000 exchange attempts 

were discarded.  

Native fractions as a function of time were calculated by averaging the native 

population up to that time point for both systems using their respective criteria. For all 

systems the rate of convergence was observed by comparing populations starting from 
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different initial conformations. When both simulations show similar observables and a 

flat profile is obtained for all temperatures, the simulations are classified as converged.  

Cluster analysis was performed as described previously [43] using the Moil-View 

program [66]. The trajectories from standard and reservoir REMD simulations were 

combined. Cluster analysis was performed on the combined set, and then normalized 

populations for each cluster type were calculated for each of the original simulations. 

This process permits direct comparison of the populations since the structure families are 

defined using the combined trajectories. 

 

5.3 Results and Discussion 

We apply the R-REMD method to two model systems (trpzip2 and dPdP) that we 

have studied previously using standard REMD. In order to validate the R-REMD 

approach, we first compare the resulting structure ensembles to those obtained with 

standard REMD to validate that R-REMD provides accurate results. Next, we examine 

whether R-REMD provides these results more efficiently than standard REMD.  

 

5.3.1 Trpzip2 REMD Simulations 

We performed 2 independent REMD simulations of the trpzip2 peptide, one 

starting with all replicas in the published NMR structure (native) and one from a compact 

non-native structure. Both simulations were run ~155000 exchange attempts (equivalent 

to 155ns per replica) where 14 replicas were used to cover a temperature range of 260K – 

570K.  
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Even though trpzip2 is a small system, long simulations were required to obtain 

good agreement between simulations with different initial conformations. Throughout the 

simulations the melting profiles were monitored and compared. After ~150 ns both 

REMD simulations showed similar melting profiles which no longer changed with 

increasing simulation times. The convergence rates of each simulation will be discussed 

later in this section. Since significant time was required to overcome the bias from initial 

conformations, data from the first 55000 exchange attempts (55 ns) were discarded for 

constructing the melting curves (Figure 5-1). It should be noted that the amount discarded 

is larger than the total simulation time of most published REMD studies. Simulations 

starting from unfolded conformations show slightly higher stability than those initiated 

with the native state, suggesting that these differences involve fluctuations in the data and 

do not reflect initial structure bias. As determined by fitting of the native fractions to the 

Gibbs – Helmholz equation, both simulations show comparable thermodynamic 

properties, with melting temperatures of 342.4K and 352.4K and ΔHm of -15.90 kcal/mol 

and -16.46 kcal/mol. These values are in excellent agreement with the experimental 

melting temperature of 345 K and ΔHm of -16.8 kcal/mol[59]. While the accuracy of the 

force field is not the subject of this study, it indicates that we are evaluating the 

performance of the R-REMD method under conditions that are relevant to experimental 

observations. 
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Figure 5-1. Melting curves for trpzip2 REMD simulations starting from native and 
unfolded conformations. Symbols represent temperatures at which simulation data is 
obtained. The similar profiles suggests that the data is reasonably well converged. 
Simulations show melting temperatures of 342.3K and 352.4K, in excellent agreement 
with the experimentally measured value of 345K. 

 

5.3.2 Testing the accuracy of R-REMD 

After establishing benchmark results obtained using converged standard REMD 

simulations, we generated the high temperature reservoir ensemble at 400K. We chose 

400K because it is high enough to allow rapid conformational transitions and it is well 

above the Tm, thus requiring R-REMD to significantly transform the reservoir ensemble 

to obtain accurate ensembles at lower temperatures.  
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4 standard molecular dynamics simulations were performed at 400K using 

identical conditions as standard REMD simulations. Each simulation was run for ~38 ns 

with a cumulative simulation time of ~152ns, where multiple folding and unfolding 

transitions were observed for each trajectory (Figure 5-2). The presence of reversible 

folding transitions during standard MD is a reasonable indicator that the ensemble is 

fairly well converged (discussed in more detail below). Due to the elevated temperature, 

rapid unfolding takes place after each folding event and the native population for each 

simulation is between 1 and 5 %, in good agreement with the melting curves shown in 

Figure 5-1 (3.3% and 6.1% native populations at 400K, calculated using the Gibbs – 

Helmholz equation and native fractions at the other temperatures).  
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Figure 5-2. Trpzip2 backbone RMSD vs. time during the four simulations at 400K used 
to generate the R-REMD reservoir. All simulations show reversible folding with a low 
population of the native β-hairpin. 

 

Monitoring RMSD values with respect to native structure throughout each 

trajectory can be a good indicator for whether the native conformation is accessible 

during the simulation, but this provides little information on the convergence of sampling 

for the unfolded ensemble. Monitoring the number of clusters sampled during a 

simulation has been suggested for evaluation of simulation convergence [39]. Following 

our previously published work[43], we extend that approach to evaluate the population of 

each cluster to determine whether independent simulations provide the same ensembles. 

Cluster analysis was performed on the combined set of structures to assign structure 
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families (clusters), and the fraction of the ensemble populating each cluster was then 

calculated for each simulation. It is important to note assignment of clusters using the 

combined trajectories permits a direct comparison of the populations sampled by the 

different simulations. Cluster analysis resulted in 136 structure families. In Figure 5-3, 

we compare the populations of each family sampled in the first two trajectories to the 

populations from the other two trajectories. A good correlation is observed, suggesting 

that the simulations not only sample the same types of structures, but that the relative 

population of each structure family is similar. While the composition of the unfolded 

ensemble will be discussed elsewhere, it is important to note that the most populated 

clusters (10-15% of the ensemble) are non-native at this elevated temperature, with a 

native population of only ~3%.  
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Figure 5-3. Populations of different trpzip2 structure clusters sampled by standard MD 
simulations. Populations of the first two trajectories are compared to populations of the 
same clusters in the remaining two trajectories. All clusters with large populations in runs 
1&2 are also present with similar populations in runs 3&4, suggesting good convergence. 

 

This pool of 10000 structures (coordinates and velocities) was used as the 

reservoir set for the R-REMD simulations. Four replicas were used with temperatures 

300K, 323K, 350K and 373K, where the 373K replica periodically attempted to exchange 

with the 400K reservoir as described in Methods. Two sets of R–REMD simulations with 

different initial structures were run for 50000 exchange attempts. 

Figure 5-4 shows the potential energy distributions of each replica, including the 

reservoir, and the expected Gaussian distributions for the energies are obtained. It should 

also be pointed out that the lower temperatures show narrower energy distributions where 
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mostly native and native-like conformations are sampled while the higher temperatures 

show broader distributions where most of the conformation space becomes thermally 

accessible. As expected the broadest distribution for both methods is near the transition 

midpoint of 350K, where both native and non-native conformations are present. During 

the simulations 25-30% exchange ratios are observed between replicas and a 30% ratio 

between the 373K replica and the 400K reservoir.  

 

 

Figure 5-4. Potential energy distributions for the trpzip2 ensembles sampled in R-REMD 
simulation. As expected good overlaps are observed between neighboring replicas and 
between the highest temperature replica and the reservoir. 
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We next evaluated whether the use of the reservoir had any negative impact on 

the accuracy of the simulations. We calculated the thermal melting profiles for ensembles 

from the R-REMD simulations using the same procedure as was used for the standard 

REMD data. In Figure 5-5 we show the comparison of these melting curves to those from 

standard REMD. Excellent agreement is observed; the melting curves from the two R-

REMD simulations lay within the bounds defined by the curves obtained from the two 

standard REMD simulations. Importantly, the R-REMD ensembles at low temperature 

are nearly fully native despite the low (3%) native population in the reservoir; thus the 

REMD replicas are capable of accurately transforming the ensemble in the reservoir to 

what should be sampled at alternate temperatures. This result also suggests that it is 

possible to use this method for structure prediction, since the native conformation at low 

temperature is correctly identified despite the fact that it is not the most populated 

structure type in the high temperature reservoir (Figure 5-3).  
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Figure 5-5. Thermal melting profiles for trpzip2 obtained from standard REMD (black 
and red) and R-REMD simulations (blue and green). Symbols represent temperatures at 
which simulation data is obtained. Standard REMD simulations are shown in black and 
red and R-REMD results are shown in green and blue. For easier comparison only 
temperatures below 400K are shown. Both R-REMD simulations are in good agreement 
with each other and lie fully within the precision range defined by the standard REMD 
results. 

 

Figure 5-5 shows a striking agreement between the melting profiles obtained 

using standard REMD and reservoir REMD simulations. As we noted above, however, 

analysis of only native populations gives an incomplete view of the composition of an 

ensemble of structures. To be able to more fully evaluate the ensembles provided by R-

REMD one must compare populations not only of the native conformation but for all 

accessible states. We selected the ensemble at 350K for this analysis; the proximity to the 
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Tm makes this an excellent temperature to characterize the ensemble under conditions 

where native and non-native conformations are well populated. We performed cluster 

analysis on the combined set of structures sampled at 350K in all REMD and R-REMD 

simulations and then calculated the population for each cluster in the ensemble from each 

simulation run (two from standard REMD and two from R-REMD with different initial 

conformations). This analysis resulted in 63 clusters with the native conformation being 

the highest populated cluster in each simulation (Figure 5-6). We note that using the same 

clustering method and cutoff fewer clusters were obtained at 350K than the 400K 

reservoir described above (63 clusters vs. 136 clusters) and the most populated cluster is 

different at these temperatures (native at 350K and non-native at 400K).  

 

 

Figure 5-6. Comparison of the populations of a set of trpzip2 structure types sampled in 
different simulations. Structure families are defined using the combined set of structures, 
permitting direct comparison of populations between trajectories. (A) comparison of 
standard REMD from native vs standard REMD from unfolded, (B) comparison of R-
REMD from native vs. R-REMD from unfolded (C) comparison of the combined data 
from standard REMD and the combined data from R-REMD. High correlations were 
observed in each case (R2~0.99), and the most populated cluster is the same in all runs. 
Regression analysis after discarding the most populated cluster results in a similar level 
of agreement. 
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Standard REMD simulations starting from different initial conformations show 

high correlation between cluster populations (R2>0.99), suggesting that the ensembles are 

well converged and the data are suitable as a reference to evaluate R-REMD results 

(Figure 5-6A). Similarly both R-REMD simulations starting from different conformations 

are in excellent agreement with R2 > 0.99 (Figure 5-6B). Having thus validated the 

precision of the results from each method, we compare the populations of different 

structures in the ensemble obtained from standard REMD to that from R-REMD (Figure 

5-6C). The agreement between the two data sets is impressive, with R2 = 0.998 and a 

slope of 0.932.  

The regression data obtained using all clusters may be biased by a single cluster 

with large population (native). We repeated the regression analysis for the data shown in 

Figure 5-6 after removal of this data point, thus comparing the preference to sample the 

various weakly populated structures in the unfolded state. For all cases the resulting fit is 

similar to the original, with correlation coefficients of 0.974 (A), 0.997 (B) and 0.966 (C) 

between the unfolded ensembles sampled in the REMD and R-REMD simulations. Thus 

we conclude that the ensemble obtained from R-REMD is essentially indistinguishable 

from that obtained using standard REMD, including the relative populations of the 

various conformations that make up the unfolded state. 

 

5.3.3 Testing the efficiency of R-REMD 

We have demonstrated that R-REMD can produce the same ensembles of 

structures as standard REMD, validating the accuracy of the approach. We next 

investigate whether R-REMD offers any advantage over standard REMD in terms of 
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computational cost. To analyze the rate of convergence for simulations using each of the 

two methods, the population of native conformation with respect to simulation time was 

calculated for each simulation and temperature. By comparing the results from 

simulations initiated with different structure sets we can observe how long it takes to 

obtain a particular level of precision in the native populations. We expect that after 

sufficient time the independent simulations will show similar behavior with population 

sizes that fluctuate around the same average values.  

Figure 5-7A shows the native populations vs. time for several temperatures in the 

two independent standard REMD simulations. As expected the values undergo very large 

fluctuations at the beginning of the REMD run and slowly approach their equilibrium 

values (obtained by combining the two data sets and discarding a significant amount of 

data to remove bias from initial conditions as described for Figure 5-5). After 155000 

exchange attempts (155ns per replica), populations near the melting temperatures still 

fluctuate and do not show a flat profile with increasing simulation time. It is interesting to 

note that the simulation initiated with all replicas in the native conformation still 

underestimates the equilibrium native population. Data near the thermal melting 

transition (where native and non-native conformations are both sampled) is critically 

important for characterizing the folding landscape. Even at 100ns per replica, the 

population values differ significantly from the final values.  Importantly, the populations 

from the two independent simulations provide similar values (i.e. good precision) at times 

where the population value is dramatically different from the final value, indicating that 

precise results for the native population are not a reliable indicator of the overall 

convergence of the data. As an example, if we perform cluster analysis on the ensembles 
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sampled up to 50000 exchange attempts, the native population in both simulations is 

similar (55% and 60%). However, the correlation coefficient for the populations of 

unfolded conformations is only 0.796, showing that even though the largest cluster 

populations agree with each other the overall sampling is not complete and the unfolded 

state and folding landscape may be poorly converged. 

 

 

Figure 5-7. Convergence of native population in standard REMD runs (left) and R-
REMD runs (right) vs. number of exchange attempts. Solid lines represent simulations 
starting from native conformation and dashed lines represent simulations starting from 
unfolded conformations. Thin lines on both graphs represent the average equilibrium 
values obtained from the standard melting curves (Figure 5-5). For both graphs, the X-
axis is on the same scale. For standard REMD (left) the results fluctuate at the beginning 
of the simulations and slowly converge to their equilibrium values. Even though the 
simulations were extended to 155000 exchange attempts the average native populations 
show about 10% deviation between the two runs at multiple temperatures and plateau 
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values have not been reached. R-REMD simulations (right) converge much faster (~5000 
to 10000 exchange attempts). 

 

Next we calculated the native population convergence behavior for the two 

independent R-REMD simulations. In marked contrast to the slow convergence obtained 

with standard REMD, both R-REMD simulations reach their equilibrium values after 

only 10000 exchange attempts and fluctuate around this value for each temperature. As 

observed in the melting curves, good agreement between the two methods over the 

temperature range is observed. The results seem to differ about 7-8% at 350K, which is 

reasonable since the melting transition is sharp around this temperature and this small 

difference corresponds to only ~0.16 kcal/mol difference in free energy (49.0% vs. 

42.3%).  

As seen from Figure 5-7, the R-REMD simulations converge to their equilibrium 

values much faster than standard REMD simulations. Standard REMD simulations have 

not reached their equilibrium values even at 150,000 exchange attempts (150ns per 

replica). In contrast, R-REMD simulations reach their equilibrium values in ~ 5000 to 

10000 exchange attempts and remain near these values throughout the remainder of the 

simulations. This represents an improvement of over an order of magnitude in efficiency 

with R-REMD as compared to standard REMD.  

Up to this point the R-REMD simulations were compared to standard REMD 

simulations that employed a much larger temperature range (up to 570K). As shown in 

Figure 5-5 and Figure 5-6, these differences had little effect on the converged ensembles. 

For examination of computational efficiency, however, a more direct comparison 

between standard and R-REMD would involve using the same number of replicas and 
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temperatures for each method. To test this, a new REMD simulation was prepared 

starting from the same unfolded conformation used for R-REMD but with 5 replicas: 4 

matching the temperatures used in the R-REMD run and an additional replica at 400K. 

The only difference between this REMD run and the previous R-REMD run is that the 

400K trajectory is a continuous simulation with exchanges that are synchronized with the 

other replicas instead of being chosen randomly from the pre-generated 400K structure 

reservoir used for R-REMD. The native populations vs. time for this REMD simulation 

are shown in Figure 5-8.  

 

Figure 5-8. Native population at different temperatures vs. number of exchange attempts 
for (A) standard REMD using the same protocol as the R-REMD run (B) but using a 
400K MD replica instead of a reservoir. Equilibrium populations from standard REMD 
with the higher temperature range are shown as solid lines. Very slow convergence is 
observed for standard REMD; even after 180,000 exchange attempts large fluctuations 



 151

are present at moderate temperatures. It should be pointed out that this convergence 
graphs has different scale and the x-axis covers much longer timescale than previous 
plots. 

 

These standard REMD simulations with a highest temperature of 400K converge 

much more slowly than the original standard REMD which used more replicas covering a 

wider temperature range. After 180000 exchange attempts (180 ns per replica) the 

replicas still did not reach the equilibrium values determined from standard REMD runs, 

and they also show relatively little progress towards these values. This slow convergence 

is somewhat unexpected since this REMD simulation was run longer than the cumulative 

simulation time of our standard MD simulations at 400K (180ns per replica vs. 152ns of 

standard MD), and these standard simulations were shown to be reasonably well 

converged (Figure 5-2 and Figure 5-3). We believe that this difference in convergence 

between high temperature MD and REMD demonstrates the effect of “scavenging” of 

low-energy structures sampled at the highest T by the lower temperatures, slowing the 

convergence of the high T REMD ensemble. This interpretation is consistent with the 

observation that the lowest temperature converges within ~50ns to nearly fully native 

ensemble; once this structure is located at higher T and exchanged to the lowest T, it 

becomes trapped and no further exchanges take place (and will not until other low-energy 

basins are located at higher temperatures). Thus the rapid convergence of this low 

temperature is not an adequate measure for simulation convergence. As discussed above, 

temperatures such as 328K where the native state does not fully dominate the ensemble 

are likely to be much more useful in characterizing the folding landscape and 

composition of the unfolded state. The poor convergence of standard REMD at these 

temperatures and the rapid convergence of R-REMD under otherwise identical conditions 
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confirm that using an equilibrated structure reservoir instead of a synchronous high 

temperature replica significantly increases the rate of convergence of REMD simulations. 

To summarize the efficiency comparisons described above, standard REMD 

simulations with 14 replicas were run for 155 ns per replica from two initial 

conformations resulting in a cumulative simulation time of ~ 4.3 μs simulation time and 

still did not fully converge. The R-REMD simulations were run using 4 replicas and two 

initial conformations and both runs reach their equilibrium values in under 10 ns per 

replica (40 ns total). Generation of the reservoir does require additional computational 

effort that must be included in the comparison. In the present case, four simulations of 

~40 ns were employed (152 ns, almost as long as REMD simulations but only at 1 

temperature). The ability to use multiple simulations provides the reservoir generation 

with parallel efficiency comparable to the REMD simulations. Thus the cumulative 

simulation time for R-REMD including the reservoir generation is about 232 ns, 

approximately 19 times more efficient than the less well converged 4.3 μsec standard 

REMD simulation. Comparison to the standard REMD that used 5 replicas is difficult 

since they remained poorly converged even when extended to 180ns per replica (0.9 μs 

total simulation time). Thus R-REMD is more than 4 times more efficient even when the 

same replicas are used.  

One remaining question with the R-REMD simulations is how much the 

convergence rate and/or final results depend on the composition of the reservoir set. We 

tested this dependence by repeating the R-REMD run from an initial unfolded ensemble, 

but using only the first half of the original structure reservoir (corresponding to two of the 

four MD trajectories at 400K). The resulting pool of 5000 structures had a native 
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population of ~ 1.5%.The resulting melting curve is shown in Figure 5-9, along with 

those obtained from standard REMD and R-REMD with the larger reservoir. The thermal 

stability of trpzip2 in the R-REMD run with the smaller pool is somewhat lower, with 

~15 K reduction in the midpoint of the melting transition. This likely arises from a lower 

population of native conformations in the smaller reservoir (~1.5 % vs. 3 %). Even with 

this much smaller native population in the reservoir, the R-REMD run shows good 

agreement at the lowest temperatures away from the reservoir and the native population 

at higher temperatures is reduced accordingly. The simulations still converge as fast as 

the R-REMD simulations using the full structure pool (data not shown), suggesting that 

repeating R-REMD simulations with independent reservoirs would be an excellent 

approach to validating data convergence.   

 



 154

 

Figure 5-9. Melting curves of standard REMD, R-REMD and R-REMD with half of the 
reservoir simulations. Using only the first half of the reservoir, the peptide is less stable 
as indicated by ~15 K reduction in the melting temperature. 

 

5.3.4 Testing R-REMD performance with and anti-parallel β-sheet 

To test the efficiency of the R-REMD method on a different and more challenging 

system we simulated the peptide dPdP, which has been shown to adopt a 3-stranded anti-

parallel β-sheet [165]. We previously reported results from independent standard REMD 

simulations starting from fully extended and from compact initial conformations [23]. 

Here we compare those results to data from new simulations performed using R-REMD, 

starting from a fully extended conformation.  
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We employed a single long MD simulation of dPdP to generate the structure 

reservoir (260ns, with 5 folding transitions observed). The reservoir was again generated 

at 400K, and the native content in the resulting ensemble was 7.7%, in reasonable 

agreement with data at 399K in our standard REMD simulations (4.5% and 4.7% in the 

independent REMD runs). Once again 10000 structures were selected at equal intervals 

for use as the structure reservoir. Since dPdP is a larger system than trpzip2, 6 replicas 

were used with the same temperature distribution as we employed in the standard REMD 

simulations resulting in 15-20% exchange ratios between replicas and 14% between 

highest replica and the 400K reservoir. No data were discarded, since within 28 exchange 

attempts every one of the initial fully extended conformations had been exchanged with 

the reservoir, as expected since the fully extended conformation is energetically less 

favorable than the MD-generated conformations in the reservoir.  

We compare the dPdP melting curves from our standard REMD simulations with 

the R-REMD results in Figure 5-10. As we observed with trpzip2, good agreement is 

obtained between REMD and R-REMD, with the R-REMD melting profile falling within 

the precision bounds obtained from the two independent standard REMD runs. As we 

reported previously [23], these values are in good agreement with experimental 

observations. 
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Figure 5-10. Comparison of dPdP melting curves from standard REMD simulations 
(black and red) and R-REMD simulation (blue). For standard REMD simulations, data 
from the first 20000 exchange attempts were discarded to remove bias introduced by 
initial conformations. For the R-REMD simulation the 400K population reflects the 
reservoir ensemble. 

 

Having confirmed that R-REMD is once again able to accurately reproduce the 

thermal melting profiles obtained using standard REMD, we evaluated how long it took 

each simulation to reach these equilibrium values (Figure 5-11). Even after 170000 

exchange attempts (~2μs per run) for standard REMD simulations it was not possible to 

conclude that the simulations were well converged since the populations at some 

temperatures varied more than 10% and in many cases a plateau had not yet been 

reached. 
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Figure 5-11. Native fraction vs. number of exchange attempts for standard REMD 
simulation (A) and R-REMD simulation (B). Solid lines in (A) represent simulations 
starting from compact non-native structure and dashed lines represent simulations starting 
from extended conformation. Even after 170,000 exchange attempts plateau values have 
not been reached. During R-REMD simulations (B) all replicas converge to their 
equilibrium values after ~10000 exchange attempt and show a flat profile thereafter. 

 

In contrast with the standard REMD results, dPdP R-REMD simulations reach 

their equilibrium values within ~ 10000 exchange attempts and show an essentially flat 

profile after that point. Simulations were continued up to 50000 exchange attempts, with 

no significant changes for any of the simulated temperatures. Including reservoir 

generation (260 ns), the total simulation time used to obtain fully converged ensembles 

using R-REMD was ~320 ns, although we did not test whether a shorter reservoir 
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generation simulation would have been sufficient. Based on this time, we estimate that R-

REMD is at least 6.4 times more efficient than standard REMD.  

 

5.4 Conclusions 

We introduced a new variant of the replica exchange method where slow 

convergence and high computational cost of REMD have been greatly improved by 

coupling of the REMD replicas to an ensemble of conformations that is generated in 

advance, similar in spirit to J-walking schemes. This approach builds on the hypothesis 

that the main contribution to sampling efficiency during REMD is obtained from the 

replicas exploring the free energy landscape at high temperatures. Rather than simulating 

all replicas during this search process, R-REMD performs the search for alternate local 

minima in advance and subsequently uses a relatively short REMD run to generate 

accurate Boltzmann-weighted ensembles at other temperatures. An important advantage 

is that exchanges with the reservoir need not be time-correlated with the replica 

simulations, permitting REMD replicas to obtain many low-energy (such as native) 

conformations from a smaller number of folding events; this is not possible with standard 

REMD, which may a contributing factor in slow convergence.  

We tested R-REMD by comparing to standard REMD results for two systems, a 

β-hairpin and a three-stranded β-sheet, under conditions in which the standard REMD 

data were in good agreement with experimental observations. We find that the thermal 

melting profiles obtained from R-REMD simulations were highly accurate as compared 

to standard REMD, as expected due the lack of any approximations in development of 

the method. Furthermore, excellent agreement was noted between the compositions of the 
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structure ensembles obtained from standard REMD and R-REMD, including very high 

correlations between the two methods for the populations of native and non-native 

conformational families.  

Analysis of convergence rates suggests that R-REMD 5 to 20 times more efficient 

than standard REMD and is limited mostly by the quality of the initial high-temperature 

ensemble used as the reservoir pool of structures during the R-REMD run. This reservoir 

can readily be generated through multiple independent MD simulations. We 

demonstrated that this high-temperature reservoir actually converged more rapidly than 

the corresponding temperature during REMD; the slow convergence of high temperature 

data during REMD likely arises from removal of low-energy conformations through 

exchange with lower temperatures. A key advantage is that replicas corresponding to the 

full temperature range needed for REMD do not need to be simulated during the reservoir 

generation; they are only simulated during the REMD phase which converged much more 

rapidly than analogous calculations performed without the reservoir.  

Since the populations of alternate local minima in the reservoir formally influence 

the equilibrium properties at other temperatures, it is important to ensure that the 

reservoir is well converged. With the current implementation not only each minima have 

to be sampled, the relative populations for each conformation should be correct as well. 

However, it should be possible to modify the form of the exchange probability 

calculation to accommodate other well-defined probability distributions in the reservoir 

and still obtain correct canonical ensembles for the temperatures spanned by the REMD 

replicas. This may further reduce the computational requirements of the method; future 

studies will investigate this possibility. 
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Chapter 6  

Future Plans 

 

6.1 Decoy Analysis 

Chapter 2 introduces the decoy screening technique for small peptides and its uses 

for identifying potential problems with parameter sets and improving available force 

fields. We have increased the number of decoys mentioned in Chapter 2. Currently we 

have decoy sets of four different peptides and proteins. As mentioned in Chapter 2 we 

still use the Trpzip2 decoy structures. In addition to Trpzip2 we have a helical decoy set 

generated through Replica Exchange simulations from a helical structure generated from 

Baldwin Helix [166]. We also use systems that show more than one secondary structure 

element as decoy structures such as Trp-cage miniprotein [167] and villin headpiece 

helical subdomain (HP36).  

As mentioned in Chapter 2, there were problems with the force field parameters in 

AMBER. During that study we used the decoy structures to train the dihedral parameters 

of the force field to obtain a better force field. The resulting force field (ffGA) was very 

successful for Trpzip2 simulations discussed in Chapter 3. However later tests showed 

that the ffGA parameter set had strong bias towards β-turn conformation which turned 

other test peptides into left handed helices (see minimum around +60° for ϕ in Figure 

2-9). It became apparent that more work was needed to obtain a better force field.  

We took a different approach where we parameterized the entire backbone 

parameters by comparing energies to quantum mechanical energies for GLY and ALA 
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tetra-peptides. The resulting parameter set is called ff99SB [24]. While we worked in 

improving parameters other groups came with variations of existing force fields to 

reproduce experimental observations. We have used the decoy screening procedure to test 

the accuracy of the available and our new parameter sets (ff94 [11], ff99 [17], ff03 [21], 

ff94gs [18], ff99φ [19, 20]). Figure 6-1 shows how decoy analysis is performed now, 

where minimum energy profiles are compared for each parameter set tested on the same 

graph.  

 

 

Figure 6-1 Lowest energy profiles for three decoy systems, each tested with six Amber 
force fields (ff94, ff99, ff99SB, ff03, ff94gs, ff99φ). (A) Trpzip2, (B) Baldwin Helix, (C) 
Trp-cage. RMSD values are calculated with respect to the experimentally determined 
structure. Ideally, a force field should show lowest energies for the lowest RMSD values.  
 
 

Decoy testing is a quick way of identifying potential problems in force fields or 

other simulation parameters. It can be used to test other parameters such as different GB 

models when needed. However it has limitations. If a parameter set “passes” the decoy 

set it does not mean that it is a good set. There may still be problems with it and after 

successful decoy screening extensive simulations should be run to confirm the 

performance of the parameter set. If it fails the decoy screening it can be concluded that 

that parameter set has certain deficiencies and should be improved.  
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6.2 β-hairpin folding 

We have investigated the folding and unfolding thermodynamics and kinetics of 

the Trpzip2 β-hairpin in Chapter 3. We used the force field parameters developed in 

Chapter 2 (ffGA) to perform this study. As mentioned before the ffGA force field was 

able to produce results in close agreement with experimental observations for Trpzip2. 

However it turned out that this force field is not transferable to other systems. It was only 

suitable for β-systems with similar turn types. The same force field was used successfully 

on the dPdP peptide which adopts a three stranded β-sheet [23].  

We are in process of reproducing ffGA results with our new force field ff99SB. 

However discovering problems with the Generalized Born solvent model forced us to run 

our simulations in explicit solvation. This combined with slow transition kinetics of β-

strand conformation results in unconverged simulations even with enhanced sampling 

methods such as Replica Exchange. REMD simulations started from unfolded 

conformations were able to identify native conformations and exchange them to lower 

temperatures but even after 350,000 exchange attempts (350ns/replics, 50 replicas) only a 

handful of folding events were observed and the calculated melting temperature is very 

low compared to experimental observation.  

This low convergence suggests that even with REMD it is not possible to obtain 

reliable data for systems having slow transition kinetics and improvements to the existing 

methods are needed. We have two proposed methods to improve the sampling efficiency 

of standard REMD method (Chapter 4 and Chapter 5) where in Chapter 5 we used 

Trpzip2 as model system and compared the performance of the new Reservoir REMD 

method to the results discussed in Chapter 2.  
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6.3 Hybrid Solvent REMD 

In Chapter 4 we discussed a new variant of REMD method where a hybrid 

solvation scheme was used to reduce the number of replicas for explicit solvent REMD. 

The method is currently tested on Alanine peptides of different sizes (1, 3 and 10 

residues) and it is still in development stage. Alanines are simple residues and 

ployalanines lack complex sidechain – sidechain and sidechain – solvent interactions. 

The use of hybrid solvent exchange scheme eliminates the backbone effects of GB 

solvent model and produces similar results to standard explicit solvent REMD.  

However other problems such as overstabilized salt bridges have been reported 

for GB models. To test the effect of the hybrid exchange potential on salt bridging 

residues we ran simulations on a test peptide of four residues where oppositely charged 

Arg and Glu residues were separated by two Alanines. Same procedure as polyalanine 

was used where REMD simulations were performed with TIP3P explicit solvent, 

Generalized Born and hybrid explicit/implicit solvent models. The salt bridge PMF was 

calculated using the distance between charged groups of Arg and Glu.  

The helical backbone preference of GB was noticed on this small peptide as well. 

When similar backbone conformations were compared the salt bridge was significantly 

stronger in GB compared to TIP3P. Hybrid potential produced a similar free energy 

profile to fully solvated simulations suggesting that the inclusion of the first hydration 

shell is enough to overcome deficiencies of Generalized Born Solvent model and obtain 

fully solvated trajectories at reduced cost. 
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Even though hybrid explicit/implicit solvent REMD method is successful on test 

systems, more simulations with peptides and small proteins such as Trpzip or Trp-cage 

where experimental data is available should be performed for better accuracy tests. Also 

this method can be employed systems where we could not produce converged explicit 

solvent before such as Trpzip2. 

 

6.4 Reservoir REMD 

In Chapter 5 we have shown that the convergence speed of REMD simulations 

can be improved by coupling the high temperature replica with a pre-generated structure 

reservoir. In standard REMD, when a low energy structure is discovered by high 

temperature replicas it is exchanged to lower temperatures and high temperatures have to 

the search over again. For large systems with slow transition kinetics running converged 

REMD simulations may become computationally very expensive. Through Reservoir 

REMD (R-REMD) we showed that we can obtain converged results for slow converging 

β-hairpin and β-sheet using fraction of resources.  

However the performance of R-REMD depends on the quality of reservoir. With 

the implementation described in Chapter 5 the reservoir has to have good sampling and 

the conformations have to have correct weights. Obtaining such a sampling even at 

elevated temperatures can be difficult for slow converging systems. We are testing a 

modified Reservoir REMD scheme where conformations between the reservoir and 

highest temperature replica are compared using a different non-Boltzmann exchange 

potential. Through this approach the reservoir structures do not need to have correct 

relative weights between conformations.  
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We have tested the reservoir REMD scheme on β-hairpin and β-sheet forming 

peptides using Generalized Born solvent model. However obtaining converged results 

using GB is possible using standard REMD method. Generating converged ensembles 

with explicit solvent REMD is difficult especially for systems with slow transition 

kinetics. The main reason for developing the Reservoir REMD scheme was to speed up 

the convergence speed of simulations employing explicit solvation. This method would 

enable us detailed thermodynamics analysis of current systems in explicit solvent where 

converged simulations were not possible through standard methods.  
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